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Abstract

Genetic imputation is a cost-efficient way to improve the power and resolution of genome-wide 

association (GWA) studies. Current publicly accessible imputation reference panels accurately 

predict genotypes for common variants with minor allele frequency (MAF) ≥ 5% and low-

frequency variants (0.5 ≤ MAF < 5%) across diverse populations, but the imputation of rare 

variation (MAF < 0.5%) is still rather limited. In the current study, we evaluate imputation 

accuracy achieved with reference panels from diverse populations with a population-specific high-

coverage (30x) whole-genome sequencing (WGS) based reference panel, comprising of 2,244 

Estonian individuals (0.5% of adult Estonians). Although the Estonian-specific panel contains 

many fewer haplotypes and variants, the imputation confidence and accuracy of imputed low-

frequency and rare variants was significantly higher. The results indicate the utility of population-

specific reference panels for human genetic studies.
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Introduction

Genotype imputation is a method for statistically inferring untyped genotypes in a sample of 

partially genotyped individuals, based on a reference panel of individuals who have been 

more densely genotyped or sequenced. Imputation methods attempt to identify haplotype 

sharing between individuals in the sample and in an imputation reference panel (IRP), and 

use this information to infer the alleles at untyped loci in the sample1. Imputation allow 

geneticists to study variants that have not been directly genotyped in a sample and thereby to 

increase power and resolution of genome-wide association studies (GWAS). Imputation is 

particularly useful for combining association results across studies that used different 

genotyping arrays2 and facilitate fine-mapping to localise an association signals by 

considering all genetic variants in a region.

Publicly available IRPs from the International HapMap Project3,4 and 1000 Genomes 

Project (1000G)5 have been instrumental to the discovery of thousands of loci affecting 

diseases and traits in individual GWAS and collaborative meta-analyses. The first wave of 

studies mostly used the HapMap II IRP, which used microarray-based genotypes from 270 

individuals at 3.1 million (M) variants6–10. Later studies used IRPs based on the 1000G 

project, which performed whole-genome sequencing (WGS) on a diverse set of populations, 

with 2,504 individuals and up to 84.4 M variants11–16. Although the latter IRP allows 

robust imputation of common variants (minor allele frequency – MAF ≥ 5%) and low-

frequency variants (0.5 ≤ MAF < 5%)5 it has only limited imputation accuracy for rare 

(MAF < 0.5%) variants17–19. A recent IRP from Haplotype Reference Consortium 

(HRC)20 contains even more individuals (N = 32,488, mostly with European ancestry) and 

should therefore enable better imputation of both low-frequency and rare variants in 

European samples.

Recently, several studies have demonstrated that the use of population-specific imputation 

reference panels can further improve the imputation accuracy of common and low-frequency 

variants, and improve the imputation of rarer variants in the relevant population21–24. By 

using an IRP composed of related Dutch individuals, Deelan et al. showed that it is possible 

to substantially improve the completeness and accuracy of imputation of rare variants into a 

set of Dutch individuals23. Gudbjartsson et al. used long-range haplotype phasing in 

combination with imputation to increase imputation accuracy for rare variants down to MAF 

of 0.1% in the Icelandic population22. Sidore et al. reported several variants associated with 

circulating lipid levels in Sardinians that were detected due to accurate imputation achieved 

by using a Sardinian WGS-based IRP; these authors showed that the variants would not have 

been identified if the analyses had been based on the 1000G IRP24. Similar results were 

obtained in the UK10K project, where the British population-specific IRP combined with 

1000G Project reference panel facilitated the discovery of several novel genetic variants 

associated with medically relevant phenotypes19,25,26.

Studies have shown that the genetic structure of European countries correlates closely with 

their geographic origin27,28. The Estonian population, being located in Northeast Europe, is 

genetically most similar to its neighbouring countries, including Finland, the North-western 

part of Russia, and other Baltic countries28–30. Notwithstanding this overall genetic 
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similarity, the Estonian population still has a substantial proportion of haplotypes that are 

not expected to be covered by the more diverse IRPs. Moreover, the population-specific 

differences are expected to increase as allele frequencies decrease.

