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Abstract

A major open question is whether computational strategies thought to be used during experiential 

learning, specifically model-based and model-free reinforcement-learning, also support 

observational learning. Furthermore, the question of how observational learning occurs when 

observers must learn about the value of options from observing outcomes in the absence of choice, 

has not been addressed. In the present study we used a multi-armed bandit task that encouraged 

human participants to employ both experiential and observational learning while they underwent 

functional magnetic resonance imaging (fMRI). We found evidence for the presence of model-

based learning signals during both observational and experiential learning in the intraparietal 

sulcus. However, unlike in experiential learning, model-free learning signals in the ventral striatum 

were not detectable during this form of observational learning. These results provide insight into 

the flexibilty of the model-based learning system, implicating this system in learning during 

observation as well as from direct experience, and further suggest that the model-free 

reinforcement-learning system may be less flexible with regard to its involvement in observational 

learning.
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Introduction

The ability to modify a behavior after experiencing its consequences is vital to the survival 

of any animal (Rescorla and Wagner 1972; Sutton and Barto 1998). However, learning 

solely by experiential trial and error can be time-consuming and dangerous and many 
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species have developed the ability to learn from other sources of information (Tomasello et 

al. 1987; Galef and Laland 2005; Whiten et al. 2005; Grüter and Farina 2009). Humans are 

particularly adept at such non-experiential learning, in particular that achieved by observing 

others take actions and receive their consequences, or observational learning (Berger 1962; 

Bandura 1977).

While a handful of studies have been conducted to examine the neural computations 

underlying observational learning (Burke et al. 2010; Cooper et al. 2012; Suzuki et al. 2012), 

this form of learning remains relatively unexplored compared to its experiential counterpart. 

In particular, studies investigating observational learning have focused on the situation 

where observers learn from the consequences of actions freely chosen by an observed person 

(Burke et al. 2010; Cooper et al. 2012; Suzuki et al. 2012). In that situation, there are 

multiple learning strategies that an agent could use to guide their choice. One strategy, akin 

to belief learning in economic games (Camerer and Ho 1999; Hampton et al. 2008), is to 

learn predictions for which action the observee is likely to choose based on the observee’s 

past choices, and to use that information to simply mimic the observee’s behavior. Another 

strategy is to learn the value of the outcome associated with each option as the observer 

experiences them, and to use that value information to guide one’s own choices. While there 

is some evidence to suggest that individuals are capable of learning predictions about others’ 

actions in either observational learning or strategic interactions (Hampton et al. 2008; Burke 

et al. 2010; Suzuki et al. 2012), much less is known about the brain’s ability to learn the 

value of different decision options through observation in the absence of free-choice in the 

actions being observed.

The goal of the present study was to address whether the human brain can learn about the 

value of stimuli through observation, in the absence of choice behavior in the observee that 

could be used to drive action-based learning. In the experiential domain, it has been 

proposed that learning about the value of decision options can occur via two distinct 

computational mechanisms: a model-free reinforcement learning mechanism, in which 

options are evaluated according to a “cached” history of their reinforcement and a model-

based learning mechanism, which acquires a model of the decision problem that it uses to 

compute the values of different decision options (Daw et al. 2005; Balleine et al. 2008). 

Although computationally simple, a model-free mechanism has limited flexibility. For 

example, a model-free agent will persist in choosing a option, even if its contingent outcome 

suddenly becomes no longer valuable. This is because, lacking a model of the environment, 

it has no representation of the current value of the outcome and relies solely on how 

rewarding the option has been in the past. In contrast, a model-based learning mechanism 

can adapt immediately to such a change, but it is more computationally complex for it to 

evaluate different available options because because, rather than relying a cached value for 

an action, it needs to consider all possible future implications of choosing that option.

Recent evidence suggests that both of these mechanisms may be present during experiential 

learning in humans. Model-free learning algorithms iteratively update the value of an action 

using reward prediction errors (RPE), which represent whether the outcome of taking that 

action was more or less rewarding than expected. Such RPE signals have been extensively 

reported within striatum during experiential learning in human neuroimaging studies 
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(McClure et al. 2003; O’Doherty et al. 2003; Gläscher et al. 2010). This literature suggests 

that the ventral aspects of striatum may be involved in encoding RPEs when learning about 

the value of stimuli as opposed to actions (O’Doherty et al. 2004; Cooper et al. 2012; Chase 

et al. 2015). In addition, there is growing evidence for the encoding of model-based state-

prediction errors (SPEs) by a network of frontoparietal regions (Gläscher et al. 2010; 

Liljeholm et al. 2013; Lee et al. 2014). These update signals reflect how surprising the 

outcome of a given action is, irrespective of its reward value, and can be used to update the 

probabilistic model of contingencies linking actions and the identity of their outcomes that is 

maintained by a model-based learning algorithm.

