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Summary

Signaling networks downstream of receptor tyrosine kinases are among the most extensively 

studied biological networks, but new approaches are needed to elucidate causal relationships 

between network components and understand how such relationships are influenced by biological 

context and disease. Here, we investigate the context-specificity of signaling networks within a 
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causal conceptual framework, using reverse-phase protein array time-course assays and network 

analysis approaches. We focus on a well-defined set of signaling proteins profiled under inhibition 

with five kinase inhibitors in 32 contexts—four breast cancer cell lines (MCF7, UACC812, BT20, 

and BT549) under eight stimulus conditions. The data, spanning multiple pathways and 

comprising ~70,000 phosphoprotein and ~260,000 protein measurements, provide a wealth of 

testable, context-specific hypotheses, several of which we experimentally validate. Furthermore, 

the data provide a unique resource for computational methods development, permitting empirical 

assessment of causal network learning in a complex, mammalian setting.

Introduction

The complexity of mammalian receptor tyrosine kinase (RTK) signaling continues to pose 

challenges for the understanding of physiological processes and aberrations that are relevant 

to disease. Networks, comprising nodes and linking directed edges, are widely used to 

summarize and reason about signaling. Obviously, signaling systems depend on the 

concentration and localization of their component molecules, so signaling events may be 

influenced by genetic and epigenetic context (Saez-Rodriguez et al., 2011; Good et al., 

2009; Zalatan et al., 2012). In disease biology, and cancer in particular, an improved 

understanding of signaling in specific contexts may have implications for precision medicine 

by helping to explain variation in disease phenotypes or therapeutic response.

Genomic heterogeneity in disease has been well studied, notably in cancer, and 

heterogeneity is also manifested at the level of differential expression of components of 

signaling pathways downstream of RTKs (Akbani et al., 2014; Gerlinger and Swanton, 

2010; Nickel et al., 2012; Szerlip et al., 2012). However, differences in average protein 

abundance (as captured in differential expression or gene set analyses) are conceptually 

distinct from differences in the edge structure of signaling networks, with the latter implying 

a change in the ability of nodes to causally influence each other. Causal relationships are 

also fundamentally distinct from statistical correlations: if there is a causal edge from node 

A to node B, then the abundance of B may be changed by inhibition of A, but A and B can 

be correlated with no causal edge linking them (see below for an illustrative example). For 

this reason, standard concepts from multivariate statistics (that in turn underpin many 

network analyses in bioinformatics) may not be sufficient for causal analyses (Pearl, 2009).

Canonical signaling pathways and networks (as described for example in textbooks and 

online resources) typically summarize evidence from multiple experiments, conducted in 

different cell types and growth conditions and therefore such networks are not specific to a 

particular context. Many well-known links in such networks most likely hold widely and so 

canonical networks remain a valuable source of insights. However, if causal signaling 

depends on context then using canonical networks alone will neglect context-specific 

changes, with implications for reasoning, modeling and prediction. A large literature has 

focused on the question of inferring molecular networks from data (see e.g. De Smet and 

Marchal, 2010 and Marbach et al., 2010 for reviews). The potential for molecular networks 

to depend on context has motivated efforts to tailor network models in a data-driven manner 

(Marbach et al., 2016; Petsalaki et al., 2015; Will and Helms, 2016). Our approach is in this 
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vein but with an emphasis on interventional data and a principled causal framework. 

Unbiased “interactome” approaches (e.g. Rolland et al., 2014) expand our view of the space 

of possible signaling interactions. However, due to the nature of genetic, epigenetic and 

environmental influences, such approaches cannot in general identify signaling events 

specific to biological context, e.g. specific to a certain cell type under defined conditions.

We study context-specific signaling using human cancer cell lines. The data span 32 contexts 

each defined by the combination of (epi)genetics (breast cancer cell lines MCF7, UACC812, 

BT20 and BT549) and stimuli. In each of the 32 (cell line, stimulus) contexts, we carried out 

time-course experiments using kinase inhibitors as interventions (note that as used here the 

inhibitors do not contribute to defining the context). Reverse-phase protein arrays (RPPA; 

Tibes et al. 2006) were then used to interrogate signaling downstream of RTKs. We used 

more than 150 high-quality antibodies targeting mainly total and phosphorylated proteins 

(see Table S1).

The inhibitors applied in each context allowed elucidation of context-specific causal 

influences between inhibited and downstream phosphoproteins. The extent of context-

specificity seen can be summarized as follows: on average, across all kinase inhibitors and 

pairs of contexts in the study, approximately 1 in 5 phosphoproteins show changes in 

abundance under inhibition in one context that are not seen in the other. We also modeled the 

data using recently developed methods rooted in probabilistic graphical models to 

reconstruct context-specific networks intended to capture causal interplay between all 

measured phosphoproteins (and not just interplay related to inhibited nodes).

Thus, we show that causal signaling networks depend on context, with the pattern of 

changes under inhibition dependent on biological background. This is supported by 

independent validation experiments. Furthermore, we advance a conceptual view of 

signaling networks as causal networks (Pearl, 2009). In addition, this paper adds to available 

resources in two ways. First, the data we present acts as a valuable data resource, spanning 

all combinations of context, inhibitor and time, and allowing for a very wide range of 

analyses, including, but not limited to, analyses of the kind presented here. The data 

complement available patient datasets (see e.g. Akbani et al., 2014) by providing 

interventional readouts under defined conditions and provide a wealth of testable hypotheses 

regarding potentially novel and context-specific signaling links. Second, the data serve as a 

resource for computational biology benchmarking. Network reconstruction has long been a 

core topic in computational biology but performance with respect to learning of causal links 

has mainly been benchmarked using simulated data that may not adequately reflect the 

challenges of real data and relevant biology. A previous study established a small, five node 

synthetic network in yeast that was valuable to the computational biology community as it 

provided a gold-standard network in a biological model (Cantone et al., 2009). The design of 

our experiments allows for systematic testing of causal network learning in a complex 

mammalian setting and provides a unique resource for development of computational 

biology methods. The data presented here were used in the recent HPN-DREAM (Heritage 

Provider Network – Dialogue for Reverse Engineering Assessment and Methods) network 

inference challenge. The challenge focused on causal networks and the data were used to 
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score more than 2000 submitted networks ( full details of the challenge are described in Hill 

et al., 2016).