In the current study, we first evaluated two most commonly used phasing algorithms to 

create population-specific IRPs based on high-coverage (30x) WGS data from 2,244 

Estonian individuals. To impute low-frequency and rare variants more accurately in a 

specific population, one can take two approaches: (i) increase the size of IRPs from diverse 

populations to capture more reference haplotypes) or (ii) employ population-specific IRPs. 

We assessed the utility of these approaches for improving imputation in Estonian samples by 

comparing the performance of (i) an Estonian-specific imputation reference panel, (ii) the 

commonly used 1000G IRP, (iii) the much larger HRC IRP, and (iv) combinations of these 

panels.

Materials and Methods

Cohort description

2,304 geographically distributed individuals (selected randomly by county of birth) from the 

Estonian Biobank of the Estonian Genome Center, University of Tartu (EGCUT) were 

selected for whole-genome sequencing (WGS). EGCUT is a population-based biobank, 

containing almost 52,000 samples of the adult population (aged ≥18 years), which closely 

reflects the age, sex and geographical distribution of the Estonian population. A total of 

6,394 individuals (selected randomly and not overlapping with WGS dataset) from the 

Estonian Biobank were selected for genotyping using Illumina HumanCoreExome array, 

whereas the subset of 505 of these individuals were also subject to whole-exome sequencing 

(WES).

WGS and WES sequencing and variant calling

WGS samples followed a PCR-free sample preparation. Libraries sequenced on the Illumina 

HiSeq X Ten with the use of 150bp paired-end reads to 30x mean coverage with a median 

insert size of 400bp +/- 25%. WES samples DNA was enriched for target sequences (Agilent 

Technologies; Human All Exon V5+UTRs) according to manufacturer's recommendations.

Sequenced reads were aligned to the GRCh37/hg19 human reference genome using BWA-

MEM31 v0.7.7. SAMtools32 v1.2 were applied to compress SAM to BAM (samtools view), 

sort (samtools sort) and index BAM (samtools index) files. PCR duplicates were then 

marked using Picard (http://broadinstitute.github.io/picard) v1.136 MarkDuplicates.jar. For 

further BAM improvements, including realignment around known indels and base quality 

score recalibration, were applied Genome Analysis Toolkit (GATK)33,34 v3.4 (v3.4-46). 

Single sample genotypes were called by GATK HaplotypeCaller algorithm (-ERC GVCF). 

All gVCF-files were combined (-T CombineGVCFs) and jointly called (-T 

GenotypeGVCFs).
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Quality control

Out of total 2,304 WGS samples submitted for sequencing, 4 samples did not have enough 

input DNA (< 1.2 ug), 7 samples failed in library preparation 3 times and 9 samples had a 

contamination rate > 10%. Thus, variants of 2,284 WGS samples were jointly called. The 

GATK Variant Quality Score Recalibration (VQSR) was used to filter variants with a truth 

sensitivity of 99.0%. Also, variants with inbreeding coefficient less than -0.3 were filtered to 

remove sites with excess heterozygous individuals. Only PASS sites were considered in the 

further analysis.

The PLINK/SEQ (https://atgu.mgh.harvard.edu/plinkseq) v0.10 i-stats module was used to 

calculate number of variants (NVAR), number of non-reference (NALT) variants, number of 

heterozygous (NHET) variants, NHET/NALT ratio, transition/transversion (TITV) ratio per 

sample and outlier (below or above 3SD from the population mean) samples were removed. 

In addition, genotype and phenotype sex concordance was checked for each sample and 

outliers were removed. The final WGS sample set contained 2,244 individuals. The final 

WES sample set, who passed all quality control filters and genotyped with Illumina 

HumanCoreExome array, contained 505 individuals.

Multi-allelic SNVs were split into bi-allelic records and different alternative alleles at the 

same locus were treated as separate variants. We further excluded variants with call rate < 

0.95, minor allele count ≤ 2, Hardy-Weinberg equilibrium test P-value < 1x10-6 and low-

complexity regions35 were removed.

