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Abstract

Bayesian adaptive trials have the defining feature that the probability of randomization to a 

particular treatment arm can change as information becomes available as to its true worth. 

However, there is still a general reluctance to implement such designs in many clinical settings. 

One area of concern is that their frequentist operating characteristics are poor or, at least, poorly 

understood. We investigate the bias induced in the maximum likelihood estimate of a response 

probability parameter, p, for binary outcome by the process of adaptive randomization. We 

discover that it is small in magnitude and, under mild assumptions, can only be negative – causing 

one’s estimate to be closer to zero on average than the truth. A simple unbiased estimator for p is 

obtained, but it is shown to have a large mean squared error. Two approaches are therefore 

explored to improve its precision based on inverse probability weighting and Rao–

Blackwellization. We illustrate these estimation strategies using two well-known designs from the 

literature.
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1 Introduction

From the emergence of clinical trials in medical research in the middle of the 20th century to 

the present day, a common paradigm has dominated the design and analysis of clinical trials 

as a means to improving patient care. Usually two treatments are assessed, one being the 

standard therapy and the other being an experimental treatment, that may offer an 

improvement in an appropriate patient outcome. The size of the trial is fixed in advance and 

analysis performed only at its conclusion. Patients entering the trial are randomized with a 

fixed probability (usually 1/2 for efficiency reasons) to either the experimental or control 

arm. The advantages of this sort of design are many: it is simple to calculate how many 
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patients are needed to achieve a desired power for rejecting a given null hypothesis; by 

fixing the timing of the analysis the type I error rate can also be strictly controlled; 

randomization ensures (asymptotically) that patients on each of the treatment arms will be 

balanced with respect to all potential known and unknown confounding variables, except the 

treatment they took. This provides a solid basis for attributing, in a causal sense, the 

difference in outcomes between the two groups at the end of the trial to the treatment, and 

for unbiasedly estimating this difference using standard methods.

Over the last 20–30 years, modifications to the standard design have been proposed and 

accepted as a viable alternative within clinical research, although their use is still the 

exception rather than the rule. Group sequential designs1,2 introduced the idea of multiple 

analyses at fixed time points during its course, thus enabling early stopping when definitive 

evidence exists. Adaptive designs3–5 have added additional flexibility to the way in which 

mid-course data can be used to influence a study’s future scope. However, the above 

approaches still share a common characteristic: whilst it is ongoing, a fixed allocation 

probability is used for all arms still active in the trial. We subsequently refer to this as ‘fixed 

randomization’ (FR).

By contrast, the MD Anderson cancer centre (and others) has pioneered the use of an 

approach to clinical trials incorporating adaptive randomization (AR) as a fundamental 

component.6,7 The basic premise of AR is to use the accumulating evidence on the 

performance of all treatments to decide how to allocate future patients in the trial.8 They are 

becoming an increasingly popular vehicle for identifying effective patient-specific 

treatments in the new era of stratified medicine.9

There has been a weariness among the medical community to embrace designs incorporating 

AR, due to concerns over their frequentist properties10 – such as bias and type I error 

inflation – their inferiority to a comparable FR designs,11 and even their ethical validity.12 

Indeed, recent Food and Drug Administration (FDA) guidance for the pharmaceutical 

industry cautions against the use of AR and recommends that operating characteristics of an 

AR design should be explored and understood before implementation13. In this paper we 

examine the affect that data-adaptive allocation has on the estimate of the true response 

probability, p, parameterising a binary outcome. We show that the bias induced in the 

maximum likelihood estimator (MLE) for p by AR is generally small and towards zero. A 

simple formula is derived that explains this phenomenon and a simple unbiased estimate for 

p is developed that is closely related to the Horvitz–Thompson (HT) estimator from survey 

sampling theory.14 Unfortunately, this estimator can have a large mean squared error (MSE) 

and even give estimates that lie outside the parameter space. Two strategies are proposed to 

improve the unbiased estimator’s precision. The first makes use of inverse probability of 

treatment weighting, as is commonly applied in the causal inference literature (see for 

example Hernan et al.15). The second approach involves the process of ‘Rao–

Blackwellization’, a procedure commonly applied in sequential and adaptive trials.16,17

In Section 2 we define our notation and review the process of AR from a statistical 

perspective, in particular, its impact on the likelihood function. In Section 3 we investigate 

the small sample bias in the MLE induced by AR and compare this to the bias induced by 
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other types of design adaptations. In Section 4 bias adjusted estimation is explored and in 

Section 5 we apply our bias adjustment strategies to a recent Bayesian adaptive design 

discussed in Trippa et al.18 Concluding remarks are made in Section 6 and possible avenues 

of future research are also discussed.

