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Abstract

Calcification occurs in atherosclerotic vascular lesions and In the aortic valve. Calcific aortic valve 

disease (CAVD) is a slow, progressive disorder that ranges from mild valve thickening without 

obstruction of blood flow, termed aortic sclerosis, to severe calcification with impaired leaflet 

motion, termed aortic stenosis. In the past, this process was thought to be ‘degenerative’ because 

of time-dependent wear and tear of the leaflets, with passive calcium deposition. The presence of 

osteoblasts in atherosclerotic vascular lesions and in CAVD implies that calcification is an active, 

regulated process akin to atherosclerosis, with lipoprotein deposition and chronic inflammation. If 

calcification is active, via pro-osteogenic pathways, one might expect that development and 

progression of calcification could be inhibited. The overlap in the clinical factors associated with 

calcific valve disease and atherosclerosis provides further support for a shared disease mechanism. 

In our recent research we used an in vitro porcine valve interstitial cell model to study spontaneous 

calcification and potential promoters and inhibitors. Using this model, we found that denosumab, a 

human monoclonal antibody targeting the receptor activator of nuclear factor-κB ligand may, at a 

working concentration of 50 μg/mL, inhibit induced calcium deposition to basal levels.
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Progressive thickening of the aortic valve leaflets and narrowing of the aortic annulus leads 

to increased mechanical stress on the left ventricle and reduces cardiac output, resulting in 

further complications.1–3 The proportion of the population affected increases as the median 

age of a country or region rises. Approximately 2–4 % of people aged over 65 will develop 

calcific aortic stenosis, with 25 % of people in this age group presenting with signs of the 

disease, leading to a 50 % increased risk of cardiovascular related events. Furthermore, there 

is an associated risk of 80 % over 5 years of progression to heart failure, aortic valve 

replacement or death.4
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Anatomy and Histology

The normal aortic valve maintains unidirectional blood flow from the left ventricle into the 

aorta. It is a supple membrane that opens and closes with each heartbeat more than 100,000 

times a day. The healthy aortic valve comprises three leaflets and is located at the junction 

between the left ventricular outflow tract and the aortic root.

The internal collagen framework of the leaflets is arranged in three distinct layers, which – 

from the aortic to ventricular surface – are the fibrosa, spongiosa, and ventricularis (see 

Figure 1). This leaflet structure is covered on both the ventricular and aortic surfaces by 

endothelium in continuity with both the ventricular endocardium and the aortic endothelium. 

Each layer of the aortic valve has a distinct structure and function. The fibrosa, with its 

dense connective tissue, contains circumferentially oriented collagen fibres that provide 

most of the strength of the leaflets. The spongiosa is found at the bases of the leaflets. It 

contains a loose matrix of mucopolysaccharides, and provides a cushion to resist 

compressive forces and facilitate movements between the fibrosa and ventricularis during 

leaflet motion. The ventricularis layer contains radially oriented elastin and contributes to 

flexibility, allowing for changes in leaflet shape during opening and closing. Under normal 

conditions, all three layers are avascular with no cellular infiltrates and are innervated by 

adrenergic and cholinergic neural networks.5–7 To remain pliable, the aortic valve must 

undergo continuous repair throughout life. Accumulation of fibrotic tissue and calcium in a 

valve leads to decreased pliability and narrowing of the valve orifice.8,9

Valve interstitial cells (VICs) are found in each of these layers, and have distinct sub-

populations that regulate homeostasis within the valve leaflets.10–12 In addition to the 

common tricuspid anatomy of the aortic valve, a congenital bicuspid valve is found in 0.5–

1.4 % of the general population, giving rise to differential biomechanical forces – both on 

the valve and the aortic wall.13–15

Pathophysiology and Mechanism of Calcification

Over the past several decades, the aetiology of calcific aortic valve disease (CAVD) has 

changed considerably. The lower prevalence of rheumatic heart disease and increased 

longevity in industrialised countries has resulted in a pattern shift from rheumatic to 

degenerative calcification as the most common cause of CAVD and subsequent calcific 

aortic stenosis.16–18 CAVD is the third most common heart disease in the western world,19 

following coronary heart disease and hypertension. Its prevalence in the elderly (≥65 years 

of age) ranges from 2–4 % when considering only severe aortic stenosis, increasing to 25 % 

when aortic sclerosis is included.9 However, a relative minority of elderly individuals 

develop aortic valve calcification, suggesting pathological influences other than age play a 

role.

