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Abstract
 Targeted next generation sequencing (NGS) panels areBackground:

increasingly being used in clinical genomics to increase capacity, throughput
and affordability of gene testing. Identifying whole exon deletions or
duplications (termed exon copy number variants, ‘exon CNVs’) in
exon-targeted NGS panels has proved challenging, particularly for single exon
CNVs. 

 We developed a tool for the  etection of  xon  py  umberMethods: D E Co N
variants (DECoN), which is optimised for analysis of exon-targeted NGS panels
in the clinical setting. We evaluated DECoN performance using 96 samples
with independently validated exon CNV data. We performed simulations to
evaluate DECoN detection performance of single exon CNVs and to evaluate
performance using different coverage levels and sample numbers. Finally, we
implemented DECoN in a clinical laboratory that tests   and   withBRCA1 BRCA2
the TruSight Cancer Panel (TSCP). We used DECoN to analyse 1,919
samples, validating exon CNV detections by multiplex ligation-dependent
probe amplification (MLPA). 

 In the evaluation set, DECoN achieved 100% sensitivity and 99%Results:
specificity for BRCA exon CNVs, including identification of 8 single exon CNVs.
DECoN also identified 14/15 exon CNVs in 8 other genes. Simulations of all
possible BRCA single exon CNVs gave a mean sensitivity of 98% for deletions
and 95% for duplications. DECoN performance remained excellent with
different levels of coverage and sample numbers; sensitivity and specificity was
>98% with the typical NGS run parameters. In the clinical pipeline, DECoN
automatically analyses pools of 48 samples at a time, taking 24 minutes per
pool, on average. DECoN detected 24 BRCA exon CNVs, of which 23 were
confirmed by MLPA, giving a false discovery rate of 4%. Specificity was
99.7%. 

 DECoN is a fast, accurate, exon CNV detection tool readilyConclusions:

implementable in research and clinical NGS pipelines. It has high sensitivity
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implementable in research and clinical NGS pipelines. It has high sensitivity
and specificity and acceptable false discovery rate. DECoN is freely available
at  .www.icr.ac.uk/decon

 Nazneen Rahman ( )Corresponding author: rahmanlab@icr.ac.uk
 Fowler A, Mahamdallie S, Ruark E   How to cite this article: et al. Accurate clinical detection of exon copy number variants in a targeted

 Wellcome Open Research 2016,  :20 (doi:  )NGS panel using DECoN [version 1; referees: 2 approved] 1 10.12688/wellcomeopenres.10069.1
 © 2016 Fowler A  . This is an open access article distributed under the terms of the  , whichCopyright: et al Creative Commons Attribution Licence

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
 This work was supported by the Wellcome Trust [098518], [200990]. Grant information:

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

 Competing interests: No competing interests were disclosed.

 25 Nov 2016,  :20 (doi:  ) First published: 1 10.12688/wellcomeopenres.10069.1

Page 2 of 12

Wellcome Open Research 2016, 1:20 Last updated: 12 APR 2017

http://www.icr.ac.uk/decon
http://dx.doi.org/10.12688/wellcomeopenres.10069.1
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.12688/wellcomeopenres.10069.1


Introduction
Targeted next generation sequencing (NGS) panels are increas-
ingly being used in clinical genomics to increase capacity, 
throughput and affordability of gene testing1–3. For NGS panels to 
be effective in the clinical setting, all variant classes need to be 
robustly detected. Base substitutions are accurately detected by 
most pipelines and detection of small insertions and deletions are  
improving4–6. However, accurate detection of deletions or dupli-
cations of whole exons, also known as exon copy number vari-
ants (exon CNVs), has proved problematic in targeted NGS data, 
particularly detection of single exon CNVs7,8. In large part this is 
because the breakpoints usually lie outside the region targeted by 
the panel, and therefore detection methods are typically based on 
changes in the number of reads covering each target, commonly 
referred to as read depth or coverage. However, coverage can vary 
for several reasons, such as differences in GC content or individual 
probe efficiencies, and careful normalisation of data is therefore  
required7,8. These challenges have led many research and clinical 
laboratories to either ignore exon CNVs or to use alternative detec-
tion methods9. The latter can lead to substantial increases in the 
time and cost of tests.