2 Data-adaptive allocation and the MLE

We assume that a randomized clinical trial is to be conducted on n patients with K treatment 

arms, the treatments being assessed via a binary response. The outcome for patient i given 

assignment to treatment k, Yik, follows a Bernoulli distribution with parameter pk. Let δik be 

a binary variable equalling 1 if patient i is assigned to treatment k and zero otherwise, and let 

δi = (δi1, … ,δik). Define Δi ∈ {1, … , K} as the treatment patient i is actually assigned to, so 

that δiΔi ≡ 1. For simplicity, assume that patient responses are immediate, so that patient i’s 

response is known before patient i + 1 is recruited. The total information in the trial before 

patient i is recruited is the 2 × (i – 1) matrix:

(1)

and let dn be the complete data on treatment assignments and outcomes at the end of the 

trial. Further let  be the number of patients assigned to treatment k and 

 be the number of responders to treatment k. Note that, whilst n(k) is random, 

the marginal total,  is fixed.

In a trial that utilises AR, patient i’s allocation, Δi, can be chosen to depend on all or part of 

di–1, that is, on all previous patient randomization and outcome data. For illustration, Figure 

1 depicts the dependence structure governing the randomization and outcome data for the 

first three patients recruited into a trial using AR. Here, pΔi represents the true response 

parameter for treatment Δi. Since Δi is a random variable, so is pΔi. From Figure 1, we see 

that patient two’s randomization (Δ2) is allowed to depend on patient one’s outcome y1,Δ1 
and patient one’s randomization, Δ1 – both directly and indirectly (through pΔ1). However, 

once d1 = (Δ1, y1,Δ1) has influenced the value of Δ2, y2,Δ2 is conditionally independent of d1, 

given Δ2. This statement clearly generalizes to the randomization and outcome of the ith 

patient given di–1. We can therefore factorize the likelihood function for the parameter vector 

p = (p1, … , pK) at the end of the trial as

(2)
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The first component is the probability under p of observing patient i’s outcome given 

randomization to treatment Δi. The second component, πi,Δi, is the probability that patient i 
was randomized to treatment Δi conditional on previous data di−1 = (Δ1, Y1,Δ1, Δ2, Y2,Δ2 … , 

Δi−1, Yi−1,Δi−1). Since this is a known function of the data it does not depend on the 

parameter vector p. From standard likelihood theory (see for example Boos and 

Stefanski19), πi,Δi can be removed from equation (2) when calculating the maximum 

likelihood estimate (MLE). This fact is obvious in a standard trial design using FR, where all 

n patients are randomized with equal probability to one of K arms. In this case there is 

clearly no information about the parameters in πi,Δi – it takes the constant value 1/K. 

However, as we have shown above, the same is true within the AR framework described 

above. Removing πi,Δi from the likelihood, and using the fact that the patient outcomes are 

independently Bernoulli distributed, expression (2) reduces to

and the MLE for pk, k = 1, … , K is simply

(3)

Melfi and Page20 clarified that, in order for the MLE in equation (3) to be strongly 

consistent, there must exist a non-zero probability of being allocated to treatment k during 

the trial, as the trial size tends to infinity.

2.1 Case study: The Randomized Play the Winner rule

Wei and Durham21 proposed a randomized extension to Zelen’s original 

deterministic ’play-the-winner’ allocation rule22 for a two arm clinical trial, which serves as 

a useful toy example. The basic design works as follows: a hypothetical urn is imagined with 

one ball labelled ‘T1’ and another labelled ‘T2’, representing treatments one and two, 

respectively. A ball of type Tk is picked at random from the urn, patient 1 is assigned to Tk 

and the ball is returned to the urn. If patient 1 subsequently experiences a success, then 

another ball of type Tk is added to the urn. However, if the patient experiences a failure, a 

ball of the alternative type is added instead. Thus, when a ball is picked at random from the 

urn to decide on the allocation of patient 2, they either have a 1/3 or a 2/3 chance of 

receiving treatment k. This procedure continues up until the planned end of the study and 

skews the treatment allocation towards the treatment that is performing the best. The 

probability that patient i is assigned to treatment T1 (so that Δi = 1) is simply the proportion 

of T1 balls in the urn after i – 1 patients, and is given by
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The probability of randomization to T2, πi,2 = 1 − πi,1. We will refer to this as the 

‘randomized play-the-winner’ (RPW) design. When we implement the RPW design in later 

sections, we introduce a small modification whereby the first two patients are always split 

between arm 1 and 2. This guarantees that the estimates for p1 and p2 will always be defined 

but does not materially change its operating characteristics otherwise.