Calcific aortic stenosis is the second most prevalent cause for heart surgery and is 

responsible for approximately 15,000 deaths annually in North America.18 Calcific aortic 

stenosis is a well-known disease entity and we are able to assess numerous haemodynamic 

parameters using cardiac catheterisation or ultrasonography as well as cardiac computed 
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tomography and cardiac magnetic resonance imaging.20 In CAVD, calcified nodules are 

initially observed at the base of the cusps and their presence gradually extends towards the 

orifice. All three cusps are usually usually affected, but one or more may be dominant. 

When blood flow through the stenotic aortic orifice becomes significantly restricted, 

haemodynamic impairment associated with serious symptoms of congestive heart failure and 

sudden cardiac death may occur. Severe symptomatic aortic stenosis is a Class I indication 

for surgical valve replacement according to the American Heart Association and American 

College of Cardiology guidelines for valvular heart disease.21

CAVD is currently considered as an actively regulated and progressive disease, characterised 

by a cascade of cellular changes that initially cause fibrotic thickening, followed by 

extensive calcification of the aortic valve leaflets. This in turn leads to significant aortic 

valve stenosis and eventual left ventricular outflow obstruction (see Figure 2),10,22 for 

which surgical replacement remains the only viable treatment option. Currently there is no 

approved pharmacological treatment to stop the progression of CAVD.23 Descriptive studies 

using human specimens have demonstrated the hallmark features of this disease, including 

early atherosclerosis, cell proliferation and osteoblast expression. 24–26

CAVD and Traditional Risk Factors for Atherosclerosis

Aortic valve stenosis was first described by Lazare Riviere in 1663.27 In the early 1900s, 

eminent pathologists such as Monckeberg, described CAVD as a passive degenerative 

process associated with rheumatic fever or aging, during which serum calcium attaches to 

the valve surface and binds to the leaflet to form nodules.28

In more recent decades, several studies have implicated the traditional risk factors for 

cardiovascular atherosclerosis in the development of CAVD. Atherosclerosis is a complex 

and multifactorial process that produces a lesion composed of lipids,29,30 macrophages,31 

proliferating smooth muscle cells32 and apoptosis.33 It is regulated by endothelial nitric 

oxide synthase,34–38 and over time causes occlusion of the vessel diameter. Total 

cholesterol, increased low-density lipoprotein (LDL) cholesterol, increased lipoprotein(a), 

increased triglycerides, decreased high-density lipoprotein cholesterol, male sex, cigarette 

smoking, hypertension, and diabetes mellitus have been reported to increase the incidence of 

aortic stenosis, and are likely contribute to endothelial dysfunction and leaflet damage.

2,3,39–43 The presence of LDL and atherosclerosis in calcified valves in surgical 

pathological studies supports the hypothesis of a common cellular mechanism.44,45 

Furthermore, patients with familial hypercholesterolaemia develop aggressive peripheral 

vascular disease, coronary artery disease and aortic valve lesions, which calcify with age.

39,46–48

Oxidised LDL (oxLDL) is implicated in vascular calcification associated with 

atherosclerosis.49,50 Elevated blood levels of oxLDL correlate with aortic valve 

calcification and fibrosis,51 and oxLDL accumulation in calcific, stenotic aortic valves is 

well described.52–56 Metabolic bone diseases – including Paget’s disease, secondary 

hyperparathyroidism and renal disease – as well as increased serum creatinine and calcium 

are also linked to progression of valve calcification, but include only a relative minority of 
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patients who have aortic stenosis.57–59 Understanding of these clinical risk factors provides 

the foundation for cellular studies and the potential for targeted medical therapies for this 

disease, similar to vascular atherosclerosis. However, the overall evidence indicated by the 

presence of atherosclerotic risk factors may partly explain why some patients who have 

congenitally abnormal valves develop aortic stenosis and require valve replacement sooner 

than those without risk factors. If atherosclerotic risk factors are important in the 

development of valvular heart disease, then experimental models of atherosclerosis are 

important in the understanding of this process. Studies in mice and rabbits have confirmed 

that experimental hypercholesterolaemia causes both atherosclerosis and calcification in the 

aortic valves.60–64 Two months of cholesterol diet treatment in an experimental rabbit 

model induced marked thickening and complex calcification in the aortic valve leaflets. The 

model was extended to test the pharmacological effect of atorvastatin and angiotensin 

receptor antagonists on the inhibition of atherosclerosis pathways and calcification.65–69 