On the basis of evidence for the existence of both model-based and model-free learning 

signals in the experiential domain, a key objective of the present study was to establish 

whether learning about the value of different options through observation would involve a 

model-free mechanism, a model-based mechanism or both.

To address these questions, we recruited human participants to play a multi-armed bandit 

task (see Figure 1) while they underwent functional magnetic resonance imaging (fMRI). In 

the task, participants watched an observee play different colored slot machines. Importantly, 

because the observee only had a single slot machine to choose from on each trial, 

participants could not learn about the value of the slot machines from the observee’s actions; 

they could only learn by observing the payouts experienced by the observee. In order to 

assess whether the participants had learned from observation, they occasionally made 

choices between the slot machines they had watched the observee play. The chosen slot 

machine’s payout on these trials was added to the participants earnings but was hidden from 

them, which allowed us to incentivise learning from observation while preventing 

participants from learning about the machines experientially. In order to enable a direct 

comparison of the neural mechanisms underlying observational and experiential learning, 

we also included an experiential learning condition, which used a different set of slot 

machines. This condition was identical to the observational one, except that the participants 

themselves played and experienced the payouts. We then fitted model-free and model-based 

learning algorithms to participants’ choices in this task, and derived from these fitted models 

both reward prediction error and state prediction error regressors for use in our analysis of 

the participants’ fMRI data. While in this task the estimated values of the slot machines 

generated by the model-free and model-based algorithms coincide, their respective update 

signals do not, allowing us to distinguish their neural representations. Although the 

observational condition differs from the experiential condition in that the observational 

choice trials are more valuable than the observational learning trials, our effects of interest 

occur only on the learning trials in both conditions. Therefore, these differences would not 

be a confounding factor in our analysis.

We predicted that experiential and observational learning about the value of the different slot 

machines would share similar neural substrates, Specifically, we hypothesized that a 

frontoparietal network would encode state prediction errors during both experiential and 

observational learning, while the ventral aspect of striatum would be involved in encoding 

reward prediction errors during both experiential and observational learning.
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Materials and Methods

Procedures

Seventeen healthy young adults (mean age 23.3 years, SD 3.62 years, 8 males) participated 

in our neuroimaging study. All participants provided written informed consent. The study 

was approved by the Research Ethics Committee of the School of Psychology at Trinity 

College Dublin.

Each participant attended Trinity College Institute of Neuroscience where they received 

instruction in the task (See Figure 1 and below). The participant was then introduced to a 

confederate (the observee), who they would subsequently watch playing a subset of the trials 

of the bandit task. Immediately before the task began, participants saw the experimenter 

supposedly test the video connection to the observee. The participant then completed the 

bandit task while undergoing MR imaging. In a post-scan debriefing, all participants 

reported having believed the video of the observee shown during the bandit task to have 

been a live feed. In reality, this video was recorded before the experiment.

Bandit Task

Participants faced slot machines that, when played, delivered a positive monetary payoff 

(€0.20) or nothing, with differing reward probabilities that changed independently and 

continuously over the course of the task. Each machine’s reward probability time-course was 

a sine curve that drifted between 0 and 100% plus a small amount of Gaussian noise on each 

trial (M = 0, SD = 6), with a random starting point and half-period randomly set between 

0.87 and 1.67 times the number of trials per condition. The reward probabilities were 

constrained to be correlated with each other at no greater than r = 0.02. The reward 

probability time-courses assigned to each condition were counterbalanced across 

participants. These slot machines were uniquely identifiable by their color. Three slot 

machines were assigned to an experiential learning condition and the remaining three to an 

observational learning condition. This separation of slot machines by condition allowed us to 

be confident that any neural effects of learning were solely attributable to experiential or 

observational learning. In each condition, one ‘neutral’ slot machine always paid €0.00 with 

100% probability. These neutral slot machines were intended to control for visuomotor 

effects, but were not ultimately utilized in the analysis, because our use of parametric 

regressors implicitly controls for such effects. In both conditions, participants faced a 

mixture of forced-choice trials, on which they could learn about the probability of payoff 

associated with each slot machine, and free-choice trials, on which they could use this 

knowledge to maximize their earnings. The use of forced-choice trials allowed us to exclude 

the possibility that in the observational condition participants were mimicking the choices of 

the observer rather than learning the value of each slot machine. Free-choice trials were 

included to allow us to assess whether participants were learning from the forced-choice 

trials. The task was blocked by condition, with 28 trials presented in each block. Free-choice 

trials made up one quarter of all trials, and were randomly interleaved among the forced-

choice trials. The task was presented in four runs of 3 blocks or approximately 17 minutes 

each.
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On forced-choice trials, a single slot machine appeared on the left or right side of the screen. 