Genotype array data was filtered sample-wise by excluding on the basis of call rate (< 98%), 

extreme heterozygosity (> mean±3SD), genotype and phenotype sex discordance, cryptic 

relatedness (IBD > 20%) and outliers from the European descent from the MDS plot in 

comparison with HapMap reference samples. SNP quality filtering included call rate (< 

99%), MAF (< 1%) and extreme deviation from Hardy-Weinberg equilibrium (P-value < 

1x10-4). Non-autosomal SNPs were excluded from the analysis.

Haplotype phasing

The EGCUT WGS data was phased with SHAPEIT236 (r837), using 4 computer cores. Pre-

phasing of genotype array data was made in similar manner using SHAPEIT2 using 4 cores. 

As a separate test for pre-phasing accuracy, we used chromosome 20 sequence of 2,244 full 

genomes, which were filtered beforehand to exclude any non-founder family members and 

individuals with a genome-wide PI_HAT value above 0.5 (2,195 individuals remained) when 

compared to other individuals in the dataset. To assess the efficiency of various approaches 

to phasing of WGS data, we applied two different tools: SHAPEIT236 and Eagle237,38. 

Both modules were engaged with the normal default parameters with varying number of 

cores (1, 2, 4, 8, 16, 24 and 32). To verify the phasing accuracy for other datasets, the 1000G 

data was phased using a similar pipeline (1, 8 and 32 cores).

In addition to the regular phasing functionality, the read-aware phasing capability of 

SHAPEIT239 was also assessed. The first step entailed creating a phase informative read file 

on the basis of BAM files, using the module ExtractPIRs v1 (r68) with default parameters 

provided by the authors. After the generation of phase informative reads, the obtained file 
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could be used in a similar fashion to a map file as a reference point for SHAPEIT2 to phase 

the datasets. Phasing was performed in three parallel runs after which the average run time 

and accuracy were compared as indicators of phasing quality.

Phasing accuracy was defined as the number of switch errors present in the phased dataset. 

For this, the phased founder reads were compared with the non-phased reads of their 

offspring to determine the heredity pattern of heterozygous positions, any shifts in heredity 

from one parental haplotype to another were counted as switches. Two families with one 

offspring and two families with two offspring were used to estimate switch error rate in 

EGCUT sample set, four families with one offspring were used for 1000G sample set. The 

ratio of switch errors was calculated by dividing the number of haplotype switches to the 

number of the heterozygous positions where the occurrence of the switch can be reliably 

determined, after which the results were averaged across the trios.

Genotype imputation

Imputation using EGCUT and 1000G reference panels separately and in combination were 

performed in High Performance Computing Center, University of Tartu using IMPUTE2 

with default parameters. As IMPUTE2 allows to use two phased reference panels in 

combination (the ‘imputation with two phased reference panels’ option), we used the 

EGCUT and 1000G reference panels also together (EGCUT+1000G and 1000G+EGCUT). 

In case of such panel combining, IMPUTE2 imputes only genotypes for variants that are 

present in the first (main) panel but in the process, uses additional haplotype information 

from the second panel to improve the imputation accuracy through larger set of reference 

haplotypes40.

Imputation with the HRC panel was carried out using IMPUTE2 with default parameters 

except that the k_hap parameter that was set to 1000.

For all imputation panels, monomorphic SNVs were excluded. No further filtering 

performed based on IMPUTE2 info score, but most of the analysis rest on well-imputed 

(INFO > 0.4) and confidently imputed (INFO > 0.8) SNVs.

Post-imputation filtering and concordance analyses

The GATK GenotypeConcordance tool was used to calculate imputation accuracy 

(concordance, non-reference sensitivity and non-reference discordancy) for different 

imputed panels with gold standard whole-exome sequencing data for overlapping 

individuals (N=505). Low complexity regions were filtered out of WES data prior to 

analysis. PLINK v1.9 was used to convert IMPUTE2 files (imputation output) to VCF 

format using hard-call threshold 0.9. BCFtools filter option was used to keep genotypes 

imputed with INFO-value > 0.4 and overlapping with WES target regions. Comparison was 

performed in 3 MAF bins (MAF ≥ 5%, 0.5 ≤ MAF < 5% and MAF < 0.5%) based on WES 

minor allele frequencies and only well imputed (INFO > 0.4) SNVs were considered. 