Results

Causal molecular networks and context-specificity

We first define causal molecular networks at a conceptual level. Consider a specific cell line 

grown under defined conditions. We refer to the complete biological setting (including 

genetic/epigenetic background and growth/environmental conditions) as the context c. If, in 

this setting, we observe a change in molecule B under inhibition of molecule A, we can 

conclude that there exists a causal pathway (i.e. a sequence of mechanistic events, possibly 

involving additional molecular species) between A and B in context c. Conceptually, 

performing all possible inhibition experiments on a set of molecules (including in 

combinations) would allow construction of a directed network Gc, with nodes corresponding 

to the molecules, and edges encoding causal relationships between nodes. Specifically, an 

edge in Gc indicates that in context c, inhibition of the parent node can lead to a change in 

the child node that is not mediated via any other node in the network. We refer to Gc as the 

context-specific causal network and to edges therein as causal edges (Figure 1A).

Due to the large number of potentially relevant molecular species, it is likely that in any 

specific study there will be variables that are unmeasured but that nonetheless have a causal 

influence on one or more measured variables. Suppose there is no causal pathway between 

A and B, but the nodes are correlated due to co-regulation by an unobserved node C that is 

not represented in the graph (Figure 1B). Then, since inhibition of A would not be capable 

of changing B, an edge from A to B would not be contained in the ground truth network Gc 

as defined above, regardless of the strength of any correlation or statistical dependence 

between A and B (Figure 1C). A contrasting case is that of a missing variable that is 

intermediate in a causal pathway, e.g. if A influences B via an unmeasured molecule C. 

Then, using the definition above, we would consider the edge A->B to be a correct 

representation of the causal influence. However, if C were observed, the correct model 

would be A->C->B (Figure 1C). Thus, the definition we use is compatible with missing 

variables whilst correctly encoding the effect of interventions on observed nodes, but the 

edges are not intended to encode physically direct influences only. We note that there are 

many subtle and still open aspects of the epistemology of interventions and causation; for a 

wider discussion see Woodward (2013).

The definition of causal molecular networks above is rooted in changes under inhibition but 

is not restricted to any particular mechanism. We focus on kinase inhibitors, phosphoprotein 

nodes and relatively short-term changes (up to four hours after inhibition) and to that extent 

our focus is on signaling, but we note that changes seen in our data could be due to a number 

of mechanisms, including transcription, translation or protein stability. In considering causal 

influences, it is important to specify a relevant timeframe, because under the same 

intervention, different changes may occur over different time periods (see also Discussion). 

Note also that even if one assumes a very large sample size and neglects statistical issues 

entirely, a notion of magnitude (of change under inhibition) remains implicit in the network 

definition itself and influences the sparsity of the ground truth network.
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Overview of approach

We sought to investigate causal signaling networks in specific biological contexts. We 

considered four breast cancer cell lines (MCF7, UACC812, BT20 and BT549) derived from 

distinct epigenetic states and harboring different genomic aberrations (these cell lines have 

been extensively characterized; see Barretina et al., 2012; Garnett et al., 2012; Heiser et al., 

2012; Neve et al., 2006). Each cell line was serum starved for 24 hours and then at time 

t=0min stimulated with one of eight different stimuli (Figure 2A). For each (cell line, 
stimulus) context, we carried out RPPA time-course assays comprising a total of seven time 

points spanning four hours, and under five different kinase inhibitors plus DMSO as a 

control (Figure 2A and STAR Methods; the assays included additional, later time points that 

were not used in our analyses, but are available in Data S1). To ensure that targets of the 

kinase inhibitors were effectively blocked, cells were treated with inhibitors for two hours 

before stimulus. Low concentrations of each inhibitor were used to minimize off-target 

effects (see STAR Methods). Due to the functional significance of phosphorylation, the 

analyses presented below focus on the 35 phosphoproteins that were measured in all cell 

lines (see STAR Methods and Table S1; Data S1 contains measurements for all antibodies). 

Context-specific changes under intervention were summarized as causal descendancy 
matrices (Figure 2B; see below). Machine learning methods were used to integrate the 

interventional data with known biology to reconstruct context-specific signaling networks 

(Figure 2C).

Interventional time-course data specific to biological context

Comparing time-course data between inhibitor and control (DMSO) experiments allowed us 

to detect changes to phosphoprotein nodes caused by kinase inhibition (see STAR Methods 

for details). These changes are visualized in a global manner for cell line MCF7 in Figure 

3B, with DMSO time courses shown in Figure 3A. In Figure 3B, the color coding indicates 

direction of effect (see examples in Figure 3C): green indicates a decrease under inhibition 

relative to control (consistent with positive regulation) and red an increase under inhibition 

(consistent with negative regulation). Corresponding visualizations for UACC812, BT20 and 

BT549 are shown in Figure S1.

Many effects, including many classical ones, are not stimulus-dependent. For example, 

phospho-p70S6K is reduced relative to control under mTOR inhibition (inhibitor AZD8055; 

Figure 3C), in line with the known causal role of mTOR in regulating phosphorylation of 

p70S6K. Since mTOR signaling is already active in serum starved cells, the reduction in 

phospho-p70S6K under mTOR inhibition is seen at all time points, including t=0min (recall 

that the inhibitor is applied prior to stimulus). However, some changes under intervention are 

specific to individual stimuli. Some of these effects can be readily explained, such as the 

reduction in abundance of several phosphoproteins in the AKT and MAPK pathways under 

FGFR inhibition (inhibitor PD173074) for cell line MCF7 stimulated with FGF1. Other 

stimulus-specific changes are less expected, including the decrease in abundance of 

phospho-AKT (phosphorylated at threonine 308) in cell line MCF7 under inhibition of 

mTOR/PI3K (inhibitor BEZ235) that is observed in only four of the stimuli.
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Causal descendancy matrices summarize changes under intervention across multiple 
contexts

Changes seen under inhibition of mTOR (catalytic inhibitor AZD8055) are summarized in 

Figure 4A (with phosphoproteins in rows and the 32 contexts in columns). Here, a filled-in 

box for phosphoprotein p in context c indicates a salient change under mTOR inhibition (see 

STAR Methods), consistent with a causal influence of mTOR on phosphoprotein p in 

context c. This could occur via a causal pathway involving other (measured or unmeasured) 

nodes. In other words, an entry in location (p,c) in the matrix indicates that phosphoprotein p 
is a descendant of mTOR in the causal network Gc for context c; we therefore refer to this 

matrix as a causal descendancy matrix for mTOR. For comparison, an additional column 

shows proteins that are descendants of mTOR according to a canonical signaling network 

(Figure 4B; STAR Methods). Many classical signaling links are conserved across cell lines 

and stimuli. But there are also many examples of influences that are both non-canonical and 

context-specific; for example, phospho-p38 is elevated in UACC812 cells treated with the 

mTOR inhibitor AZD8055 under serum stimulation whereas there is no change in BT549 

cells under the same conditions. Similarly, we obtained causal descendancy matrices for 

each of the other inhibitors in our study (Figure S3). On average across all kinase inhibitors 

and pairs of contexts, 8 out of 35 phosphoproteins show salient changes under inhibition in 

one context that are not seen in the other (mean number of differences = 8.14). Considering 

only pairs of cell lines under the same stimulus the mean number of differences is 8.58, 

while considering pairs of stimuli for the same cell line the corresponding value is 6.38. This 

suggests that the differences in (epi)genetic background between the cell lines have a 

relatively pronounced effect.

