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Abstract

Bacteria can exchange genetic material, or acquire genes found in the environment. This process, 

generally known as bacterial recombination, can have a strong impact on the evolution and 

phenotype of bacteria, for example causing the spread of antibiotic resistance across clades and 

species, but can also disrupt phylogenetic and transmission inferences. With the increasing 

affordability of whole genome sequencing, the need has emerged for an efficient simulator of 

bacterial evolution to test and compare methods for phylogenetic and population genetic inference, 

and for simulation-based estimation. We present SimBac, a whole-genome bacterial evolution 

simulator that is roughly two orders of magnitude faster than previous software and includes a 

more general model of bacterial evolution, allowing both within- and between-species homologous 

recombination. Since methods modelling bacterial recombination generally focus on only one of 

these two modes of recombination, the possibility to simulate both allows for a general and fair 

benchmarking. SimBac is available from https://github.com/tbrown91/SimBac and is distributed as 

open source under the terms of the GNU General Public Licence.
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Introduction

Whole-genome bacterial sequencing is rapidly gaining in popularity and replacing 

multilocus sequence typing (MLST) thanks to its fast and cost-effective provision of higher 

resolution genetic information (Didelot et al., 2012; Wilson, 2012). Computational 

algorithms that use genomic data to infer epidemiological, phylogeographic, phylodynamic 

and evolutive patterns are generally hampered by recombination (e.g. Schierup & Hein, 

2000; Posada & Crandall, 2002; Hedge & Wilson, 2014), and recent years have seen a surge 
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of methods that measure, identify and account for bacterial homologous recombination (e.g. 

Didelot & Falush, 2007; Marttinen et al., 2008, 2012; Didelot et al., 2010; Croucher et al., 
2015; Didelot & Wilson, 2015).

Assessing and comparing the performance of different methods is complicated by the use of 

different models of recombination, in particular within-species recombination leading to 

phylogenetically discordant sites (e.g. Didelot et al., 2010) or between-species 

recombination leading to accumulation of substitutions on specific branches and genomic 

intervals (e.g. Didelot & Falush, 2007). Simulators of bacterial evolution are routinely used 

for parameter inference and hypothesis testing (Fearnhead et al., 2005; Fraser et al., 2005) 

and for method testing and comparison (Falush et al., 2006; Didelot & Falush, 2007; Turner 

et al., 2007, Buckee et al., 2008; Wilson et al., 2009; Hedge & Wilson, 2014), but simulation 

software and models used are generally targeted to the specific model of evolution 

implemented in the methods considered. One of the reasons for this is the lack of general 

and efficient simulators of bacterial evolution.

Coalescent simulators of eukaryotic evolution usually focus on crossover recombination (see 

e.g. Arenas & Posada, 2007, 2010, 2014), while bacterial recombination is generally 

modelled as gene conversion, meaning that in a recombination event only a small fragment 

of DNA is imported from a donor, whereas most of the genetic material is inherited from the 

recipient. Many fast and approximate simulation methods (e.g. Marjoram & Wall, 2006; 

Excoffier & Foll, 2011) cannot be applied to bacterial recombination because the 

approximations used do not generate the expected long genomic distance correlations in 

bacterial local trees. Other similar approximate methods are only adequate for low bacterial 

recombination rates (e.g. Chen et al., 2009; Wang et al., 2014). Many forward-in-time 

simulation methods (e.g. Chadeau-Hyam et al., 2008; Dalquen et al., 2012) or discrete 

generation coalescent methods (Excoffier et al., 2000; Laval & Excoffier, 2004) can allow 

gene conversion, but are generally too slow for simulating whole-genome evolution of large 

samples or populations.

An exact and fast method to simulate gene conversion is the coalescent model of Wiuf & 

Hein (2000) included in ms (Hudson, 2002) and its extensions (Mailund et al., 2005; 

Hellenthal & Stephens, 2007; Ramos-Onsins & Mitchell-Olds 2007). Recently, this model 

has been implemented in simulation software specific for bacterial evolution, SimMLST 

(Didelot et al., 2009).

SimMLST is optimized for MLST data which requires to simulate several short distant loci, 

and, similarly to ms, only simulates within-species bacterial recombination. For these 

reasons, these methods are not generally suited for large, genome-wide bacterial simulation 

studies or for testing different models and assumptions of recombination.

Here we present SimBac, a new method for simulating bacterial evolution. SimBac 

implements an efficient coalescent-based algorithm for simulating genome-wide bacterial 

evolution, and includes a new and more general model of bacterial recombination that 

extends the classical within-species recombination (Didelot et al., 2009) by allowing the user 

to specify any degree of recombination between species.
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Theory and Implementation

We simulate evolution backward in time under the standard coalescent model with gene 

conversion, and generate an ancestral recombination graph (ARG; see Wiuf & Hein, 2000). 