Reference sequence in the concordance analyses was the same for both WGS and WES 

analysis pipelines.
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To access more stratified imputation accuracy, an additional concordance analysis was run 

for EGCUT imputation reference panel for well-imputed (INFO > 0.4) variants in WES-

based MAF bins of, [0, 0.2), [0.2, 0.4), [0.4, 0.6), [0.6, 0.8), [0.8, 1), [1, 2), [2, 3), [3, 4), [4, 

5), [5, 10), [10, 20), [20, 30), [30, 40) and [40, 50]%.

Functional annotation of variants

We used Variant Effect Predictor (VEP)41 version 84 to annotate the confidently imputed 

variants in the 20,345 protein-coding genes in the Ensembl database (with Gencode v19 on 

GRCh37).

Results

Using high-coverage WGS data of 2,244 Estonian individuals from the Estonian Biobank42, 

we created a population-specific IRP. After variant calling and rigorous quality control steps 

(Materials and Methods), we phased the Estonian WGS data and used the resulting Estonian 

IRP (referred to here as the EGCUT IRP, for the Estonian Genome Center at University of 

Tartu), together with the 1000G and HRC IRP, to impute genotypes into 6,394 Estonians 

who had been genotyped on microarrays.

Phasing speed and accuracy of multi-threaded haplotype phasing

Haplotype phasing can be a time-consuming process, especially for large WGS-based 

datasets. We therefore began by evaluating haplotype-phasing algorithms. We compared 

three different parallel, multi-threaded computational programs – SHAPEIT236, 

SHAPEIT2-RA (for read-aware)39 and Eagle237,38 – utilised with different number of 

processor cores (1, 2, 4, 8, 16, 24 and 32) (Supplementary Figure 1A). The programs were 

applied to data from chromosome 20 in the EGCUT samples. Accuracy was assessed by 

counting the number of haplotype switch errors (Materials and Methods) in four families, 

for which haplotype phase could be independently determined based on segregation of 

genetic markers.

While the speed of both SHAPEIT2 and SHAPEIT2-RA increased in proportion to the 

number of cores used, the speed of Eagle2 increased proportionally up to 8 cores but not 

beyond. Up to this point, Eagle2 was considerably faster than SHAPEIT2, by a factor of 

roughly 6-fold. The two versions of SHAPEIT2 showed similar accuracy, which was slightly 

lower for Eagle 2 (average haplotype switch error rate of 0.7% with SHAPEIT2 vs. 0.81% 

with Eagle2) (Table 1). In all cases, the accuracy did not vary significantly with the number 

of cores used. To validate that these results were not population-specific, we performed 

similar analyses with four 1000G family trios (with 1, 8 and 32 cores) and observed similar 

switch error rates in the corresponding phasing results (Supplementary Table 1). While in 

our hands, SHAPEIT2 displayed slightly higher accuracy, it did so at the cost of increased 

computing time, making Eagle2 a viable option for the researchers who require time-

efficient phasing of large datasets. However, because the 1000G and HRC IRPs were phased 

with SHAPEIT, we used this program to phase the EGCUT data (Materials and Methods).
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Genotype imputation

To impute genotypes into 6,394 Estonian individuals who had been genotyped on Illumina 

HumanCoreExome microarrays, we used the IMPUTE2 software43,44 together with three 

separate IRPs and two combinations of IRPs (Table 2). The first IRP consisted of the 2,244 

whole-genome sequenced EGCUT individuals; these individuals were selected to be 

geographically distributed across Estonia and did not overlap with the set of genotyped 

individuals. The other two were 1000G IRP and the HRC IRP20 from large diverse 

populations. The IMPUTE2 software also allows to improve imputation accuracy by using 

two reference panels simultaneously by pooling haplotype information across both IRPs40. 