We sought to validate some of the observed causal effects by western blot analysis (STAR 

Methods). Observations were selected for validation across both inhibitors and antibodies, 

and included instances of increase and decrease under inhibition, as well as instances where 

no effect was observed (Table S2). A summary of the number of observations tested for each 

cell line and inhibitor regime, and of validation success rate in independent experiments (i.e. 

new lysates) is shown in Figure 4C. Overall we validated 78% of observations tested (104 

out of 134 observations). There were 25 (antibody, inhibitor) combinations that for the same 

stimulus showed differing effects across cell lines in the RPPA data (and which were also 

tested by western blotting); 17 of these instances of heterogeneity across cell lines validated 

(68%). The corresponding validation rate for (antibody, inhibitor) combinations that for the 

same cell line showed differing effects across stimuli was only 3 out of 13 (23%). Failures to 

validate could represent biological variability, differential sensitivity between RPPA and 

western blotting, use of different antibodies or other technical issues.

Machine learning of signaling networks

We used dynamic Bayesian networks to learn context-specific causal networks over all 

measured phosphoprotein nodes (including those not intervened upon). To do so, we 

exploited several recent methodological advances that allow integration of interventional 

data and simultaneous network learning across multiple related problem instances (here, 

contexts; see STAR Methods and references therein for details). Known biology was 

incorporated using a prior network (Figure S4).
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Figure 5 summarizes networks across all contexts by averaging across the eight stimulus-

specific networks for each of the four cell lines. We see that while many edges, including 

several classical ones, are near universal, others are cell line-specific, mirroring, via a global 

analysis, the inhibition data reported above (Figure 4A). The networks contained edges 

included in the prior network as well as many edges that were not. Across the 32 contexts, 

networks contained an average of 49 edges (at a threshold of 0.2 applied to the edge 

probabilities that are the output of the learning procedure) and, on average, 40% of edges in 

each network were not in the prior network (Table S3). We discuss potentially novel edges 

that were not in the prior below. As discussed in Hill et al. (2016), the challenging nature of 

causal network learning means that empirical performance assessment is important. We used 

an extended variant of the train-and-test procedure described in Hill et al. (2016) to 

systematically assess causal network learning (see STAR Methods). We found that the 

models were able to achieve significant agreement with unseen test interventional data in 

most of the contexts (Figure S5). However, we note that empirical assessment is a frontier 

topic in causal inference and the assessment procedure used here is subject to a number of 

caveats (see Discussion).

Validation of context-specific signaling hypotheses

We identified 235 edges in the inferred networks that were not in the prior network. These 

potentially novel edges shared 35 parent proteins, 4 of which were inhibited in the original 

dataset. Five edges with parent nodes not among those inhibited in the original RPPA data 

were selected for validation by western blot. Edge selection was done on the basis of 

biological interest and availability of sufficiently specific inhibitors for the parent nodes 

(Figure 6). We note that our computational approach predicts presence/absence of each 

(directed) edge, but not sign (activating or inhibiting).

For each of the five edges, we tested contexts in which the edge was predicted as well as 

those in which the edge was not predicted. We inhibited the parent node and observed 

whether this altered abundance of the predicted child node. We found evidence supporting 

each of the five predicted causal edges, but with often complex context-dependence. These 

results – and their agreement and disagreement with context-specific predictions from 

network modeling – are summarized in Figure 6F,G.

An edge from Chk2_pT68 to p38_pT180/Y182 (for phosphoproteins we give the protein 

name before an underscore which is followed by the phosphorylation site(s)) was predicted 

only in cell line BT549 (Figure 5). We inhibited Chk2 with AZD7762 in BT549 cells, and 

saw decreases in phospho-p38 under serum (FBS) and NRG1, where the edge was predicted, 

as well as under insulin, where the edge was not predicted (Figure 6A). In contrast, there is 

no change in phospho-p38 in BT20 cells under AZD7762 treatment, consistent with the 

absence of the edge in the BT20 networks. Here we see that the edge validates in a cell line-

specific but not stimulus-specific manner. However, it is important to note that AZD7762 

inhibits Chk1 and Chk2 with equal potency and also demonstrates activity, albeit lower, 

against other kinases.

The networks predicted an edge from p38_pT180/Y182 to JNK_pT183/T185 in BT549 and 

BT20 cells under stimulus with FBS. We inhibited p38 with VX702 in BT549, BT20 and 

Hill et al. Page 7

Cell Syst. Author manuscript; available in PMC 2017 January 30.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



UACC812 cells stimulated with FBS. In line with network predictions, we observed an 

increase in phospho-JNK in BT549 and BT20 cells (Figure 6B), but also observed a modest 

increase in phospho-JNK in UACC812 cells, where the edge was not predicted.

An edge from Src_p416 to NFκβ-p65_pS536 was predicted only in BT20 cells stimulated 

with EGF. Upon inhibition of Src with KX2391 both before and after stimulation with EGF, 

an increase in the abundance of phospho-NFκβ was observed in BT20 cells, consistent with 

the presence of a causal link (Figure 6C). The connection between phospho-Src and 

phospho-NFκβ was also observed in MCF7, where the edge was not predicted.

An edge from p70S6K_pT389 to p27_pT198 was predicted in all of the UACC812 and 

BT549 networks. The edge was also predicted in MCF7 networks for PBS, insulin, FGF, 

NRG1, and IGF1 and in the BT20 NRG1 network. When p70S6K was inhibited in 

UACC812 cells with PF4708671, a change in phospho-p27 was observed only at the zero 

time point before stimulus was added (Figure 6D). In MCF7 cells stimulated with HGF, 

phospho-p27 decreased in abundance under p70S6K inhibition; however, the edge was not 

predicted in this context. When PF4708671-treated MCF7 cells were stimulated with IGF, a 

context in which the edge was predicted with high probability, no change in phospho-p27 

was observed. Similarly, there was no change in phospho-p27 in BT20 cells that had been 

treated with PF4708671 and stimulated with HGF.

In BT549 an edge was predicted from Chk2_pT68 to YAP_pS127 under HGF and insulin. 