Other pathways, such as Wnt signalling and increased calcium concentration via kallikrein-

kinin signalling, are involved in CAVD. Wnt proteins interact with trans-membrane 

receptors, in particular LDL receptors, and inhibit the effect of the degradation of the 

intracellular protein β catenin. In turn, β catenins mediate osteoblastic transformation of 

VICs and bone production. In vitro, atorvastatin – an inhibitor of LDL-cholesterol in blood – 

can neutralise this signal pathway in mice models.66,70–72

The molecular and cellular processes that contribute to aortic valve stenosis are not fully 

characterised, but could provide insights into the development of new therapeutic 

approaches.

Heart valves comprise a heterogeneous population of valvular endothelial cells and VICs, 

which maintain valve homeostasis and structural leaflet integrity. VICs, the most abundant 

cell type in the heart valve, play a key role in CAVD progression. 73 Various VIC 

phenotypes have been identified in diseased human heart valves,74 including quiescent 

fibroblast-like VICs, which upon pathological cues can differentiate into activated 

myofibroblast-like VICs; and osteoblast-like VICs, which are responsible for the active 

deposition of calcium in CAVD.53,62,74 Additionally, several studies have demonstrated the 

ability of VICs to undergo osteogenic differentiation.26,67,75

CAVD and Shear Stress

Although atherosclerotic coronary artery disease and CAVD share common features, they do 

have differences in rheology. This difference may provide at least a partial explanation for 

the differences in pathophysiology and response to therapy.76–80 CAVD is characterised by 

pulsatile shear stress on the ventricular side and low and reciprocating shear stress on the 

aortic side,81 whereas the coronary artery is exposed to sustained laminar blood flow under 

normal circumstances.82 As stenosis progresses, wall shear stress across the aortic valve 

dramatically increases.76 Ahamed and colleagues have demonstrated that in vitro shear 

stress can activate latent transforming growth factor (TGF)-β1,82 a critical pro-fibrotic 

growth factor that can induce fibrosis and calcification.83 They also showed that active 

TGF-β1 could be eluted from thrombi formed in response to vascular injury in the carotid 

artery of mice where partial occlusion may have led to high local shear stress.82 
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Subsequently, Albro et al. independently confirmed that shear stress can activate latent TGF-

β1 in synovial fluid.83 These data raise the possibility of an association between the 

activation of circulating latent TGF-β1 under high shear stress and the development of 

CAVD. Because platelets contribute ~45 % of the baseline circulating TGF-β1 level84 and 

have 40–100 times more latent TGF-β1 than any other cells,85 it is possible that shear stress 

has two separate effects – inducing release of latent TGF-β1 from platelets and activating the 

released latent TGF-β1. This mechanism may contribute to the progression of CAVD, 

because aortic valve narrowing increases shear stress resulting in greater release of platelet 

TGF-β1 and TGF-β1 activation. This in turn may lead to progressive valve narrowing and 

fibrosis, and thus even greater shear stress.

Calcifying valves initially have macrophage and T-cell infiltrates as a result of endothelial 

injury.74 Bone morphogenetic protein (BMP)-2 and BMP-4 are then expressed by 

myofibroblasts and preosteoblasts adjacent to these lymphocytic infiltrates.74 Furthermore, 

cardiac valves express markers of osteoblastic differentiation, including core-binding factor 

alpha 1 and osteocalcin.26 These valves also calcify in a manner similar to osteogenesis, 

with lamellar bone evident in the majority of pathological specimens examined.85 

Congenitally bicuspid aortic valves uniformly show signs of calcification by the time 

individuals reach age 30,86 which may, in part, be attributable to the particular mechanical 

stressors to which these valves are subjected.87 Recently, the molecular mechanism 

underlying bicuspid aortic valve calcification was solved. Mutations in the transcriptional 

regulator NOTCH1 resulted in aortic valve anomalies and severe calcification, owing to 

impaired repression of the osteoblast stimulator runt-related transcription factor 2 (RUNX2).