3 The bias of the MLE

Whilst AR leaves the asymptotic properties of the MLE intact, this does not give any 

indication as to its finite sample properties in a real trial context, in particular its bias. 

Without loss of generality, consider estimation of a single treatment’s parameter pk. We start 

by noting that

(4)

(5)

since

From the standard definition for the covariance of two random variables, and making use of 

equations (4) and (5), we can write

Further rearrangement and cancellation yield

(6)

Equation (6) gives a simple characterisation of the bias. It is zero when n(k) is independent 

of  and increases in magnitude as they become more dependent. The bias is a decreasing 

function of E[n(k)] and will be opposite to the sign of their covariance. FR guarantees a zero 

covariance (and hence zero bias) since E[n(k)] = 1/K is a constant. However, in the common 

case where AR is used to direct more patients towards treatments that appear to work well, 

n(k) will be non-constant and positively correlated with .

The bias induced by AR can be explained heuristically. Suppose that, in the early part of a 

clinical trial using AR, a treatment’s true effect is overestimated because an unusually high 
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number of patients experience a positive response. In this case, AR will assign more patients 

to receive the treatment in the latter stages of the trial. The ‘random high’ in the treatment 

effect estimate then has the scope to regress back down towards its true value, the final 

MLE. However, suppose instead that in the early part of a trial a treatment’s effect is 

underestimated by chance. In this case fewer patients are assigned to receive the treatment in 

the latter stages and the treatment effect estimate does not have the same ability to regress 

back up towards its true value. This asymmetry creates a positive covariance between the 

MLE and its sample size and hence a negative bias.

The black dots in Figure 2 show the bias induced in the response probability estimates for 

as a function of ) under the RPW design with n = 25 patients. Each dot 

represents a different parameter constellation in the region (p1,p2) ∈ (0.2,0.8). As equation 

(6) suggests, positive covariance implies negative bias in the MLE, and vice versa.

3.1 Further examples

Bauer et al.23 noted that a similar mechanism acts to induce a negative bias in a traditional 

sequential trial with early stopping. For example, consider a Simon’s two-stage single arm 

trial measuring a treatment’s response with respect to a binary outcome.24 Assume that 13 

patients are initially allocated a treatment, with the trial continuing to full enrolment (34 

patients) only if four or more patients are ‘responders’ at stage 1. If there are nine or more 

responders at the end of the trial the null hypothesis H0 : p ≤ 0.2 can be rejected with a type I 

error rate of 10%.25 The number of patients allocated to treatment 1, n(1), is therefore a 

random variable:

The blue dots in Figure 2 show the bias in the estimates for the treatment’s response 

probability, p1, as the true value is varied between 0.2 and 0.4. Again, when large estimates 

go hand-in-hand with large sample sizes then a negative bias necessarily follows.

A much discussed adaptive design strategy exists that can induce exactly the opposite effect 

– that is a negative covariance between the MLE and the sample size it is based on (and 

therefore a positive bias). Consider a two-arm, two-stage trial that incorporates unblinded 

sample size re-estimation.4,26,27 In stage 1, 100 patients are initially allocated to each arm 

(using FR) and the MLE for the response parameters are estimated as  and  From Li et 

al.,26 we calculate the estimated standardised mean difference  and stage 1 test statistic z1 

via the variance stabilising transformation:

Suppose that if z1 is less than 1 or greater than 2.74 then the trial is stopped for efficacy or 

futility. However, if z1 ∈ (1,2.74) then further patients are recruited in order to give an 80% 
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probability of rejecting the null hypothesis H0 : θ ≤ 0 at the alternative  with an 

unconditional type I error rate of 5%. This is similar to design 1 explored in Bowden and 

Mander.27 Making use of the Ceiling function ‘⌈⋅⌉’, the number of patients allocated to each 

arm (n(1) and n(2)) is again a random variable:

The red dots in Figure 2 show the bias induced in the MLE for p1 – p2, , versus its 

covariance with the second stage sample size when p1 ∈ (0.45,0.65) and p2 is fixed at 0.3. 