We used both combinations of the EGCUT and 1000G panels with that option: EGCUT

+1000G and 1000G+EGCUT. In such combinations, IMPUTE2 imputes only genotypes for 

variants that are present in the first (main) IRP while also considering haplotype information 

from the second IRP to improve the imputation accuracy through larger set of reference 

haplotypes. Thus, EGCUT+1000G should be viewed as an improvement of the EGCUT 

reference panel (genotypes observed in the EGCUT panel imputed while considering 

haplotypes inferred from the EGCUT and 1000G panel) and 1000G+EGCUT should be 

considered as an improvement of the 1000G panel (genotypes observed in the 1000G panel 

imputed while considering haplotypes inferred from both panels).

Number of imputed variants

For each imputation reference panel, we studied the number of imputed single nucleotide 

variants (SNVs) as a function of the imputation confidence estimate – INFO-value – 

assigned by the IMPUTE2 program. The INFO-value reflects the information in imputed 

genotypes relative to the information if only the allele frequency were known43,44. We 

counted the total number of imputed SNVs, the number of ‘well-imputed’ SNVs (INFO > 

0.4)20 and the number of ‘confidently imputed’ SNVs (INFO > 0.8). We also counted the 

number of imputed SNVs found only with each IRP (Figure 1A).

Although the number of total variants and well-imputed variants obtained with the larger 

diverse panels (1000G and HCR) exceeded the corresponding numbers for the population-

specific panel, the situation was reversed for confidently imputed SNVs with 12.29 M (75% 

of total number of imputed SNVs), 10.05 M (48%) and 9.44 M (27%) of SNVs being 

confidently imputed with the EGCUT, HRC and 1000G panel, respectively (Figure 1B). The 

combined EGCUT+1000G panel showed almost identical results to EGCUT panel alone, 

whereas the 1000G+EGCUT panel showed considerable increase in the number of 

confidently imputed SNVs (by considering additional haplotype information from the 

population-specific IRP) as compared to the 1000G panel alone. These results indicate that 

using a population-specific IRP increases the number of confidently imputed variants, due to 

more similar allele frequencies and greater relatedness between the samples and the IRP. 

More diverse IRPs have a tendency to employ incorrect allele frequency distribution and 

also to contain divergent haplotypes, which are not present in the samples (e.g. African 

haplotypes carrying variants that are not polymorphic in non-African populations).

We next stratified the analysis according to the MAFs of the imputed SNVs, dividing them 

into three groups: common (MAF ≥ 5%), low-frequency (0.5 ≤ MAF < 5%) and rare (MAF 
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< 0.5%) SNVs. For common variants, the number of imputed SNVs was very similar across 

the IRPs (Figure 2A). For low-frequency variants, the number of well-imputed SNVs was 

also very similar, whereas the number of confidently imputed SNVs was larger for the 

population-specific IRP. For rare variants, the results were even more pronounced, 3.48 M 

(54% of well-imputed and confidently imputed rare variants), 2.54 M (33%) and 1.86 M 

(15%) SNVs were imputed confidently from the EGCUT, HRC and 1000G panels, 

respectively (Figure 2B, Supplementary Table 2). Notably, the EGCUT panel out-performed 

the other panels on rare variants despite the fact that the HRC panel contains the largest 

number of haplotypes (64,976) and the 1000G panel contains the largest number of variants 

(81 M SNVs on autosomes).

These results show that imputation confidence (measured as INFO-value) decreases 

substantially with as the allele frequency of the imputed variants declines (Supplementary 

Figure 2). Despite the fact that the larger and more diverse IRPs contained more variants, 

they contained fewer matching haplotypes than the population-specific panel. As a result, 

the HRC and 1000G panels yielded imputed genotypes with lower confidence (INFO-value), 

especially for rare SNVs (Supplementary Figure 3). For the combinations of reference 

panels, the EGCUT+1000G showed almost identical results in every aspect compared to 

EGCUT panel alone, while the 1000G+EGCUT panel showed a slight gain for common and 

low-frequency variants and a substantial gain for rare variants when compared to 1000G 

panel alone (Figure 2).