The player had a maximum of two seconds to play the machine by indicating the side of the 

screen it was on, using a keypad. The slot machine lever was pulled and its reel spun for four 

seconds. The slot machine then disappeared and was replaced by either an image of a coin, 

indicating to the participant that they had earned €0.20, or an image of a scrambled or 

crossed-out coin indicating to the player that they had earned nothing. After two seconds the 

payoff image disappeared and the trial was followed by an inter-trial interval (ITI) with a 

duration drawn from a uniform distribution (minimum = 1 seconds, maximum = 7 seconds), 

during which a white crosshairs was displayed on a black background. On forced-choice 

trials in the experiential condition, the participant played the slot machine and earned the 

payoff it delivered, while on forced-choice trials in the observational condition the 

participant watched video of the slot machine being played by the observee. The observee 

was shown seated on the left side of the screen with their back to the camera in front of a 

monitor, which displayed the task. On these trials, the participant observed and did not earn 

the payoffs delivered by the slot machine. However, it remained in the interest of 

participants to attend to these observed trials because they would make choices between the 

slot machines shown on these trials on subsequent free-choice trials.

On free-choice trials, the two slot machines with a non-zero probability of reward from the 

current condition appeared on screen. Participants had a maximum of two seconds to choose 

to play one of the machines. The lever of the selected slot machine was pulled and its reel 

spun for four seconds. The inter-trial interval began immediately after the reel had finished 

spinning. As in forced-choice trials, the slot machines paid out according to their associated 

reward probability. The payoff was not displayed to the participant on free-choice trials in 

order to confine their learning to the forced-choice trials. This also had the benefit of 

preventing potential indirect effects of receipt of reinforcement, such as increased attention, 

from influencing participants learning through observation. The payoff earned on a free-

choice trial was however added to the participant’s earnings thus incentivising them to 

choose the machine they believed most likely to pay out.

If participants failed to respond to a trial within two seconds or responded incorrectly to a 

forced-choice trial in the experiential condition, the slot machine cues disappeared and were 

replaced by text stating ‘Invalid or late choice’. This remained onscreen for the remainder of 

the trial.

Imaging Procedures

Magnetic resonance imaging was carried out with a Philips Achieva 3T scanner with an 

eight-channel SENSE (sensitivity encoding) head coil. T2*-weighted echo-planar volumes 

with BOLD (blood oxygen level dependent) contrast were acquired at a 30 degree angle to 

the anterior commissure-posterior commissure line, to attenuate signal dropout at the 

orbitofrontal cortex (Deichmann et al. 2003). Thirty-nine ascending slices were acquired in 

each volume, with an in-plane resolution of 3×3mm, and slice thickness of 3.55mm [TR: 

2000ms; TE: 30ms; FOV: 240×240×138.45mm; matrix 80×80]. Data was acquired in four 

sessions, each comprising 516 volumes. Whole-brain high-resolution T1-weighted structural 

scans (voxel size: 0.9×0.9×0.9mm) were also acquired for each participant.
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Computational Modeling

Participants’ choices were modeled using both model-free and model-based learning 

algorithms. The model-free algorithm used was a variation on the SARSA reinforcement 

learning algorithm (Sutton and Barto 1998) together with a softmax decision rule. This 

algorithm iteratively updates a ‘cached’ value for taking an action in a particular context. 

The values of slot machines played by the participant and those played by the observee were 

updated in the same manner. Specifically, all slot machines began with an initial value of 0. 

If a given slot machine did not display a payoff on a particular trial, its value remained 

unchanged. If a slot machine i displayed a payoff on trial t, its value V was updated 

according to the rule:

where α, δRPE and O refer to the learning rate, reward prediction error and payoff value 

respectively.

In contrast, the model-based algorithm estimates the transition probabilities linking each slot 

machine to the two possible outcome states (reward and no reward). If a slot machine i from 

condition j led to an outcome state s on trial t, the transition probability T(i, s) was updated 

according to the rule:

where η and δSPE refer to the learning rate and state prediction error respectively. The 

estimated transition probability for the outcome state not arrived in was reduced according to 

 to ensure . The reward function over outcome 

states was defined as r(s)=1 if s is the reward outcome state, otherwise r(s)=0. The estimated 

transition probabilities were integrated with the reward function to compute the expected 

reward from playing a slot machine, i.e.