Since small interim estimates of p1 − p2 (with a corresponding z1 close to 1) are associated 

with large overall sample sizes, and large interim estimates (with a corresponding z1 close to 

2.74) are associated with small sample sizes, the aforementioned covariance is negative and 

the bias is therefore positive.

4 Bias adjusted estimation

4.1 Simple bias adjustment

A simple bias-corrected estimate for pk exists that utilises πi,Δi (when Δi = k), namely

(7)

 bares strong resemblance to the HT estimator used extensively in survey methodology 

to correct for stratified sampling.14 It is not strictly identical because the πi,k’s are not 

independent in equation (7). However, for ease we will refer to it as the HT estimator. We 

can see that it is indeed unbiased, because

Since δik is independent of Yik given di–1 this can be written as

Although unbiased,  can have a large variance, in part because it can be larger than 1, 

which is clearly nonsensical. Of course, if we crudely constrain it to be less than 1 its 

unbiasedness is not maintained. We are therefore interested in alternative estimation 

strategies that improve upon , by naturally shrinking it to be within the unit interval and 
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reducing its variance. A simple estimator that achieves this is a ‘normalised’ version of 

:

(8)

This can be thought of as the inverse probability (of treatment) weighted (IPW) estimate that 

is commonly used for causal inference of observational data15 and is the solution to the 

estimating equation

It is not surprising that the IPW estimate appears a perfect fit for this context, given the 

similarity of the dependence structure present in trial data dn (and shown in Figure 1) to the 

phenomenon of time-varying confounding. The IPW estimate (8) is not unbiased for finite 

sized trials but is at least constrained to be in (0,1). Since the πi,Δi terms are known exactly 

(one could not implement AR without them) the HT and IPW estimators are as trivial to 

calculate as the MLE.

Figure 3 (left) shows the bias of the MLE and IPW estimators for the RPW design with n = 

25 patients. The bias of the HT estimate is not shown because it is zero (our simulations 

confirm this). Six different parameter combinations for p = (p1, p2) are considered – see the 

vertical columns in Figure 3 (left) – where the values of p1 and p2 and the bias in their 

estimates are denoted by circles and triangles, respectively. The results are the average of 

50,000 simulations. Under RPW allocation, the MLE for  is always negatively biased. The 

bias is largest for the treatment with the smallest true effect size, and grows as the difference 

between the best and worst treatment increases. Although only the HT estimator is unbiased, 

the bias of the IPW estimator is essentially negligible for scenarios 1–4. However, for 

scenarios 5 and 6, a small negative bias is present. Figure 3 (right) compares the MSE of the 

MLE, IPW and HT estimators across the six scenarios (the RBHT estimator is discussed in 

the next section). Across all scenarios, the IPW estimator is shown to have a comparable 

MSE to the MLE. Predictably, the HT estimator has the largest MSE.

4.2 Rao–Blackwellization

A second option for improving the HT estimator is to use Rao–Blackwellization. Define the 

sufficient statistic, Sn, for the parameter vector p to be the number of patients assigned to 

each arm, n(k), and the number of responders in each arm, , for k = 1, … , K. 

Let the value of the sufficient statistic for the observed data be denoted by sn. Now define 

the set Ω* containing all possible trial realisations with sufficient statistics equal to sn, that 

is:
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To generate elements of Ω* we refer back to the data matrix in formula (1) and note that any 

permutation of the order of columns constituting matrix dn leaves sn unchanged and will 

therefore be in Ω*. However, at the same time, column permutations are the only 

transformation of dn allowed, since materially changing any individual element of dn will 

alter sn. In order to compute the Rao–Blackwellized Horvitz–Thompson (RBHT) estimator 

 we need to integrate the HT estimate over Ω* as follows:

(9)

where  is the likelihood of observing data  (a permutation of dn), under the true 

unknown parameters p, as given in equation (2). The change of notation is deliberate, and 

for the reasons explained below. Since the cardinality of Ω* increases rapidly with the 

overall sample size, direct integration becomes unfeasible in most realistic settings and a 

Monte Carlo approximation is necessary. In order to achieve this end, we first note that ratio 

 in equation (9) remains constant across all values of p. To see this, we rewrite 

 as

(10)