88

Recent evidence suggests that CAVD is the result of an active inflammatory process 

affecting the valve and leading to osteoblastic transformation with bone formation of VICs 

by activation of the receptor activator of nuclear factor-κB (RANK).89

Regulatory Pathways

There is increasing evidence that regulatory pathways that control heart valve development 

also are active with valve pathogenesis later in life. CAVD includes the activation of VICs in 

addition to increased expression of transcription factors that regulate the earliest events of 

valvulogenesis in the developing embryo.90 In addition to valve developmental pathways, 

regulatory proteins that promote the development of cartilage and bone lineages also are 

active in diseased valves.91 Thus, knowledge of the molecular regulatory pathways that 

control valve development will likely be informative in determining the molecular 

mechanisms of valve pathogenesis.

Aetiology

CAVD has multifactorial aetiology. Many factors are centered on an inflammatory process 

affecting the valve and leading to calcification,74,85 including deposition of LDLs,44,45 

osteoblastic transformation with bone formation of valvular interstitial cells, connective 

tissue synthesis and tissue remodelling. On a microscopic level, the aortic leaflets contain 
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disorganised collagen fibres, chronic inflammatory cells, extracellular bone matrix proteins, 

lipidic proteins and bone minerals.5 Calcification of the valve occurs following trans-

differentiation of the VICs through a myofibroblast stage and into osteoblast cells.71,92

Half of adults undergoing aortic valve replacement have a bicuspid aortic valve associated, 

and nearly all of them will need to have a new valve inserted.93 Shear stress occurring with 

each cardiac systole is greater in a bicuspid valve than in a tri leaflet structure and these 

valves calcify earlier.93

Interestingly, the expression of RANK ligand (RANKL) by osteoblast cells will be actively 

involved in the activation and differentiation of osteoclast cells.89 RANKL levels normally 

rise with age and can predict cardiovascular events in humans, while osteoprotegerin (a 

physiological inhibitor of RANK) deficit can lead to vascular calcification in animal models.

94,95 This study highlights an in vitro model to assess the mechanisms of aortic valve 

calcification.95

Molecular Mechanisms of Calcification

The processes of aortic valve stenosis and calcification share many similarities with 

atherosclerosis, and the pathologies of both conditions have similar risk factors and 

histopathology.2 Activation of VICs and pathways of calcific aortic stenosis is the result of 

mechanical and shear stress, endothelial damage and deposition of LDLs, triggering 

inflammatory events and attracting inflammatory cells (monocytes, macrophages and T 

cells).

These cells produce cytokines, including TGF-β, which regulates cell proliferation and 

differentiation; tumour necrosis factor-α, whose primary function is the regulation of the 

immune cells; and interleukin 2, which is produced by activated T lymphocytes with growth 

factor activity.1

VICs activated by the inflammatory process are designated myofibroblasts.5 These cells will 

develop angiogenic activity and produce matrix metalloproteinases, proteins that are 

involved in tissue remodelling and support VIC activation and transformation.96,97 During 

this process activated VICs differentiate into osteoblasts.

In Vitro Studies

Initial studies in our laboratory have involved the establishment and validation of porcine 

VIC isolation, culture and calcification procedures and the effect of denosumab on in vitro 

calcification. During the characterisation of porcine VICs, the first objective was to 

determine the expression level of a common marker of myofibroblast phenotype, α-actin, to 

demonstrate that active VICs were present in the samples. The expression of RUNX2, a 

major regulator of osteoblast differentiation, was analysed to corroborate that 

CardiologyCardiology the effect of the complete transdifferentiation of VICs had taken 

place and that the osteoblast phenotype was present. Furthermore, changes in the expression 

of TGF-β (a promoter of osteogenesis), were detected and recorded. Additionally, RhoA, a 

regulator of nodule formation in myofibroblasts, was analysed, followed by examining 
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changes in the expression of RANKL, a key regulator of bone metabolism. Finally, calponin, 

a protein with potential capability to inhibit bone formation, was measured to complete the 

genetic studies. TGF-β can increase calcium and collagen deposition.98 It is known that 

TGF-β can also stimulate the expression of RANK on pre-osteoclastic cells, and in this way 

increase osteoclastic sensitivity to RANKL.99 RANKL is expressed in the membrane of 

osteoblasts and monocytes. As yet there is still no evidence that TGF-β promotes 

calcification in porcine VICs by increasing RANK expression levels.