BT549 cells treated with the Chk2 inhibitor AZD7762 exhibit an increase in phospho-YAP 

(Figure 6E). This edge was not predicted in any other cell line tested. However, in both 

UACC812 and MCF7 cells treated with AZD7762, a decrease in the abundance of phospho-

YAP is observed. Active Chk2 appears to decrease phospho-YAP in BT549 cells (where the 

edge was predicted) and increase phospho-YAP in UACC812 and MCF7 cells (where the 

edge was not predicted). These results are consistent with the existence of a causal influence 

of phospho-Chk2 on phospho-YAP in all of these cell lines, and not just in BT549 as 

predicted.

Discussion

The data and analyses presented here support the notion that causal molecular networks can 

depend on context. We focused on signaling proteins and breast cancer cell lines. The cell 

lines represent contexts that are genetically perturbed but with a shared cancer type. The 

heterogeneity that we observed in causal networks suggests that substantial differences could 

exist between, for example, samples from different tissue types or divergent environmental 

conditions. This strongly argues for a need to refine existing regulatory models for specific 

contexts, not least in disease biology.

Given the range of potentially relevant contexts – spanning combinations of multiple factors, 

including genetic, epigenetic and environmental – we do not believe that characterization of 

causal networks across multiple contexts can feasibly be done using classical approaches in 

a protein-by-protein manner. Rather, it will require high-throughput data acquisition and 

computational analysis. Such a program of research requires an appropriate conceptual 
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framework, rich enough to capture regulatory relationships, but still tractable enough for 

large-scale investigation. Furthermore, for practical application, such an approach needs to 

be sufficiently robust to missing or unknown variables. Causal models of the kind we 

discussed may provide an appropriate framework because, unlike purely correlational 

models, they allow for reasoning about change under intervention and are, to a certain 

extent, robust to missing variables. In particular, causal descendancy matrices (Figures 4A 

and S3) are robust to missing variables in the sense that addition of a protein (row) to the 

matrix would not change the existing entries. We expect that a systematic program of 

investigation into context-specific causal networks will be important in many disease areas, 

and perhaps especially those that have to date not been well represented in the literature.

Our results extend the well-established notion of genomic intertumoral heterogeneity in 

cancer to the level of signaling phenotype. We found that cell line-specific findings were 

more reliable than stimulus-specific findings. This may be due to the magnitude of 

epigenetic and genetic differences between cell lines being more marked than differences 

between stimuli, all of which activate closely related cell surface receptors.

Our approach relied on inhibitor specificity, but we note that even at relatively low 

concentrations, off-target effects cannot be entirely ruled out. However, if the inhibitors were 

highly non-specific, the relatively good results seen in the train-and-test analysis would 

likely not be possible, since the analysis relies on assumed inhibitor targets. In the future it 

may be relevant to consider models that allow uncertainty in the inhibitor targets themselves.

We highlighted the need to specify a relevant timeframe in defining a causal graph. Indeed, 

an inhibitor may in the short-to-medium term induce changes to specific molecules but over 

the longer term the same inhibitor might induce adaptive changes to the cells themselves, 

e.g. via changes to epigenetic state (Duncan et al., 2012; Lee et al., 2012). We did not 

consider such “rewiring” in this paper, but note that the methods we discussed could be used 

to study rewiring, e.g. by comparing networks before and after adaptation.

In common with most protein profiling studies, including both low- and high-throughput 

techniques, our experiments were based on bulk assays and can therefore only elucidate 

signaling heterogeneity at the level of cell populations; we did not consider cell-to-cell 

heterogeneity, tumor stromal interactions, nor the spatial heterogeneity of tumors that plays 

an important role in vivo (Bedard et al., 2013; González-García et al., 2002). However, our 

data have implications for inter- and intra-tumoral heterogeneity because they suggest the 

possibility that in vivo causal signaling networks – and in turn the cell fates and disease 

progression events that they influence – may depend on the local micro-environment. 

Further work will be needed to elucidate such dependence and to draw out its implications.

In the future, causal molecular networks may start to play a role in precision medicine, for 

example by helping to inform rational assignment of targeted therapies. An implication of 

the context-specificity we report is that such analyses may require models that are learned, 

or at least modified, for individual samples (or subsets of samples). Although causal models 

are in some ways simpler than fully dynamical ones, causal inference remains fundamentally 

challenging and is very much an open area of research. For this reason, alongside advances 
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in relevant assays, a personalized, network-based approach will require suitable empirical 

diagnostics. Hill et al. (2016) used the data presented here to score, in an automated manner, 

over 2000 networks (~70 methods each applied to infer 32 context-specific networks) 

submitted to the HPN-DREAM network inference challenge and we used an extended 

version of this assessment procedure here. Such assessment procedures might allow for 

automated quality control, for example rejecting networks not sufficiently consistent with 

unseen interventional readouts (e.g. we did not obtain statistically significant performance 

under any test inhibitor for the (BT549, EGF) context; see Figure S5). However, as 

discussed in Hill et al. (2016) the assessment procedure remains limited in several ways and 

this argues for caution in interpreting the relatively good performance reported here. Of 

particular relevance to context-specificity, we note that the procedure focuses on global 

agreement with held-out interventional data and not specifically on identification of 

differences between contexts. Indeed, our validation experiments showed that although all 

novel edges that were tested validated in one or more contexts, network predictions were not 

accurate with respect to the precise context(s) in which changes were seen.

Recently, Carvunis and Ideker (2014) proposed a view of cellular function involving 

hierarchies of elements and processes and not just networks. Building detailed dynamical or 

biophysical models over hierarchies spanning multiple time and spatial scales may prove 

infeasible. A more tractable approach may be to extend coarser causal models of the kind 

used here in a hierarchical direction, for example by allowing causal links to cross scales and 

subsystems. Thus, the approach we pursued – of causal models based on context-specific 

interventional data – could in the future be used to populate models over biological 

hierarchies.

STAR Methods

Key Resources Table

Contact for Reagent and Resource Sharing

Further information and requests for reagents and resources may be directed to, and will be 

fulfilled by, the corresponding author Paul T. Spellman (spellmap@ohsu.edu).