Within-species recombination events are modelled as a copy-pasting of a small fragment of 

DNA from the donor lineage sequence into the recipient.

The computational efficiency of SimBac derives from algorithmic improvements over 

previous software. First, instead of rejection sampling of recombination events as described 

by Didelot et al. (2009), we developed an analytical solution that only samples 

recombination events effectively altering ancestral material of lineages (details of the 

methods are available in the online Supplementary Material). Second, we represent ancestral 

material with a more efficient data structure. These new features allow about 100-fold faster 

simulation of bacterial genome-wide evolution compared with SimMLST (see Fig. 1). Also, 

our method generally outperforms ms (Hudson, 2002) when many recombination (or 

equivalently gene conversion) events are expected.

Our software also provides the possibility to simulate a circular or linear genome, and entire 

or fragmented bacterial genome, and offers a recombination model that allows a mixture of 

between- and within-species recombination. Within-species recombination is modelled as 

the coalescent with gene conversion (Wiuf & Hein, 2000; Didelot et al., 2009) with fragment 

lengths distributed geometrically with mean δ, and with all sites having the same per-site 

recombination initiation rate R (scaled by the effective population size). As the coalescent 

process is simulated backward in time, any extant lineage can be the recipient of a 

recombining interval from a donor lineage, which is then added to the other extant lineages. 

In such a case, the recombining interval becomes part of the genome of the new donor 

lineage (see Fig. 2b). Every site of the genome of every extant lineage becomes the start of a 

recombining interval at the same rate R.

Between-species recombination is modelled as a separate process backward in time with a 

specific scaled per-site recombination initiation rate Re and a specific distribution of 

imported fragment lengths (geometric with mean δe). When a between-species 

recombination event occurs at a recipient lineage and interval, the donor lineage is not 

tracked back in time as for within-species recombination, but instead substitutions are 

introduced into the recombining interval, similar to the model in ClonalFrame (Didelot & 

Falush, 2007). Therefore, we do not simulate species evolution as described by Arenas & 

Posada (2014), but rather assume that each recombining segment is donated by a different 

lineage within a given divergence range.

However, differently from ClonalFrame, the donor sequence is obtained by adding a random 

amount of divergence [uniformly sampled within the interval (D1, D2), specified by the user] 

into the corresponding homologous sequence from the root of the ARG. This model 

accounts for the excess of substitutions caused by between-species recombination as in 

ClonalFrame, but at the same time also generates the homoplasies that are expected if the 

recipient lineage does not lead to the root of the local tree. More details on the methods of 
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simulation and a summary of the algorithm are provided in the online Supplementary 

Material.

To showcase the possible applications of our software, we extend the investigation of 

phylogenetic inference accuracy by Hedge & Wilson (2014). The authors investigated the 

effect of low bacterial recombination rates (up to a scaled per-site rate of R=0.01) on the 

inference of clonal frame. Using SimBac, we are able to simulate higher recombination rates 

(up to R=0.1) in reasonable time, and we show that for highly recombining bacteria, and in 

particular for older phylogenetic branches, the probability of reconstructing the phylogenetic 

topology is reduced further to around 91 % (Fig. 3).

Conclusion

Simulation of genome evolution is important as it allows inference of parameters from data 

and testing of evolutionary hypotheses, and because it is routinely used to benchmark and 

compare different microbial genomic analysis methods. We present SimBac, a new method 

for simulating genome-wide bacterial evolution implemented and distributed as open source 

software (https://github.com/tbrown91/SimBac). Our model of bacterial recombination is 

more general than those used by most methods in the field, in that it can describe any 

mixture of within-species and between-species recombination, and as such, it can fit the 

assumptions of most methods, or it can provide a more realistic background for comparing 

methods with different hypotheses.

Also, our efficient implementation achieves an approximately 100-fold increase in 

computational efficiency over previous similar efforts, allowing inference and benchmarking 

over considerably larger datasets. For example, 1000 1 Mbp genomes with R=0.01 can be 

generated in about 6 min. SimBac can generate a wide range of possible outputs: sequence 

alignments, ARGs graphics (see Fig. 2), clonal frames, local genealogies and lists of 

recombination events. Although only a Jukes & Cantor substitution model (Jukes & Cantor 

1969) is presently included in SimBac, in practice this is not a restriction because the local 

genealogies can be used to generate alignments under a vast choice of nucleotide and codon 

substitution models using, for example, SeqGen (Rambaut & Grassly, 1997) or INDELible 

(Fletcher & Yang, 2009) (see Arenas, 2013).