Imputation of loss-of-function and missense variants

Loss-of-function (LoF) variants that disrupt protein-coding genes and missense variants that 

cause amino acid changes are of particular interest because they are enriched in functional 

and potentially clinically relevant. Considering only confidently imputed SNVs (INFO > 

0.8), we observed that all three reference panels enabled imputation of a similar number of 

common LoF and missense variants (Figure 3). However, the number of low-frequency LoF 

variants was higher with the population-specific IRP and the number of rare LoFs was 

almost twice as high (417, 439 and 730 LoF SNVs with the 1000G, HRC and EGCUT, 

respectively) (Supplementary Table 3).

Imputation sensitivity and accuracy

Although imputation confidence estimates (such as INFO-values or squared correlations r2) 

45,46 are useful for characterising the overall success of the imputation process, high INFO 

or r2 values does not guarantee that the corresponding genotypes are inferred correctly. 

Therefore, it is important to directly assess the accuracy of the imputed genotypes. We 

compared the ‘best guess’ genotypes imputed from the different reference panels to whole-

exome sequencing (WES) data available for a subset of imputed EGCUT individuals (N = 

505) (Supplementary Figure 1B). Treating the WES-based genotype calls as ‘gold standard’, 

we calculated two metrics for each imputed dataset: (i) sensitivity, defined as the proportion 

of WES-based non-reference (NR) variant calls that were also obtained through imputation 

the process; and (ii) discordancy rate, defined as the proportion of imputed SNVs that had 

incorrect genotype call.
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For well-imputed common SNVs, all of the IRPs gave similarly high sensitivity (88.5 - 

92.4%) (Figure 4A). For low-frequency SNVs, the three panels that included data from the 

population-specific panel (EGCUT, EGCUT+1000G, and 1000G+EGCUT) yielded in 

higher sensitivity (~87%) than the more diverse panels (78% and 76% for HRC and 1000G, 

respectively) (Table 3). For rare SNVs, the proportional difference was even greater (40%, 

42% and 49% for 1000G, HRC and EGCUT IRPs, respectively).

Similarly, the population-specific IRP performed better with respect to discordancy rate 

(Figure 4B). Whereas all three panels had a low discordancy rate for common variants (1.9 - 

3.4%), the EGCUT panel outperformed other panels for low-frequency and rare SNVs 

(Table 3). Notably, one-quarter (24.7%) of rare SNVs imputed from the 1000G IRP had 

incorrect genotype calls, whereas the proportion was substantially lower with the EGCUT 

IRP alone (14.1%) or if it was used in combination with the 1000G panel (13.6% and 14.3% 

for the EGCUT+1000G and 1000G+EGCUT panels, respectively). Similar results were seen 

for confidently imputed variants, for which both sensitivity and discordancy rate were better 

in case of the population-specific reference panel (Supplementary Figure 4, Supplementary 

Table 4). The better performance is due to a close match between the EGCUT IRP and 

Estonian samples – owing to the fact that rare variants tend to be more recent and thus more 

population specific.

We repeated these analyses of imputation accuracy by using finer bins of MAF 

(Supplementary Figures 5-9). We found that although the overall success of genotype 

imputation of well-imputed variants decreased steadily with minor allele frequency in case 

of all compared IRPs, genotype imputation was, especially for rare variants, significantly 

better in case of the population-specific IRP or if it was used together with the 1000G 

reference panel.

Discussion

Genotype imputation is a cost-efficient way to improve the power and resolution of GWA 

studies. Although large IRPs from diverse populations work reasonably well for imputation 

of common and low-frequency variants, currently available reference panels allow only 

limited imputation of rare variants.

Whole-genome sequencing has become increasingly widespread in recent years and is 

increasingly used in creating IRPs. The first step in the process of creating an IRP is the 

correct assignment of polymorphic positions regarding the individual haplotypes. Although 

the task can be computationally demanding for large datasets, the advent of various phasing 

algorithms has simplified the task considerably. We compared the performance of the 

SHAPEIT2 and Eagle2 programs, both of which can increase the phasing speed by dividing 

the phased reference dataset into multiple subsets, which are then processed in parallel. 