The first term is the likelihood of the data given treatment assignment; this product is 

constant for any permutation of dn, , in Ω* (it does not matter what order the n terms are 

multiplied together). However, the second component of the likelihood does change under 

permutation, and so we write  to denote the probability that the i’th patient (in the 

permuted data set , not the original data set dn) would have been randomized to treatment 

Δi in . We therefore have that

(11)

Given uniformly sampled trial realisations  we can therefore 

approximate expectation (9) as:
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(12)

where  under . Although this looks a simple and attractive 

procedure, most random permutations of the data will have an extremely small likelihood of 

occurrence, and equation (9) will generally be dominated by a small number of trial 

realisations clustered around the observed value, dn. An alternative Monte-Carlo approach 

consistent with this fact is to sample trial realisations  from the conditional distribution 

of dn given sn and obtain an approximation to equation (9) via an unweighted average:

(13)

For the RPW case study in Section 2.1, which contains only two arms and 25 patients, one 

can simply generate trial realisations from (d25|s25) by drawing d25’s unconditionally, and 

saving those with sufficient statistics equal to s25. A simple way to do this is to specify a 

value for the parameter vector p and, whilst any choice is valid, it is both natural and 

efficient to use the MLE. For illustration we consider a single trial realisation of the RPW 

design, simulated under scenario 6. In this case eight patients are randomized to treatment 1 

(with 5 responders) and 17 to treatment 2 (with 15 responders), which defines s25. The red 

line in Figure 4 (left) shows the value of πi2 for i = 1, …, 25. It starts at 1/2 (by design) and 

after 10 patients or so it stabilises at around 70%.

The MLE  The grid of black lines in Figure 4 (left) shows all realised 

values of πi,2 over 500 simulated trials,  The HT and RBHT estimates 

for treatment 1 and 2 are also shown, the latter being the average of the HT estimates 

obtained from the 500 simulated trials. Figure 4 (right) shows the IPW, HT and RBHT 

estimates for p1, obtained across 100 trial realisations, again under scenario 6 (p1 = 0.6). 

Values above 0.8 and below 0.2 are linked to highlight that the IPW and RBHT estimators 

both constrain the HT estimate to be within (0,1) and shrink its variance. Figure 3 (right) in 

Section 4.1 shows RBHT estimator’s MSE compared to the other estimators for the RPW 

design. Its MSE is normally half way between that of the HT and IPW estimators. In 

summary, for the RPW design, the simple IPW estimator performs perfectly adequately, and 

there appears to be nothing gained in applying a more complex form of bias correction.

4.2.1 A Metropolis–Hastings algorithm for the RBHT estimator—As the number 

of patients and number of arms in a trial increase, generating Monte Carlo draws from the 

conditional distribution (dn|sn) by specifying a value for p also becomes infeasible, since the 

probability a random draw satisfying the condition is too small. We therefore propose a 

Monte Carlo Markov Chain approach to calculate the RBHT estimate. Now we need to 
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construct an irreducible Markov Chain  over the space of the 

sequences with stationary distribution (dn|sn). If possible, standard ergodicity arguments 

guarantee that the above Monte Carlo average of the  in equation (13) converges 

with probability 1 to  as M increases. Our construction of the Markov Chain is a direct 

application of the Metropolis–Hastings algorithm. We start from a  consistent with sn 

(for example  then at every j = 1, … , M − 1, a transition  is 

proposed.  is created by selecting randomly two integers (i1, i2) in {1, … , n}, and 

swapping the positions of the i1th and i2th columns of the 2×n matrix . At each step the 

usual Metropolis–Hastings rule accepts or rejects  The application of the 

Metropolis–Hastings rule requires one only to compute the probabilities on the right side of 

expression (11) and generates a Markov Chain with the desired stationary distribution. In the 

next section we apply the Metropolis–Hastings implementation of the RBHT estimator to a 

recent trial example.

5 An adaptive design for glioblastoma

Trippa et al.18 have recently proposed a Bayesian adaptive design for testing multiple 

experimental treatments in a controlled trial setting for patients with recurrent glioblastoma. 