Experimental Model Details

Breast epithelial cells in log-phase of growth were harvested, diluted in the appropriate 

media (DMEM (with phenol red) for UACC812, BT20 and MCF7; RPMI (with phenol red) 

for BT549) containing 10% fetal bovine serum, and then seeded into 6 well plates at an 

optimized cell density (to give 60-75% confluence at time of lysis). BT20 cells were plated 

at 230,000 cells/well; BT549 cells were plated at 175,000 cells/well; MCF7 cells were 

plated at 215,000 cells/well; and UACC812 cells were plated at 510,000 cells/well. After 24 

hours of growth at 37°C and 5% CO2 in complete medium, cells were synchronized by 

incubating with serum-free medium for an additional 24 hours (serum starvation was also 

necessary to control the presence of stimuli in the medium). The medium was then 

exchanged with fresh serum-free medium containing either: 15nM AZD8055, 50nM 

GSK690693, 50nM BEZ235, 150nM PD173074, 10nM GSK1120212 in combination with 
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50nM GSK690693, or vehicle alone (0.05% DMSO) and incubated for two hours prior to 

stimulation. Cells were then either harvested (0 time point) or stimulated by addition of 

200μL per well of 10X stimulus (either PBS, fetal bovine serum, 100 ng/mL EGF, 

200ng/mL IGF1, 100nM insulin, 200ng/mL FGF1, 1μg/mL NRG1, or 500 ng/mL HGF) for 

0, 5, 15, 30 or 60 minutes, or 2, 4, 12, 24, 48 or 72 hours prior to protein harvest.

All cell lines have been authenticated by performing STR analysis and matching to reference 

STR profiles at 15 different loci. STR analysis was performed by Genetica Cell Line 

Testing.

Method Details

Preparation of Cells for Reverse-Phase Protein Array (RPPA) Analysis—Cells 

were grown as described above, then washed twice with PBS and lysed by adding lysis 

buffer obtained from MD Anderson Functional Proteomics RPPA Core Facility (Houston, 

Texas; lysis buffer comprised 1% Triton X-100, 50mM HEPES, pH 7.4, 150mM NaCl, 

1.5mM MgCl2, 1mM EGTA, 100mM NaF, 10mM Na pyrophosphate, 1mM Na3VO4, 10% 

glycerol; protease and phosphatase inhibitors were freshly added on the day of the 

experiment). Volume of lysis buffer used was optimized for each cell line (to ensure lysates 

were not too dense for the BCA assay; see below) and varied between 50μL and 100μL. 

Lysates were collected by scraping after 20 minutes incubation on ice. Lysates were spun at 

4°C in a tabletop centrifuge at 15,000 RPM for 10 minutes and soluble proteins contained in 

the supernatant were collected. Protein concentration was determined by the Pierce BCA 

Protein Assay according to manufacturer’s protocol. Protein was then diluted to 1 mg/mL 

and 30μL of the diluted lysate was mixed with 10μL 4X SDS sample buffer (obtained from 

MD Anderson Functional Proteomics RPPA Core Facility; comprised 40% Glycerol, 8% 

SDS, 0.25M Tris-HCL, pH 6.8; 10% v/v 2-mercaptoethanol was added fresh) and boiled for 

5 minutes prior to freezing and shipment to MD Anderson Cancer Center Functional 

Proteomics RPPA Core Facility for RPPA analysis (Tibes et al., 2006).

RPPA methodology—RPPA methodology has been described previously (see e.g. Akbani 

et al., 2014); an outline is also provided below. Lysates were diluted in five two-fold serial 

dilutions with lysis buffer. An Aushon Biosystems 2470 arrayer (Burlington, MA) was used 

to print 1056 samples and control lysates on nitrocellulose-coated slides (Grace Bio-Labs). 

Each slide was probed with a primary antibody and a biotin-conjugated secondary antibody. 

Antibodies go through a validation process as previously described (Hennessy et al., 2010) 

to assess specificity, quantification and dynamic range. Each of the 183 primary antibodies 

was assigned a label based on this validation process (at the time the assay was performed): 

“validated”, “use with caution” or “under evaluation” (see Table S1). Samples were split 

across three batches and some antibodies were used only in a subset of these batches (Table 

S1). A DakoCytomation-catalyzed system and DAB colorimetric reaction was used to 

capture signal. Following scanning of slides, spot intensities were analyzed and quantified 

using Microvigene software (VigeneTech Inc., Carlisle, MA). The EC50 values of the 

proteins in each dilution series were estimated using the SuperCurve software (Coombes et 

al., 2012), available at http://bioinformatics.mdanderson.org/Software/supercurve/. This uses 

the non-parametric, monotone increasing B-spline model (Hu et al., 2007) to fit a single 
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curve (“supercurve”) using all samples on a slide, with signal intensity as the response 

variable and dilution step as the independent variable. The fitted curve is plotted with the 

signal intensities on the y-axis and the log2 protein concentrations on the x-axis for 

diagnostic purposes. A quality control (QC) metric, between zero and one was calculated for 

each slide (Coombes et al., 2012) and slides with values less than 0.8 were excluded. Within 

each batch, measurements were normalized for protein loading by median centering across 

antibodies (Hu et al., 2014; Li et al., 2013). This normalization process, performed on log2 

concentrations, comprised the following steps:

1. For each antibody, calculate the median across samples and subtract from each 

value (i.e. median-center each antibody).

2. For each sample, calculate the median across antibodies to obtain a correction 

factor (CF).

3. For each sample, take the original log2 concentration values and subtract the 

corresponding CF (from step 2).

Normalized values, on a linear scale, are provided in Data S1.

Western Blot Analysis—Cells were grown as described above. For the novel edge 

validations in Figure 6, additional inhibitors were used to generate lysates following the 

protocol laid out above. The inhibitors, all used at 1μM, were AZD7762, KX2-391, 

PF4708671, and VX-702 (see Figure 6 for targets). Lysates were harvested 15 minutes after 

stimulation and protein concentrations quantified as described above. Denatured lysates 

were separated by PAGE on 4–12% Bis-Tris gradient gels (Invitrogen) along with Precision 

Plus Protein Standards (BioRad) using MOPS SDS NuPAGE Running Buffer (Invitrogen) 

and NuPAGE LDS Sample Buffer (Invitrogen) on ice at 200 V for 45 minutes. Gels were 

transferred to immobilin-FL PVDF membranes (Millipore) using NuPAGE Transfer Buffer 

(Invitrogen) on ice at 30 V for 1.5 hours before being washed 3x 5 min. with 5% Tween-

TBS (TTBS, Amresco & Invitrogen) at room temperature (RT) with agitation and blocked 

with 5% BSA (Sigma) in TTBS for 1 hour at RT with agitation. Blots were again washed 3x 

5 minutes in TTBS at RT with agitation before being incubated in primary antibody in 5% 

BSA in TTBS overnight at 4C with agitation. Blots were washed 3x for 5 minutes at RT 

with agitation and then transferred to HRP-conjugated secondary antibody in 5% BSA in 

TTBS and incubated at RT for 1.5 hrs. See Table S5 for primary antibodies and HRP-

conjugated secondary antibodies used in western blot validations. Blots were washed again 

as previously described and visualized using SuperSignal West Pico Chemiluminescent HRP 

Substrate Kit (Thermo Scientific) and CL-X Posure Film (Thermo Scientific) and changes in 

protein abundance under inhibition were determined by visual inspection of exposed film.