Although SimBac generalizes the applicability of Sim MLST, it currently lacks the wide set 

of options of some simulators of evolution, in particular of forward simulators that allow 

very general demographic, speciation, selection, migration and rate variation patterns (e.g. 

Chadeau-Hyam et al., 2008; Dalquen et al., 2012). In fact, many of these features present 

considerable methodological hurdles in being incorporated in computationally efficient 

coalescent simulators.

Yet, future extensions of our method could consist of the inclusion of distributive conjugal 

transfer (Gray et al., 2013), of non-homogeneous genomic rates of recombination (see e.g. 

Everitt et al., 2014; Arenas & Posada, 2014), or of demographic events and population 

structure (Arenas & Posada, 2007, 2014).
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Data Summary

SimBac, the software we developed to simulate genome-wide bacterial evolution, is 

distributed as open source under the terms of the GNU General Public Licence, and is 

available from GitHub (https://github.com/tbrown91/SimBac). A manual and examples of 

usage of SimBac are provided in the Supplementary Material.

Brown et al. Page 8

Microb Genom. Author manuscript; available in PMC 2016 October 04.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

https://github.com/tbrown91/SimBac


Impact Statement

Sequencing technologies are revolutionizing microbiology, allowing researchers to 

investigate with great detail the genetic information in bacteria. This increasingly 

overwhelming amount of information requires adequate, efficient computer methods to 

be processed in reasonable time. One of the most important tasks performed by computer 

methods is simulating data, as this provides a means for testing hypotheses and checking 

the performance of other methods in extracting valuable information from data. Previous 

software specifically developed for simulating bacterial evolution is limited in 

applicability, having been conceived for limited data and biological phenomena. We 

present SimBac, a new simulator of bacterial evolution that can generate data for 

thousands of bacterial genomes about 100 times faster than previous methods. SimBac 

also includes a very general model of bacterial evolution that accounts for the fact that 

bacteria can exchange genetic material with each other, not only within the same 

population, but also across species boundaries. Thanks to these advancements in SimBac 

it will be possible to efficiently test hypotheses and estimate parameters comparing real 

and simulated bacterial data, to test the accuracy of bacterial genomic methods, and to 

fairly compare methods that make different assumptions regarding bacterial evolution.
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Fig. 1. 
Comparison of run-time of SimMLST, ms and SimBac. Only gene conversion (no crossover) 

is simulated in ms, to model bacterial evolution. (a) Mean time to simulate the ARG for a 

fixed recombination rate R=0.01 and genome length from 100 bp to 1 Mbp. (b) Mean time 

to simulate the ARG for a fixed genome length of 1 Mbp and recombination rate increasing 

from R=0 to R=0.05. One hundred simulations were performed for each dot, except for 

SimMLST at R=0.02 and R=0.05, and ms at R=0.02, where 10 simulations were performed 

due to the elevated computational demand. ms was not run at R=0.05 because a single run 

required >4 days. Error bars show ±1 SD.
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Fig. 2. 
Examples of ancestral recombination graphs (ARGs) generated and plotted by SimBac. 

Branches represent ARG lineages, and time is considered to go backward from the bottom to 

the top of the tree. Branch merges (from bottom to top) represent coalescent events, while 

branch splits represent recombination events. (a) Example ARG with the clonal frame 

lineages marked in black, the non-clonal lineages in grey, and a recombination event 

involving an external species marked in red. (b) Same ARG as before, but with ancestral 

material of each lineage represented as a rectangle in the corresponding node. Each coloured 

vertical bar inside each rectangle represent a genomic segment. Genomic segments that are 

present in the ancestral material are coloured in grey, those absent are in white, and those 

imported from an external species are in red.
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Fig. 3. 
Accuracy of clonal frame estimation from recombining bacterial genomes. The x-axis shows 

the recombination rate R under which simulations are performed. The y-axis shows the 

accuracy of inference, as the proportion of branches correctly estimated using the Robinson–

Foulds metric (Robinson & Foulds, 1981). Ten independent replicates are used for R=0.1 

and 100 in all other cases. Genomes are 1 Mbp long and the scaled mutation rate is fixed at 

0.01. (a) Accuracy of three phylogenetic methods: neighbour-joining (NJ), unweighted pair 

group method with arithmetic mean (UPGMA) and maximum-likelihood (ML). Error bars 

represent ±1 SD. (b) Clonal frame branches were separated into three age categories: young, 

middle-aged and old (respectively with a distance between the branch mid-point and the root 

of more than 2.09, between 1.32 and 2.09, and less than 1.32 Ne generations). The ML 

accuracy for each age category is plotted separately in different colours.
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