Their motivation was to find a design that required fewer patients to identify an effective 

treatment compared to a standard multi-arm trial with equal randomization. Although the 

original cancer setting determined the use of a time-to-event outcome, the design approach 

can easily be transferred to the binary data setting. Indeed this has been the modus operandi 

for others to evaluate its operating characteristics28–30 and in the case of the latter, to offer 

a strong critique against its use. Let Pr(pk − p0 > 0|di−1) be the posterior probability that 

treatment k (k = 1, …, K) provides a higher chance of success than the control (treatment k 
= 0), given all of the available data from patients 1, … , i – 1. The probability that patient i is 

randomized to treatment K under this scheme is18

The term ni–1,k represents the number of patients who have been assigned to treatment arm k 
after i – 1 patients have been recruited into the trial. The γi and ηi terms are positive 

increasing functions of i which can be ‘tuned’ to fix the desired characteristics of the trial. 

The total sample size of the trial, n, is fixed as before. We refer the reader to Trippa et al.

18,31,32 for the interpretation of the tuning parameters (γi, ηi) and extensions with 

composite outcomes models, including progression free survival and overall survival times. 

This AR procedure achieves two goals: To allocate more patients to the experimental arm 

which is performing the best (for the benefit of patients in the trial); to allocate a similar 

number of patients to the control arm as the best experimental arm (to protect the trial’s 

overall power).
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Following Friedlin and Korn30 and Trippa et al.,29 5000 trials of n = 140 patients are 

simulated under this design with three active arms and one control arm. Uniform beta(1,1) 

priors were used to initialise the Bayesian analysis, so that the posterior distributions for 

each pk were also beta distributed. The allocation probabilities can then be calculated using a 

simple Monte Carlo approximation. The function’s γi and ηi were chosen to be 10(i/n)1.75 

and 0.25(i/n), respectively. Figure 5 shows the bias and MSE of the MLE and IPW 

estimators under the five parameter constellations considered in Friedlin and Korn30 and 

Trippa et al.29 The RBHT estimate was calculated using the Metropolis–Hastings algorithm 

described in Section 4.2.1. We show its MSE only since it is unbiased (again, simulations 

confirm this) and plotting its estimated bias at zero obscures the other results.

By design, there is very little bias in the standard MLE for the control group across all 

scenarios. The MLE for the experimental treatments is, however, consistently negatively 

biased. The IPW estimate reduces the bias in the MLE, but its performance is not uniformly 

as impressive as for the RPW(1,1) design, especially for treatments with relatively small 

effect sizes. We suspect this is because the probability of randomization to a poorly 

performing treatment may approach zero, which makes the IPW estimator naturally 

unstable. Figure 6 illustrates this point for single trial realisation under scenario 5, where 

treatment 3 is significantly worse than the other experimental treatments. After 60 patients 

have been recruited the probability of allocation to arm three is essentially zero. 

Consequently, the IPW estimator generally has a larger MSE than the MLE, as seen in 

Figure 5 (right). The RBHT estimator perfectly removes the bias across all scenarios (results 

not shown). More importantly, it also has a smaller MSE than either the MLE or IPW 

estimators, making it attractive for this design.

6 Discussion

In this paper we have considered the effect that AR has on the estimation of a treatment’s 

true response rate within the context of a clinical trial. We have clarified that, whilst the 

simple proportion of total responders is still the MLE under AR, it will be biased in small 

samples (but not seriously so). We restricted our attention to the bias in each treatment 

parameter pk and not, for example, on treatment control response differences pk – p0. This 

was to explain the issue of bias in its most clear and general terms. Furthermore, we do not 

consider the issue of hypothesis testing, for which such differences would naturally form a 

basis. In the glioblastoma design, since the control group’s allocation probability was not 

dependent on its patient response rate, the MLE  was essentially unbiased and therefore all 

of the bias in the difference  is driven by  However, when the control group is not 

treated differently and all arms in a trial are subject to the same AR scheme (as in the RPW 

example) the bias of the difference  can be either positive or negative, but it will 

generally be even smaller than the bias for  or  This is because some of the negative bias 

will cancel out.

The HT estimator was shown to perfectly adjust for the bias in pk, but was not attractive to 

use in practice. Inverse probability weighting – commonly used in the causal inference and 

missing data literature – offered a simple means to improve the HT estimator. Its 

performance was poor, however, if the allocation probability weights were allowed to 
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approach zero. IPW estimators can be improved via the use of ‘stabilised weights’,15 and it 

would be interesting to explore whether their use in this context.