For both model-based and model-free learning algorithms, the predicted choice probabilities 

were obtained by passing the values of the slot machines available for choice to a softmax 

choice rule with temperature parameter θ. Due to the simple structure of the bandit task, the 
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model-free and model-based algorithms make identical behavioral predictions and the state 

prediction errors of the model-based algorithm were equivalent to the absolute value of the 

reward prediction errors from the model-free algorithm. Importantly, such unsigned 

prediction errors cannot be used to update the cached values maintained by a model-free 

learning algorithm because they do not reflect the reinforcing value of the outcome of an 

action. Separate learning rate and temperature parameters were fit to the pooled participants’ 

choices by maximizing the product of the model-predicted probabilities of the participants’ 

choices (maximum likelihood estimation) using fminsearch in MATLAB. The same 

parameter estimates were used for the model-free and model-based learning algorithms. We 

used the Bayesian Information Criterion (BIC) to evaluate the learning algorithms according 

to their goodness of fit and complexity. Using this procedure, we selected a model with a 

single learning rate (BIC = 1428.6, learning rate = 0.14, θ = 6.18) that outperformed 

alternative models which allowed for different learning rates to be associated with the 

observed and experienced payoffs (BIC = 1434.7), or allowed different softmax 

temperatures to be associated with free-choice trials in the observed and experienced 

conditions (BIC = 1463.9). Prediction error values were derived from this fitted model and 

used in our analysis of the BOLD data. In order to assess the sensitivity of any neural effects 

to the fitted parameter values we also carried out analyses of the BOLD data with prediction 

error regressors generated using learning rates that deviated from the fitted values (0.05, 

0.25).

fMRI Preprocessing

All image preprocessing and analysis was performed using SPM8 (Wellcome Department of 

Imaging Neuroscience, Institute of Neurology, London, UK; available at http://

www.fil.ion.ucl.ac.uk/spm). All functional volumes were corrected for differences in 

acquisition time between slices (to the middle slice), realigned to the first volume, and 

coregistered with the high-resolution structural image. The coregistered high-resolution 

structural image was segmented and normalised to Montreal Neurological Institute (MNI) 

space using Diffeomorphic Anatomical Registration Through Exponentiated Lie algebra 

(DARTEL). The resulting transformation was applied to the functional volumes. The 

functional volumes were spatially smoothed with a Gaussian kernel (full-width at half-

maximum = 8 mm) and high-pass temporally filtered (60s).

fMRI Statistical Analysis

We analyzed the BOLD data using a GLM with participant-specific design matrices. Forced-

choice trials were modeled with a regressor indicating the onset times of the slot machine 

cue and another indicating the onset times of the payout cue. Forced-choice trials containing 

slot machines that deterministically paid out €0.00 were modeled with separate cue and 

payout onset regressors. A parametric regressor representing the trial-by-trial prediction 

error estimates obtained from the behavioral model modulated the payout onset regressor. 

Another regressor modeled the cue onset on free-choice trials. The experiential and 

observational conditions were modeled with separate sets of onset and parametric regressors, 

allowing us to control for any average differences in the BOLD data between the conditions 

that may be due to visual, social or motor factors. Each regressor was convolved with a 

canonical haemodynamic response function after being entered into SPM8 to generate a 
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design matrix. In order to be confident in our estimates of the effects of our regressors on 

BOLD, we tested for the presence of multicollinearity by measuring the Variance Inflation 

Factor (VIF) associated with each convolved regressor for each participant. This was 

obtained by performing OLS regression of each regressor on all other regressors. The VIF is 

then defined as 1/(1 − R2), where R2 is the coefficient of determination from this regression. 

The VIF values for all regressors of all participants were less than 2.5, substantially less than 

conventional cutoff values of 10, 20 or 40 (O’Brien 2007), indicating that multicollinearity 

was not present. We do not include regressors representing the times of decision in each 

condition because a VIF analysis indicated that these would introduce a high degree of 

multicollinearity into the design matrix (VIFOBS = 10.13, VIFEXP = 23.56; averaged across 

participants). This is attributable to the small temporal separation between the appearance of 

the cue and the time of decision leading to extremely high correlations between their 

regressors in both the observational and experiential learning conditions (ROBS = 0.94, REXP 

= 0.97; averaged across participants). The presence of such multicollinearity would prevent 

us from accurately distinguishing the effects of cue onset and decision onset. Motion 

parameters estimated during the realignment procedure were also included as regressors of 

no interest.

Maps of the voxel-wise parameter estimates for the regressors of interest were entered in 

between-subjects random effects analyses testing the effect of the regressors across the 

group. Unless otherwise stated, we report statistics with an uncorrected threshold of pUNC < 

0.005, after correction for multiple comparisons across the whole brain (WBC) to pFWE < 

0.05 using 3dFWHMx to estimate the smoothness of the residual images of each contrast 

and AlphaSim to calculate extent thresholds (AFNI, Cox 1996). A substantial number of 

studies have reported reward prediction error encoding in ventral striatum (Pagnoni et al. 