Quality Control and Preprocessing of RPPA Data

Batch Normalization Procedure for Cell Line UACC812: The UACC812 data were split 

across two RPPA experiments with each batch containing different inhibitors (BEZ235, 

PD173074 and GSK690693&GSK1120212 in one batch; AZD8055 and GSK690693 in the 

other). DMSO control samples were common to both batches. The two batches were 

combined and normalized to obtain a single data set for UACC812.
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The steps of the batch normalization procedure were as follows:

1. Any antibodies not included in both batches were removed.

For each antibody, perform steps 2 and 3 below.

2. Using log2-transformed data (after normalization for protein loading; see above), 

the mean and standard deviation of the DMSO samples in each batch were 

calculated, giving values (μ1, σ1) and (μ2, σ2) for batch 1 and batch 2 

respectively. Note that, for each batch, there are 16 replicates for DMSO, 0min 

samples (all other DMSO conditions consist of a single replicate). These 16 

replicates were averaged prior to calculation of mean values and standard 

deviations.

3. All samples in batch 2 (for the given antibody) were then scaled and centered so 

that the mean and standard deviation of the batch 2 DMSO samples agreed with 

the corresponding batch 1 quantities (μ1, σ1). That is, a sample in batch 2 with 

value x became

This scaling and centering was applied to each individual replicate and not to 

replicate-averaged data.

4. The two batches were then combined to get a single data set for UACC812.

Data for the two batches and the final normalized data set are provided in Data S1 on a 

linear scale.

Samples Excluded from Analyses: Samples identified as outliers were excluded from our 

analyses. These samples were identified using the following criteria:

• Normalization for protein loading resulted in a correction factor (CF) for each 

sample (see above). Samples with CF > 2.5 or CF < 0.25 were regarded as 

outliers.

• Variance across all antibodies was calculated for each sample. Values greater 

than 40 were regarded as outliers.

• We used the replicates at time t = 0 to calculate the signal-to-noise ratio (SNR) 

for each cell line and phosphoprotein antibody under each inhibitor (mean of 

replicates divided by standard deviation of replicates). The mean across all 

calculated SNRs was 10.68 (s.d. = 5.8). SNR values less than 1 were investigated 

further to determine whether the poor SNR was caused by outlier replicates.

For cell line UACC812, these criteria were applied to the batch-normalized data set.

In addition to the above, data for the combination of inhibitors GSK690693 & GSK1120212 

(AKTi & MEKi) for cell lines BT549 (all stimuli) and BT20 (PBS and NRG1 stimuli only) 

were excluded since none of the expected effects of MEKi were observed in these samples.
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All samples excluded from analyses are shown in Table S6 and also indicated in the data 

files in Data S1.

Antibodies Included in Analyses: To facilitate comparisons between cell lines, the analyses 

presented here focused on the set of phosphoprotein antibodies common to all four lines. 

This set contained two highly correlated pairs of antibodies (r > 0.9 for all cell lines), 

consisting of phosphoforms of the same protein: GSK3αβ_pS21_pS9, GSK3_pS9 and 

S6_pS235_S236, S6_pS240_S244. Since highly correlated variables can lead to a reduction 

in the utility of network inference results, only one antibody out of each pair was included in 

analyses, resulting in a final set of 35 phosphoprotein antibodies. A full list of antibodies can 

be found in Table S1, where the 35 phosphoproteins included in the analyses are also 

indicated.

Final Preprocessing Steps: Data were log2 transformed and replicates (only present for t = 

0 samples and some DMSO samples) were averaged. Prior to input into our network 

inference pipeline, imputation was performed for missing data by linear interpolation of 

adjacent time points.

Identification of Changes Under Kinase Inhibition—We used a procedure centered 

on paired t-tests to determine which phosphoproteins show a salient change in abundance 

under each kinase inhibitor. Details are described in Hill et al. (2016), but also outlined 

below for completeness.

For each phosphoprotein, inhibitor regime and (cell line, stimulus) context, a paired t-test 

was used to assess whether mean phosphoprotein abundance under DMSO control is 

significantly different to mean abundance under the inhibitor regime (mean values calculated 

over seven time points). As discussed above, some phosphoproteins show a clear response to 

the stimulus under DMSO control, with abundance increasing and then decreasing over time 

(a “peak” shape), while others show a less clear response due to signal already being present 

prior to stimulus. For phosphoproteins falling into the former category (according to a 

heuristic), paired t-tests were repeated, but this time restricted to intermediate time points 

within the peak. This focuses on the portion of the time course where an inhibition effect, if 

present, should be seen. The p-value from the repeated test was retained if smaller than the 

original p-value. For each (cell line, stimulus) context and inhibitor regime, the resulting set 

of p-values (one p-value for each phosphoprotein) were corrected for multiple testing using 

the adaptive linear step-up procedure for controlling the FDR (Benjamini et al., 2006).

For each (cell line, stimulus) context, a phosphoprotein was deemed to show a salient 

change under a given inhibitor regime if two conditions were satisfied. First, the 

corresponding FDR value had to be less than 5% and, second, the effect size (log2 ratio 

between DMSO control and inhibitor conditions) had to be sufficiently large relative to 

replicate variation (see Figure S2). The latter condition is an additional filter to remove small 

effects. Replicate variation was quantified by calculating the pooled replicate standard 

deviation at each time point of the DMSO and inhibitor time courses, and then averaging 

these values across time points. The phosphoproteins satisfying these criteria are depicted in 
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Figures 3B, 4A, S1, S2 and S3. We note that the overall procedure is heuristic and that the 

FDR values should not be interpreted formally.

A phosphoprotein p showing a salient change under an inhibitor is consistent with a node 

targeted by the inhibitor having a causal effect on the phosphoprotein. Since this effect can 

be direct or indirect, phosphoprotein p can be regarded as a descendant of the inhibitor target 

node in the underlying signaling network. That is, there exists a directed path starting from 

the node targeted by the inhibitor and ending at phosphoprotein p.