Rao–Blackwellization was shown to offer the most comprehensive (but computationally 

intensive) means to improve the HT estimator. If Sn is a complete and sufficient statistic for 

p then  could claim to be the uniform minimum variance unbiased estimate 

(UMVUE) for p. This technique has been suggested in the analysis of group sequential trials 

by Emerson and Fleming.16 In their case, the MLE for pk at the point of the first interim 

analysis (i.e. the first chance to stop the trial) is Rao–Blackwellized, since only information 

collected up to this point is unbiased. In our case, we are using a weighted average of the 

entire data. However, due to concerns about verifying the completeness of Sn, we simply 

refer to it as a ‘Rao–Blackwellized’ estimator. By the Rao–Blackwell theorem, the RBHT 

estimate will be unbiased with a smaller variance than the HT estimator. The treatment 

control difference, pk – p0, is likely to be the primary outcome measure in a clinical trial. 

Since the RBHT estimator is calculated for the complete vector of response parameters, any 

linear combination of the RBHT parameter estimates (such as a treatment control difference) 

can be subsequently calculated (with unbiasedness maintained). This makes the RBHT 

estimator more widely applicable in practice than showcased here.

Another strategy for bias adjusted inference in group sequential trials, due to Whitehead33 

and termed the bias-corrected MLE, is to find the vector  satisfying: . In words, 

 is the parameter constellation for which the expected value of the MLE (given trial data 

generated under ) is equal to the observed MLE. In practice, the vector  is estimated via 

an iterative process. It has been shown to perform well in group-sequential trials using 

FR16,25 and one could in theory apply it to this context. However, if one adopts a Monte-

Carlo approach here too, then it is not attractive, because of the inherent difficulty in 

assessing the convergence of an iterative process containing a stochastic element. In 

contrast, whilst calculation of the RBHT estimate involves the generation of trial 

realisations, no such iteration is necessary.

Besides statistical bias, other types of biases have been highlighted as particularly 

problematic for trials utilising AR. These biases are very important but are beyond the scope 

of this paper. However, we now briefly allude to some obvious examples. The un-blinding of 

patient data midtrial in order to implement AR can lead to so called ‘operational’ bias, if this 

information leaks to an individual who has the power and authority to misuse it.34 Another 

example occurs when the patients recruited into the trial systematically differ over time in 

their characteristics, and those characteristics are not independent of the treatment’s effect. 

When so called ‘patient drift’ exists, AR trials are again susceptible to bias and type I error 

rate inflation when FR trials are not.35 In this second case, however, bias adjusted 

estimation could potentially be extended to this setting by defining the randomization 

probability weights conditional on any measured time varying covariates.

A complete discussion as to the relative merits of AR versus FR is also beyond the scope of 

this paper. We refer the reader to the interesting discussions in Berry36 and Friedlin and 

Korn,30 that reach opposite conclusions. In recent editorial on the subject Thall et al.37 

conclude that in early phase trials, where the goal is often to select the most promising dose 
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from many candidates, AR holds sufficient promise to be considered as a design choice. 

However, they also discuss that in other trial settings, any benefit provided by an AR scheme 

is likely to be negated by the logistical complications of implementation. In a recent 

commentary article, Hey and Kimmelman12 appear to rule out the use of AR in two-arm 

trials, but echo the sentiments of Thall et al. in indicating its potential utility in multi-arm 

trial settings. In our investigation we also found the performance of the various bias adjusted 

estimators to be better in the multi-arm glioma trial context than the two arm RPW trial 

context. This is because multi-arm trials inherently put a stronger emphasis on treatment 

selection, which leads to more pronounced biases and hence the need for bias adjustment.
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Figure 1. 
Illustrative diagram of data on the first three patients entered into a clinical trial using 

adaptive randomization.
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Figure 2. 
Bias of the MLE versus its covariance with the overall sample size for under three different 

trial designs. RPW: randomized play the winner, SSR: sample size re-estimation.
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Figure 3. 
Left: bias of the MLE and IPW estimators. Right: MSE of the MLE, IPW, HT and RBHT 

estimators.
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Figure 4. 
Left: πi2 for single trial realisation under Scenario 6. Right: IPW, HTand RBHTestimates for 

p1 for 100 trial realisations under Scenario 6. Trial simulations giving rise to HT estimates 

above 0.8 and below 0.2 are linked to their respective IPW and RBHTestimates by dotted 

lines, in order to highlight the additional benefit that inverse probability weighting and Rao–

Blackwellization provides.
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Figure 5. 
Bias (left) and MSE (right) for the glioblastoma case study.
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Figure 6. 
Randomization probabilities for a single trial realisation under parameter constellation 5.
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