2002; O’Doherty et al. 2004; Pessiglione et al. 2006). Therefore, we also carried out small-

volume corrections (SVCs) on ventral striatum using an independent anatomical mask 

composed of two spherical ROIs of radius 5mm centered on the bilateral MNI coordinates of 

ventral striatum reported by a previous study of functional connectivity (Di Martino et al. 

2008).

Results

Behavioral results

We began by confirming that all participants chose the slot machine with the higher reward 

probability significantly more often than an agent choosing at random (p=0.5), as 

determined by a one-tailed binomial test. We then tested for a performance difference 

between the experiential and observational learning condition using a paired t-test (see 

Figure 2A). Again, performance was defined as the proportion of choice trials on which the 

slot machine with the higher win probability was chosen. We found significantly higher 

performance in the experiential learning condition relative to the observational learning 

condition (t(16)=2.26, p<0.04, two-tailed). Participants’ performance in the first half of the 

task (M = 0.84, SD = 0.11) in the experiential condition was significantly (t(16) = 2.54, p = 

0.02, two-tailed) better in the second half (M = 0.72, SD = 0.15). Participants’ performance 

in the observational condition did not differ between the first (M = 0.73, SD = 0.18) and 
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second half (M = 0.69, SD = 0.15) of the task. We found a significant effect of task 

difficulty, defined as the difference in the reward probabilities of the slot machines available 

for choice, on trial-by-trial performance in 9/17 participants in the experiential condition, 

and in 8/17 participants in the observational condition, after probit regressions. Levene’s 

tests did not indicate inhomogeneity of variance between their performance on the 

experiential and observational condition (F=0.004, p=0.95). Participants’ reaction times on 

observational free-choice trials (M = 827ms, SD = 115ms) were also significantly slower 

(t(16)=-2.59, p <0.02, two-tailed) than those on experiential free-choice trials (M = 776ms, 

SD = 123ms).

Neuroimaging results

Model-free learning signals—We tested for the presence of a relationship between 

BOLD activity and the model-derived RPEs, signals used by model-free learning algorithms 

to update the cached value of performing an action in a particular context (see Figure 3 and 

Table 1).

We found a significant effect of RPE in the experiential condition (RPEEXP) on BOLD in 

ventral striatum [pFWE < 0.05, SVC; x,y,z = 10,10,-6], as well as posterior cingulate [pFWE < 

0.05, WBC; x,y,z = 0,-38,32] and dorsomedial prefrontal cortex [pFWE < 0.05, WBC; x,y,z = 

-4,62,6]. With the exception of the activation in dorsomedial prefrontal cortex, these effects 

were robust to deviations in the value of the learning rate parameter from the fitted value 

(see Table 1), consistent with a previous report (Wilson and Niv 2015). The RPEEXP effects 

in the first and second halves of the task did not differ significantly nor did their difference 

covary with performance differences in the experiential condition between the first and 

second halves. In contrast to our findings for RPEEXP, we found no positive or negative 

effect on BOLD of the RPE associated with the observed outcomes in the observational 

condition (RPEOBS) in our ventral striatum ROI after small-volume correction, or elsewhere 

at our whole-brain threshold. We do not believe this finding is attributable to imprecise 

fitting of the behavioral model parameters because this absence of RPEOBS encoding was 

robust to deviations in the learning rate parameter from the fitted value.

We then performed a formal two-tailed t-test on the differences between the effect of the 

RPE signal in the experiential and observational conditions (RPEOBS > RPEEXP, RPEEXP > 

RPEOBS). Of the areas we had found to be sensitive to RPEEXP, only ventral striatum [pFWE 

< 0.05, two-tailed; SVC; x,y,z = -6,10,-4] responded more strongly to RPEEXP than to 

RPEOBS. BOLD in a region of right middle occipital gyrus [pFWE < 0.05, two-tailed, WBC; 

x,y,z = 22,-84,10] was not significantly related to either RPEEXP or RPEOBS but showed a 

significantly more positive effect of RPEOBS than RPEEXP.

In order to determine whether these differences between experiential and observational 

learning in the neural encoding of RPE were associated with differences in task performance 

between the conditions, we repeated this two-tailed t-test, including a covariate representing 

the difference between the conditions in the proportion of choices for the slot machine with 

the greater probability of reward for each participant. Following this test, RPEEXP signaling 

in ventral striatum remained significantly greater than that of RPEOBS [pFWE < 0.05, two-

tailed; SVC; x,y,z = -6,10,-4], indicating that this difference is not attributable to 
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performance differences between experiential and observational learning. In contrast, the 

cluster in right middle occipital gyrus that showed a significantly more positive effect of 

RPEOBS than RPEEXP did not survive the inclusion of this covariate.