Similarly to previously published comparison38, we found that Eagle2 was considerably 

faster than SHAPEIT2. However, the decrease in phasing time resulted in a small increase in 

haplotype switch errors, making SHAPEIT2 a better choice for those aiming at the highest 

accuracy. Interestingly, we did not observe a difference in phasing accuracy between 

SHAPEIT2 and SHAPEIT2’s read-aware mode. It is possible that this was due relatively 
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homogeneous nature of our Estonian samples and that the SHAPEIT2 read-aware mode may 

exhibit advantages for more heterogeneous datasets.

Consistent with previous studies, our results show that population-specific IRPs can improve 

the genotype imputation, especially for low-frequency and rare variants21–24. By being 

genuinely reflective of the study dataset, population-specific IRPs can therefore facilitate 

discovery of true associations in GWAS and subsequent fine-mapping of causal variants, as 

demonstrated by others24,47,48 and also with the Estonian population-specific reference 

panel49.

Although the large IRPs from more diverse populations led to the imputation of a larger 

number of rare SNVs, a large proportion of these genotypes were imputed with low 

imputation confidence (IMPUTE2 INFO-value). Focusing only on confidently imputed 

SNVs, the population-specific IRP outperformed the 1000G and HRC IRPs. Although the 

overall imputation success and accuracy depend on several different factors (including the 

size of the IRP and the genetic structure of the reference panel and the genotyped sample), 

these observations are expected to apply to other populations with similar genetic 

background.

Beyond imputation quality, we also considered sensitivity and discrepancy rate of the 

imputed genotypes. We found that the population-specific IRP outperformed the large IRPs 

from diverse populations – a finding that is also in line with other recent imputation 

accuracy comparisons50. Using a large IRP that is not well matched in terms of ancestry can 

thus not only limit the discovery of associations in GWAS as observed previously24 but also 

introduce variants that are not actually polymorphic in the imputed sample50.

Because short insertion-deletion (indel) variants were not part of the HRC imputation 

reference panel and because calling indel variants is still more error-prone than SNV calling, 

we did not include indels in our IRP and our comparisons. Once technical limitations related 

to indel calling and phasing are resolved, indels should be included in all imputation 

reference panels.

In conclusion, we observe that, although currently publicly accessible large diverse 

imputation reference panels like 1000G and HRC enable imputation of many low-frequency 

and rare variants in the Estonian population, most of these variants are imputed with 

relatively low confidence and furthermore, there is a significant proportion of population-

specific variation that cannot be imputed from these panels. Moreover, imputation of low-

frequency and rare variants is considerably more accurate with a population-specific 

reference panel or if one is used in combination with a publicly available reference such as 

the 1000G panel. Our results also suggest that, given that the population-specific reference 

panel size (number of haplotypes) is comparable to the 1000G panel size, the previous 

observations that reference sample size is more important than precise population matching 

does not apply equally well to all populations and population-specific panels can outperform 

even an order of magnitude larger but more diverse reference panels.
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Figure 1. 
Number of variants imputed from different imputation reference panels. A) Number of all 

shared and panel-specific variants in three distinct reference panels imputed with INFO-

value of > 0.4 (in bold) and 0.8 (given in brackets); B) Total number of imputed SNVs 

(bars); the number of SNVs imputed with imputation quality score (INFO-value) > 0.4 

(coloured) and INFO > 0.8 (shaded areas).
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Figure 2. 
Number of common (MAF ≥ 5%), low-frequency (0.5 ≤ MAF < 5%) and rare (MAF < 

0.5%) variants imputed from different imputation reference panels. A) Number of well-

imputed SNVs (imputed with imputation confidence INFO > 0.4); and B) number of 

confidently imputed SNVs (imputed with imputation confidence INFO > 0.8).
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Figure 3. 
Number of common (MAF ≥ 5%), low-frequency (0.5 ≤ MAF < 5%) and rare (MAF < 

0.5%) LoF (A) and missense (B) variants imputed from different imputation reference 

panels with INFO-value > 0.4 (bars) and INFO-value > 0.8 (shaded areas).
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Figure 4. 
Imputation accuracy for common (MAF ≥ 5%), low-frequency (0.5 ≤ MAF < 5%) and rare 