Network Learning—Networks were learned for each of the 32 (cell line, stimulus) 
contexts using dynamic Bayesian networks (DBNs), a type of probabilistic graphical model 

for time-course data (see e.g. Hill et al., 2012; Husmeier, 2003; Murphy, 2002). Specifically 

we used a recently proposed variant called interventional DBNs or iDBNs (Spencer et al., 

2015), that uses ideas from causal inference (Pearl, 2009; Spirtes et al., 2000) to model 

interventions and thereby improve ability to infer causal relationships; model specification 

followed Spencer et al. (2015). Although interested in learning context-specific networks, 

we expect a good proportion of agreement between contexts. Therefore, rather than learn 

networks for each context separately, we used a recently developed joint learning approach 

to solve all the problem instances together (Oates et al., 2014). A prior network was used 

(Figure S4); this was curated manually with input from literature (Weinberg, 2013) and 

online resources. The extent to which context-specific networks are encouraged to agree 

with each other and with the prior network is controlled by two parameters, λ and η 
respectively, as described in detail in Oates et al. (2014). These parameters were set (to λ = 

3 and η = 15) by considering a grid of possible values and selecting an option that provides a 

reasonable, but conservative amount of agreement, allowing for discovery of context-

specific edges that are not in the canonical prior network. The network learning approach 

resulted in a score (edge probability) for each possible edge in each context-specific 

network. The network estimates were robust to moderate data deletion and precise 

specification of the biological prior network and its strength (Figure S6). Furthermore, the 

analyses were computationally efficient, requiring approximately 30 minutes to learn all 32 

context-specific networks using serial computation on a standard personal computer (Intel 

i7-2640M 2.80GHz processor, 8GB RAM).

Assessing Performance of Causal Network Learning—The ability of our network 

learning approach to estimate context-specific causal networks was systematically assessed 

using a train and test scheme proposed by Hill et al. (2016) in the context of the HPN-

DREAM network inference challenge associated with the RPPA data presented here. Due to 

factors specific to the challenge setting, Hill et al. (2016) used only a single iteration of train 

and test. In contrast, we were able to perform several iterations, as described below.

In each iteration, the data were divided into two sets: (i) a test data set, consisting of time 

courses for all 32 (cell line, stimulus) contexts under a single inhibitor regime, and (ii) a 

training data set, consisting of time courses (again for all 32 contexts) for a subset of the 

remaining five inhibitor regimes (Figure S5A). We refer to the single inhibitor regime in the 

test data as the test inhibitor (although note that one regime contains more than one kinase 

inhibitor: GSK690693 & GSK1120212). Thirty-two context-specific networks were learned 
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on the training data set and then each network was assessed as to how well it agreed with 

changes observed, for the same context, under the test inhibitor (in the test data set). For 

each test inhibitor, the set of phosphoproteins that show, for a given context, a salient change 

in abundance were determined as described above (and shown in Figures 4A & S3), 

resulting in context-specific “gold-standard” descendant sets. We then compared, for each 

context, predicted descendants of the test inhibitor target node(s) according to the network 

inferred from training data, against the corresponding “gold-standard” descendant set. This 

resulted in a number of correctly predicted descendants (true positives, TPs) and a number 

of incorrectly predicted descendants (false positives, FPs). Our network learning approach 

outputs edge probabilities, from which a network can be obtained using a threshold value. 

The TP and FP values were therefore a function of this threshold value, resulting in an ROC 

(receiver operating characteristic) curve. Our final assessment metric was then the area 

under this curve (AUROC), which we calculated for each context and test inhibitor (Figure 

S5B). The statistical significance of the AUROC scores was determined using an empirical 

null distribution, generated by calculating AUROC scores for sets of uniformly random edge 

probabilities.

The assessment procedure requires that nodes targeted by the test inhibitor are present in the 

network model so that their descendants can be determined. Also, it is important that the 

training data only contains inhibitor regimes that target nodes which are not also targeted by 

the test inhibitor. There were three train and test data splits that satisfied these criteria (while 

also maximizing the sample size of the training data set), and we assessed performance for 

all three (Figure S5B).

Quantification and Statistical Analysis

Replicates were averaged prior to carrying out statistical analysis and the time courses 

shown in Figures 3 and S1 were plotted using replicate-averaged data. The number of 

replicates were as follows: ~16 replicates for samples at t = 0, except for UACC812, BT20 

and MCF7 DMSO t = 0 samples which were replicated ~32 times; 2 replicates for the 

majority of DMSO samples at t > 0, except for BT20 DMSO samples; all other samples had 

a single replicate.

Details of statistical procedures are provided in the methods section above or in figure 

legends. Analyses were performed using Matlab R2012a software.

Data and Software Availability

Software—Scripts for the computational and statistical analyses presented here are 

available at https://github.com/Steven-M-Hill/causal-signaling-networks-CellSystems2016. 

These scripts include identification of changes under kinase inhibition, network learning and 

assessment of network learning performance.

Data Resources—RPPA data, including additional time points and antibodies that were 

not used in the analyses presented here, are provided in Data S1. Time-course plots for all of 

the antibodies are provided in Data S2.
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Additional Resources

HPN-DREAM network inference challenge associated with the RPPA data presented here: 

https://www.synapse.org/HPN_DREAM_Network_Challenge.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Context-specific Causal Networks.
(A) Context-specific causal influences. Node A has a causal influence on node B in contexts 

c1 and c3, but not c2, encoded by the presence of a causal edge between A and B in c1 and c3 

only. This reflects the outcome of experiments where A is inhibited. Here, each context is 

defined by the combination of cell line and growth condition. (B) Correlation and causation. 

The abundance of node A is correlated with that of node B due to regulation by the same 

node C. However, as there is no causal influence (direct or indirect) of A on B, inhibition of 

A does not result in a change in the abundance of B, no matter how strong the correlation or 
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statistical dependence. (C) Causal networks and missing nodes. In the first example, node C 
regulates both nodes A and B (as in panel (B)). In the formulation used here, if C is not 

observed and not included in the network, but A and B are, we would regard the network 

with no edge between A and B in either direction as the correct or ground truth causal 

network, in line with the results of experimental inhibition of these nodes, as shown. In the 

second example, the underlying mechanism is that A influences C, and C in turn influences 

B. In the formulation used here, if C is not measured and not included in the network, an 

edge from A to B would be regarded as correct, in line with the results of experimental 

inhibition of the nodes. However, if all three nodes were included, the correct network would 

match the underlying mechanism. Although abundance of B changes under inhibition of A, 

an edge from A to B would be regarded as incorrect here because the influence of A on B is 

fully mediated via another network node (i.e. C). See text for further details of the causal 

formulation and its interpretation.
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Figure 2. Data-Driven Reconstruction of Context-Specific Causal Signaling Networks.
(A) Overview of experimental approach. Reverse-phase protein arrays (RPPA) were used to 

investigate protein signaling in four human breast cancer cell lines under eight different 

stimuli. The combinations of cell line and stimulus defined 32 (cell line, stimulus) contexts. 