Model-based learning signals—Next we tested for the neural representation of SPEs, 

error signals used by model-based learning algorithms to update probabilistic 

representations of environmental contingencies linking actions to subsequent states

We found (see Figure 5 and Table 1) a significant effect of the SPE associated with the 

earned outcomes in the experiential condition (SPEEXP) in left intraparietal sulcus [pFWE < 

0.05, WBC; x,y,z = -48,-68,28] and right dorsomedial prefrontal cortex [pFWE < 0.05, WBC; 

x,y,z = 4,34,42]. We found significant effects of BOLD to SPEOBS in left intraparietal 

sulcus/inferior parietal lobule [pFWE < 0.05, WBC; x,y,z = -44,-62,42] as well as left 

precuneus [pFWE < 0.05, WBC; x,y,z = 4, -62, 40]. In contrast to the model-free RPE 

activations, these model-based SPE effects were highly sensitive to deviations in the value of 

the learning rate parameter from the fitted value, with none remaining significant at both 

alternative values (see Table 1). The effects of SPEEXP on BOLD in the first and second 

halves of the task also did not differ significantly nor did their difference covary with 

performance differences in the experiential condition between the first and second halves. 

After performing a two-tailed t-test on the difference between the effects of SPEEXP and 

SPEOBS, we found that BOLD in none of the areas that responded positively to either 

SPEEXP or SPEOBS exhibited an effects of SPEEXP that was significantly different from the 

effect of SPEOBS. A single region of right middle temporal gyrus showed a significantly 

more positive effect of SPEOBS than of SPEEXP [pFWE < 0.05, WBC; x,y,z = 40,-72,12], but 

because this area did not respond significantly to SPEOBS in its own right, we do not 

consider it further. Given the similarity of the neural effects of SPEEXP and SPEOBS, we 

merged the regressors into a single SPE regressor in order to provide a test with greater 

statistical power. However, this analysis did not reveal any additional regions that were 

uniquely sensitive to this merged SPE regressor (see Table 1).

No effects of task performance on BOLD—We did not find any effects of task 

performance on BOLD response to the cue on free- or forced-choice trials, to the outcome 

on forced-choice trials, or to the prediction error regressors in either the observational or 

experiential condition.

Discussion

In this study, we examined the neural correlates of computations underlying learning from 

the outcomes of actions we observe others take in the absence of choice.

We found that this form of observational learning differs significantly from its experiential 

analog in the neural representation of the RPE, a signal that can be used to update ‘cached’ 

model-free action values (Daw et al. 2005). BOLD activity correlated with model-free RPE 

during experiential learning in ventral striatum, replicating previous findings (Pagnoni et al. 

2002; O’Doherty et al. 2003; Pessiglione et al. 2006) as well as dmPFC, which has also 

previously been associated with both social and non-social prediction error signals (Behrens 
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et al. 2009, 2009; Yau and McNally 2015). However, activity in ventral striatum differed 

significantly during observational learning, with no evidence of an analogous observational 

RPE signal in ventral striatum at our testing threshold.

It is unlikely that this difference is attributable to gross differences in the visual, social, or 

motor properties of the conditions, which were controlled for by the use of condition-

specific event onset regressors. The absence of model-free signaling in the observational 

learning condition is also unlikely to reflect reduced salience of this condition because we 

successfully detect other, model-based, signals during observational learning. This selective 

encoding of RPE during experiential learning provides new insight into the computational 

role of ventral striatum, indicating that it may not be recruited for the acquisition of model-

free associations when we learn from the consequences of actions we observe others take. 

Our experiential and observational learning conditions necessarily differ in multiple respects 

that may have influenced what type of learning mechanism is engaged; most prominently, 

the presence of the observee and the receipt of reinforcement by the participant. An 

important goal for future research should be to identify what elements of observational 

learning give rise to this absence of RPE signaling in ventral striatum. It may be that the lack 

of experienced reward during observational learning prevents engagement of a model-free 

learning mechanism that relies on the receipt of reinforcement. Alternatively, the presence of 

the observee may suppress the use of model-free learning in favor of model-based updating 

strategies.

While in the current study participants could only observe the outcomes received by the 

observee and could not be influenced by their choice of action, in previous studies 

participants watched the observee make explicit choices between actions and receive the 

resulting outcomes (Burke et al. 2010; Suzuki et al. 2011; Cooper et al. 2012). From these 

studies, there is evidence to suggest that the differential sensitivity of ventral striatum to 

RPE encoding we find may not be limited to learning from the outcomes of actions taken in 

the absence of choice, although these studies did not explicitly test for differences between 

observational and experiential learning signals. Our finding that experiential but not 

observational learning is associated with RPE signaling in ventral striatum is consistent with 

that of Cooper et al. (2012), who reported sensitivity of BOLD in ventral striatum to RPE 

when participants learned from the outcomes of their choices in a multi-armed bandit task 

but find no such RPE effect when participants learned by observing another player perform 

the same task. Suzuki et al. (2012) also find RPE encoding in ventral striatum when 

participants chose between stimuli associated with probabilistic monetary reinforcement, but 

this BOLD effect in striatum is absent when participants learn to predict the choices of 

others by observing them perform the task. Interestingly, Burke et al. (2010) report a 

negative effect of RPE in ventral striatum associated with the outcomes of observed choices 

as well as positive RPE encoding during experiential learning. They also suggested however 

that this result could potentially be attributable to a social comparison effect, by which 

observing rewards being denied to another person may itself be rewarding (Delgado et al. 