Our recent unpublished studies demonstrated the upregulation of key molecules during the 

spontaneous calcification of porcine VICs with an increase of calcium, collagen and alkaline 

phosphatase (ALP) activity. In vitro calcification was determined using standard staining 

and enzyme activity assays. Calcification in pig VICs was induced with sodium phosphate. 

The cells expressed markers for both vascular smooth muscle cells and osteoblasts, 

suggesting a transdifferentiation of the phenotype. Upregulation of α-actin, RUNX2, TGF-β 
and RhoA and downregulation of calponin were noted, with no changes seen in RANKL 

expression. Sodium phosphate increased nodular formation by day 7 and ALP activity of 

porcine VICs by day 14. The findings suggest that porcine VICs may be a good model to 

study the process of CAVD.100

Denosumab as a Potential Inhibitor of VIC Calcification In Vitro

Denosumab is a human IgG2 monoclonal antibody designed to target RANKL,101 which is 

expressed on the membrane of the osteoblasts and osteoclasts. Denosumab is used in the 

treatment of osteoporosis. Additionally, owing to its mechanism that blocks the receptor 

RANKL, it neutralises the activation of RANK receptors on the membrane of pre-osteoclast 

cells.More research is needed to address the interaction between RANK receptor and 

denosumab in porcine VICs.

Our recent unpublished studies showed that 50 μg/mL denosumab inhibited induced calcium 

deposition to basal levels in porcine VIC culture.100 Although associated with bone loss and 

shown to reduce vascular calcification, the effect of denosumab on calcification of human 

VICs is unknown. Recently, denosumab has been shown to reduce calcium deposition in the 

aorta, although the mechanisms by which it affects ectopic calcification are poorly 

understood.102 Furthermore, osteoprotegerin (a signalling protein receptor and a member of 

the tumour necrosis factor receptor family) has been shown to stop ectopic calcification in 
vitro via a similar mechanism to denosumab, but there is still not enough evidence of any 

effect in reverting the process of calcification. Osteprotegerin’s mechanism of action is to 

block RANKL-RANK receptor interaction.94,95 A fuller understanding of the mechanisms 

of action of denosumab may identify a novel therapeutic approach for clinical treatment, 

supplementing the current surgical approach. It should be noted that extrapolation of the 

results obtained in an in vitro porcine model to humans should be cautious, as species 

variations are likely to exist. Although it is not possible to include all mechanisms involved 

in CAVD in a single model, experimental models can contribute towards identifying the role 

several factors may play in the development of CAVD.
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Figure 1. Cellular Architecture of the Aortic Valve
Valve endothelial cells (VECs) line the outer surface of the valve and function as a barrier to 

limit inflammatory cell infiltration and lipid accumulation. The three middle layers of the 

valve are the fibrosa, spongiosa, and ventricularis. These layers contain valve interstitial 

cells (VICs) as the predominant cell type. The fibrosa is nearest the aortic side of the valve, 

contains Type I and Type III fibrillar collagen, and serves a load-bearing function. The 

spongiosa contains glycosaminoglycans (GAGs) that lubricate the fibrosa and ventricularis 

layers as they shear and deform during the cardiac cycle. The ventricularis contains elastin 

fibres to decrease radial strain. Source: Rajamannan, 2011.10
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Figure 2. Inflammatory Process of Calcific Aortic Stenosis
A: Progression of histological changes during the process of calcific aortic stenosis. B: 

Tricuspid aortic valve, showing increasing deposition of calcium and reduction of the aortic 

annulus. BMP = bone morphogenetic protein; LDL = low-density lipoprotein; TNF = 

tumour necrosis factor; TGF = transforming growth factor. Source: Otto, 2008.22
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