(MAF < 0.5%) well-imputed variants (INFO > 0.4) imputed from different imputation 

reference panels. A) Non-reference (NR) sensitivity – proportion of whole-exome 

sequencing (WES) based NR variant calls that were also retrieved through imputation 

process. B) NR discordancy rate – proportion of NR variants that were retrieved through 

imputation process but had incorrect genotype calls as compared to the WES genotypes.
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Table 1

Phasing speed and accuracy to phase chromosome 20 of the EGCUT data. Phasing errors (measured as 

percentage and count of switch errors out of 35,780 haplotype switches) and running times for different 

number of processor cores (1, 2, 4, 8, 16, 24 and 32).

SHAPEIT2 SHAPEIT2 read-aware Eagle2

No of cores % of switch errors Time % of switch errors Time* % of switch errors Time

(no of errors) (h) (no of errors) (h) (no of errors) (h)

1 0.72 (257) 179 0.70 (246) 293 (169) 0.81 (291) 29

2 0.71 (255) 98 0.71 (248) 216 (92) 0.81 (291) 15

4 0.70 (250) 51 0.70 (247) 174 (50) 0.81 (291) 8

8 0.71 (254) 28 0.71 (248) 150 (26) 0.81 (291) 5

16 0.71 (254) 16 0.70 (245) 139 (15) 0.81 (291) 5

24 0.70 (251) 12 0.71 (249) 136 (12) 0.81 (291) 10

32 0.70 (253) 11 0.69 (244) 135 (11) 0.81 (291) 9

*
Total running time, including the extraction of Phase Informative Reads (PIRs) from the raw sequencing data (BAM files). Haplotype phasing 

time (without PIR extraction) is given in parenthesis.
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Table 2

Description of compared imputation reference panels.

Imputation reference panel 1000G HRC EGCUT EGCUT + 1000G 1000G + EGCUT

Description 26 cohorts worldwide 20 cohorts 
of mostly 
European 
ancestry

Estonian diversity panel 1+26 cohorts worldwide 26+1 cohorts worldwide

Average sequencing coverage 7.4x 4-8x 29.8x 29.8x 7.4x

MAC filter MAC≥1 MAC≥5 MAC≥3 MAC≥1 MAC≥1

No of haplotypes 5.008 64.976 4.488 9.496 9.496

No of autosomal SNVs 81,027,987 39,235,157 16,536,512 16,536,512 81,027,987
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Table 3

Genotype concordance analyses of well imputed SNVs (INFO > 0.4). The ‘best guess’ genotype calls obtained 

with different imputation reference panels were compared to the whole-exome sequencing (WES) data while 

treating the WES-based genotype calls as ‘gold standard’. Imputation sensitivity – proportion of WES-based 

non-reference variant calls that were also obtained through imputation process – and discordancy rate 

(proportion of non-reference variant calls that were obtained through imputation process but which had 

incorrect genotype calls) were calculated.

Non-reference sensitivity and discordancy rate
(number of NR genotypes analysed, in millions)

Reference panel MAF ≥ 5% MAF 0.5-5% MAF < 0.5%

Sensitivity Discordancy rate Sensitivity Discordancy rate Sensitivity Discordancy rate

1000G 88.5% (24.3)     3.4% (22.0) 75.9% (2.4)     14.0% (2.1) 39.9% (0.7)     24.7% (0.4)

HRC 89.4% (24.1)     2.1% (21.9) 77.8% (2.4)     8.2% (2.0) 41.9% (0.7)     17.0% (0.4)

EGCUT 91.4% (24.3)     1.9% (22.5) 87.2% (2.4)     6.1% (2.2) 48.6% (0.7)     14.1% (0.4)

EGCUT + 1000G 91.5% (24.3)     2.1% (22.6) 87.2% (2.4)     6.3% (2.2) 49.0% (0.7)     13.6% (0.4)

1000G + EGCUT 92.4% (24.3)     2.2% (22.8) 87.1% (2.4)     6.5% (2.2) 49.9% (0.7)     14.3% (0.4)
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