2005; Fliessbach et al. 2007). Taken together, these results suggest that ventral striatum may 

not possess the computational flexibility required to allow the outcomes of actions we 

observe other social agents take to update stored values in the manner that experienced 

outcomes do. Alternatively, we cannot exclude the possibility that ventral striatum may only 
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engage in this form of updating in particularly evocative social contexts that have not yet 

been explored experimentally. This would be consistent with reports of modulation of 

ventral striatal BOLD responsiveness to reward received by others by interpersonal factors 

such as their perceived similarity to the participant (Mobbs et al. 2009) or whether they are 

cooperating or in competition with the participant (de Bruijn et al. 2009).

Previous studies have reported RPE effects accompanying observed outcomes in BOLD in 

dorsal striatum (Cooper et al. 2012) and vmPFC (Burke et al. 2010; Suzuki et al. 2012). 

When these results are taken together with the absence of RPE effects during observational 

learning in the current study, one possibility is that these neural circuits are more engaged 

during the processing of outcomes of observed actions that are freely chosen. This would 

echo accumulated evidence from studies of experiential learning indicating that dorsal 

striatum in particular is engaged selectively for model-free updating when actions can be 

freely chosen (O’Doherty et al. 2004; Gläscher et al. 2009; Cooper et al. 2012).

Despite the absence of model-free RPE signaling, participants’ choices clearly indicated that 

they used the observed outcomes to learn values for the bandits, potentially by relying 

instead on model-based learning. We found neural representations of SPE signals used by 

such an algorithm to update the probabilistic contingencies linking environmental states in 

response to both experienced and observed outcomes in our task in left intraparietal sulcus – 

a region that has been associated with SPE signals in previous studies (Gläscher et al. 2010; 

Liljeholm et al. 2013; Lee et al. 2014). Our findings represent the first time such signals 

have been tested for and observed during observational learning.

Interestingly, although model-based learning is frequently associated with greater 

computational flexibility, our observational learning condition demands no more 

computational flexibility than the experiential learning condition; the conditions do not 

differ in their task structure, or the reward information available to the participant. Thus, the 

fact that we find only model-based update signals during observational learning is 

unexpected, and demonstrates that model-based learning signals occur across a broader 

range of domains than model-free learning, even when the greater computational flexibility 

of model-based learning is not required.

It should be noted that the observational SPE signal we discuss here differs, both 

computationally and in terms of its neural substrates, from other error signals reported 

during observational learning (Behrens et al. 2008; Burke et al. 2010; Suzuki et al. 2012) 

that reflected violations of predictions about the actions an observee will choose to take. 

These were used to improve those predictions (Suzuki et al. 2012), to learn about the 

observee’s intentions (Behrens et al. 2008), or to bias ones own choices towards 

advantageous actions (Burke et al. 2010). In contrast, in our task the observee did not make 

choices between actions and the SPE signal instead reflected violations of the predicted 

consequences of the observee’s actions. In addition, while we found BOLD correlates of the 

observational SPE in left intraparietal sulcus and left precuneus, action prediction errors 

have been reported in dmPFC (Behrens et al. 2008; Suzuki et al. 2012) and dlPFC (Burke et 

al. 2010; Suzuki et al. 2012), suggesting that learning to predict the outcomes of others 
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actions by observation is implemented by neural circuits that are distinct from those used to 

learn to predict the actions themselves (Dunne and O’Doherty 2013).

In addition to learning by observing the consequences of others actions, humans can exploit 

other forms of non-experiential learning. For example, we can also learn from the 

consequences of actions we could have but did not take, or by fictive learning. This can be 

seen in the investor who, having bought shares in a public company, can learn about the 

shrewdness of his choice from the changing share price of not only the company he invested 

in, but other companies he chose not to invest in. This phenomenon has been explored from 

a model-free standpoint (Daw et al. 2005; Lohrenz et al. 2007; Li and Daw 2011) but it 

remains to be seen whether fictive learning may also be supported by the strengthening of 

model-based associations.