Prior to stimulus, cell lines were serum starved and treated with kinase inhibitors or DMSO 

control. RPPA assays were performed for each context at multiple time points post-stimulus, 

using more than 150 high-quality antibodies to target specific proteins, including 

approximately 40 phosphoproteins (the precise number of antibodies varies across cell lines; 

see STAR Methods and Table S1). (B) Causal descendancy matrices (CDMs). CDMs 

summarizing changes under intervention across all contexts were constructed for each 

intervention (see text for details). (C) Overview of causal network learning procedure. 

Interventional time-course data for each context were combined with existing biological 

knowledge in the form of a prior network to learn context-specific phosphoprotein signaling 

networks. Networks were learned using a variant of dynamic Bayesian networks designed 

for use with interventional data and that allowed joint learning over all 32 contexts at once 

(see STAR Methods).
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Figure 3. Phosphoprotein Time-Course Data and Context-Specific Changes Under Inhibition for 
Breast Cancer Cell Line MCF7.
(A) Phosphoprotein time courses under DMSO control. Rows correspond to 35 

phosphoproteins (a subset of the full set of 48; see STAR Methods for details) and columns 

correspond to the eight stimuli. Each time course shows log2 ratios of phosphoprotein 

abundance relative to abundance at t = 0. Shading represents average log2 ratio for t > 0. (B) 

Phosphoprotein time courses under kinase inhibition. Each of the five vertical blocks 

corresponds to a different inhibition regime. Within each block, rows and columns are as in 

(A). Each time course shows log2 ratios of phosphoprotein abundance under inhibition 

relative to abundance under DMSO control. Shading represents direction of changes in 

abundance due to inhibitor: Green denotes a decrease in abundance, red denotes an increase 

and gray denotes no salient change (see examples in panel (C)). See STAR Methods for 

details of statistical analysis. For both (A) and (B), plots were generated using a modified 

version of the DataRail software (Saez-Rodriguez et al., 2008). Each phosphoprotein is 

plotted on its own scale and phosphoproteins are ordered by hierarchical clustering of all 
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data. See Figure S1 for corresponding plots for cell lines UACC812, BT20 and BT549. (C) 

Selected examples from (B) showing control (DMSO) and inhibitor time courses separately; 

box color identifies the source cell in (B). Examples are shown for (from left to right): a 

clear decrease in abundance ; a clear increase in abundance; a decrease in abundance that is 

borderline under the criteria we use; a borderline case called negative (i.e. called as no 

change) and a clear negative case. Shaded region indicates time-averaged replicate standard 

deviation. See also Figure S2.
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Figure 4. Non-Canonical and Context-Specific Signaling.
(A) Causal descendancy matrix showing causal effects observed under mTOR inhibitor 

AZD8055 in each of the 32 (cell line, stimulus) contexts. Rows represent phosphoproteins 

and columns represent contexts (see Figure 3). Black boxes indicate phosphoproteins that 

show a salient change under mTOR inhibition in a given context (see STAR Methods) and 

can therefore be regarded as causal descendants of mTOR in the signaling network for that 

context. The final column on the right indicates phosphoproteins that are descendants of 

mTOR in the canonical mTOR signaling pathway shown in (B). Phosphoproteins are 

ordered first by canonical column and then by hierarchical clustering of all data. See Figure 

S3 for causal descendancy matrices for the other inhibitor regimes. (B) Canonical mTOR 

signaling pathway. Blue nodes are descendants of mTOR in the network and white nodes are 

non-descendants. The pathway shown is a subnetwork of the prior network used within the 

network inference procedure (Figure S4). Full node names, including phosphorylation sites, 
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are provided in Table S4. (C) Summary of western blot validations of causal effects observed 

in RPPA data. A number of observations from the causal descendancy matrices were chosen 

for validation via western blot analysis. The number of phosphoprotein validations 

attempted (“Tested”) and the number of these that successfully validated (“Validated”) are 

presented for various (cell line, stimulus, inhibitor) combinations. Summary totals are also 

presented for each cell line, each inhibitor and across all validation experiments. See also 

Table S2.
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Figure 5. Context-Specific Signaling Networks Reconstructed Using a Machine Learning 
Approach.
Data for 35 phosphoproteins were analyzed using a machine learning approach based on 

interventional dynamic Bayesian networks, integrating also known biology in the form of a 

prior network (Figure S4). This gave a set of scores (edge probabilities) for each possible 

edge in each (cell line, stimulus) context (see STAR Methods). For each cell line, a summary 

network was obtained by averaging edge probability scores across the eight stimulus-

specific networks for that cell line. Edge color denotes cell line. Only edges with average 

probabilities greater than 0.2 are shown. A black edge indicates an edge that appears (i.e. is 

above the 0.2 threshold) in all four cell lines. Edge thickness is proportional to the average 

edge probability (average taken across all 32 contexts for black edges). Solid/dashed edges 

were present/not present in the prior network respectively. Edges are directed with the child 

node indicated by a circle. Edge signs are not reported; the modeling approach does not 

distinguish between excitatory and inhibitory causal effects. Full nodes names, including 

phosphorylation sites, are provided in Table S4. Network visualized using Cytoscape 

(Shannon et al., 2003). See also Table S3.
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Figure 6. Validation of Network Edges.
Western blot analysis of selected context-specific network edges that were not in the prior 

network. Edges tested were: (A) phospho-Chk2 to phospho-p38 ; (B) phospho-p38 to 

phospho-JNK; (C) phospho-Src to phospho-NFκB; (D) phospho-p70S6K to phospho-p27; 

and (E) phospho-Chk2 to phospho-YAP. Orange boxed areas indicate observed changes in 

abundance of the predicted child node under inhibition of the parent node in a single (cell 
line, stimulus) context (changes in abundance are determined by visual inspection of the 

bands). Edge probabilities output by the network learning procedure are shown for each 
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context tested (“edge strength”). (F) A summary of the validation experiments. ‘NA’ denotes 

“not applicable” – the experiment was not run. ‘NE’ denotes “no effect” – there was no 

change in child node abundance upon inhibition of the parent node. An arrow indicates 

results consistent with an activating parent node. A stunted line represents results consistent 

with an inhibitory edge. Symbols are colored orange to indicate that an edge was predicted 

for the corresponding cell line under one of the stimuli tested. (G) Summary of agreement 

and disagreement between predicted edges and validation experiments. First row indicates 

whether validation experiments showed evidence for the edge in a (cell line, stimulus) 
context in which it was predicted. Second and third rows concern the cell line- and stimulus-

specificity of each edge respectively: a green tick denotes specificity in (partial) agreement 

with predictions from inferred networks; an orange tick denotes specificity, but not in 

agreement with predictions in terms of the precise contexts in which effects were seen; a red 

cross indicates that specificity was not observed in the validation experiments, despite being 

predicted by the networks.
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