In summary, we demonstrate that when learning by observing the experiences of others in 

the absence of free-choice, state prediction errors signals associated with model-based 

learning are present in the frontoparietal network, while reward prediction error signals 

associated with model-free reinforcement learning are not evident. These results illustrate 

the adaptability of the model-based learning system, and suggest that its apparent ability to 

incorporate information gleaned from both the observation of the consequences of others’ 

actions and the experience of the outcomes of our own actions may be fundamental to our 

ability to efficiently assimilate diverse forms of information.
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New and Noteworthy

Here we describe evidence for both common and distinct neural computations during 

reward learning through observation and through direct experience. Specifically, we 

report encoding of a state prediction error signal associated with model-based 

reinforcement-learning in the frontoparietal network during observational as well as 

experiential learning. In contrast, although we find encoding of model-free reward 

prediction errors in ventral striatum during experiential learning, this signal is absent 

during observational learning.

Dunne et al. Page 16

J Neurophysiol. Author manuscript; available in PMC 2016 June 24.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 1. Task Schematic.
Participants completed a multi-armed bandit task, with an experiential and an observational 

learning condition. Individual slot machines were played on forced-choice trials and 

participants made choices between pairs of slot machines on free-choice trials. Each slot 

machine paid out a reward (€0.20) or nothing, with a reward probability that changed 

independently across machines and continuously throughout the task. On experiential 

forced-choice trials, the participant played the slot machine and earned the amount paid out, 

while on observational forced-choice trials they watched video of an observee playing the 

slot machine and earning the amount paid out. On all trials, a slot machine was selected for 

play within 2 seconds of the onset of a trial, after which the reels of that slot machine spun 

for 4 seconds. On forced-choice trials, the amount paid out was displayed for 2 seconds. On 

free-choice trials, the amount paid out was not displayed to the participant but was added to 

the participant’s earnings. All trials were followed by an ITI whose duration was drawn 

randomly from a discrete uniform distribution (min=1s, max=7s).
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Figure 2. Behavioral performance.
Box plot of participants’ performance, defined as the proportion of free-choice trials on 

which the slot machine with the highest probability of paying out was chosen, in the 

experiential and observational conditions. Horizontal bar represents median performance, 

box represents interquartile range, and whisker ends represent maximum and minimum 

performance values. Average performance was higher in the experiential learning condition 

(mean = 0.77) than in the observational learning condition (mean = 0.71).
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Figure 3. Effect of reward prediction error in ventral striatum.
We found that BOLD activity in ventral striatum was sensitive to RPEs associated with 

outcomes that were earned (A), but found no RPE representation in ventral striatum 

associated with outcomes that were observed (B). The differences between the effects of 

experiential and observational RPEs were significant in ventral striatum (C). SPMs of the 

effects (left) are overlaid on the group mean normalized anatomical image and thresholded 

at pUNC <0.005 and pUNC < 0.001 for the purpose of illustration. Histograms (right) 

represent the frequency of voxel-wise t-statistics in our bilateral ventral striatum ROI. For 
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the contrast of negative effect of RPEOBS, no voxels in our ROI survive an uncorrected 

threshold of pUNC < 0.005
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Figure 4. Effects of state prediction error.
We found effects of SPEEXP on BOLD (pFWE < 0.05, WBC) in left intraparietal sulcus and 

right dorsomedial prefrontal cortex, and effects of SPEOBS in left intraparietal sulcus/inferior 

parietal lobule and left precuneus. A two-tailed t-test indicated that none of these clusters 

showed a significantly different effect of SPEEXP than of SPEOBS. SPMs are overlaid on the 

group mean normalized anatomical image and thresholded at pUNC < 0.005 and pUNC < 

0.001 for the purpose of illustration.
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Table 1

Peak co-ordinates of all significantly activated clusters, related to Figures 3,4, and 5; 1pFWE < 0.05 at cluster-

level after whole-brain correction and a height threshold of pUNC < 0.005; 2pFWE < 0.05 at peak-level after 

small volume correction and a height threshold of pUNC < 0.005; 3Survives correction for multiple 

comparisons with a learning rate of 0.05; 4Survives correction for multiple comparisons with a learning rate of 

0.25.

Contrast Region x y z

RPEEXP Posterior cingulate* 0 -38 32

Dorsomedial prefrontal cortex*  -4 62 6

Right ventral striatum** 10 10 -6

RPEOBS > RPEEXP Right middle occipital gyrus* 22 -84 10

RPEEXP > RPEOBS Left ventral striatum** -6 10 -4

SPEOBS Left precuneus* -4 -62 40

Left intraparietal sulcus/inferior parietal lobule* -44 -62 42

SPEEXP Left intraparietal sulcus* -48 -68 28

Right dorsomedial prefrontal cortex   4 34 42

SPEOBS > SPEEXP Right middle temporal gyrus* 40 -72 12
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