The Mainstreaming Cancer Genetics (MCG) programme (www.
mcgprogramme.com) is working to increase access to cancer 
predisposition gene (CPG) testing10. To implement this we have 
developed, in collaboration with Illumina, a NGS panel target-
ing cancer predisposition genes called the TruSight Cancer Panel 
(TSCP) http://www.illumina.com/products/trusight_cancer.html. Many 
CPGs are tumour suppressor genes that predispose to cancer when 
their functions are inactivated by loss-of-function mutations11.  
Exon CNVs are an important class of such pathogenic mutations 
accounting for appreciable proportions of mutations in many 
genes, including BRCA1 and BRCA212. Several methods have 
been used for their detection in the pre-NGS era, including mul-
tiplex ligation-dependent amplification (MLPA), multiplex ampli-
fiable probe hybridisation (MAPH) and array-based comparative  
genome hybridisation (aCGH)9,13,14. For NGS analysis to replace 
these tools a method for exon CNV detection with high sensitivity, 
specificity and acceptable false discovery rate is required. For use 
in clinical laboratories it is also essential that the required qual-
ity control checks are fully integrated into the pipeline, so that  
reporting of positive and of negative tests is robustly achievable.

Several tools to detect exon CNVs in NGS sequence data 
have been published, including ExomeDepth, XHMM, and  
CONTRA15–17. Generally, these were developed for the research 
setting and for whole exome rather than targeted exon panels. 
The tools typically use coverage data from a set of samples as 
input, but may use different approaches for calling variants. For 
example, ExomeDepth selects samples from the input set that are 
well correlated with the sample of interest, and then fits a Beta- 
binomial model to the sample of interest and the selected samples16. 
By contrast, XHMM performs principal component analysis nor-
malisation on the matrix of coverage values and fits a standard nor-
mal model to the results17. CONTRA creates a baseline from the  
input set of samples and models the log ratio of the sample of  
interest and the baseline with a normal distribution15.

Here we have modified ExomeDepth to develop a tool, Detection 
of Exon Copy Number (DECoN), which is easy to implement and 
integrate in clinical laboratory pipelines and can display results 
in an interactive GUI for user-friendly data visualisation. With  
extensive real and simulated data we show that DECoN has high 
sensitivity and specificity and can be used as the first-line exon 
CNV detection tool in exon-targeted NGS panel analysis.

Methods
Samples and consent
We included data from 2,016 samples, 96 samples in the evalua-
tion set and 1,920 samples in the clinical implementation set. Data 
were generated on lymphocyte DNA extracted from peripheral 
blood or saliva. Samples in the evaluation set were from individu-
als recruited to our studies into discovery and characterisation of 
disease predisposition genes, which have been approved by the 
London Multicentre Research Ethics Committee (05/MRE02/17, 
MREC/01/2/044, MREC/01/2/18), or from TGLclinical labora-
tory, an ISO18519 accredited genetic testing laboratory. Written 
informed consent to participate in the research studies or to have 
clinical genetic testing performed (as appropriate) was obtained 
from all participants. Samples in the clinical implementation set 
were from the TGLclinical laboratory. The TGLclinical data 
reported here were analysed as part of the TGLclinical accredita-
tion and validation processes.

Evaluation set
The evaluation set included 96 samples, including 10 samples with 
exon CNVs in BRCA1, six with exon CNVs in BRCA2, and 15 
samples with exon CNVs in one of eight other genes: TP53, SDHB, 
MLH1, MSH2, NSD1, EZH2, WT1 and FH (Table 1). The remain-
ing 65 samples were negative for BRCA exon CNVs on MLPA, 
and it is assumed they are also negative for exon CNVs in the 
other eight genes because they either have small intragenic patho-
genic mutations that fully account for their phenotype, and/or their  
phenotype is not consistent with an exon CNV in any of the genes.

Clinical implementation set
The implementation set included 1,920 samples. One sample had 
suboptimal DNA quality and the data was excluded. Data from 
1,919 samples were therefore included in the described analyses. 
Pre-existing negative BRCA MLPA data was available for 307 
samples and was used to evaluate the specificity of DECoN. In the 
interest of patient confidentiality, individual-level sequencing data 
is not made available. We anticipate that users will have their own 
datasets against which to test DECoN. Please contact the authors if 
test data would be helpful. 

TruSight Cancer Panel (TSCP) sequencing
TSCP data was generated on all samples. We prepared targeted 
DNA libraries from 50ng genomic DNA using TSCP and TruSight 
Rapid Capture kit (Illumina). We followed the manufacturer’s pro-
tocol with the exception of library enrichment pool complexity, 
which we performed in 48-plex. We sequenced a final 10pM pooled 
library on a HiSeq2500 platform set in Rapid-run mode follow-
ing standard protocols: 96-plex pool per flow cell, TruSeq Rapid 
SBS Kit, 101 bp paired-end dual index run and onboard clustering. 
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Detection of Exon Copy Number (DECoN)
We performed a review of the available methods and elected to 
build a tool through modification and optimisation of ExomeDepth 
v.1.0.016. This tool was chosen because of its performance and 
because it was open source and easy to modify. We have called the 
tool DECoN for Detection of Exon Copy Number.

To create DECoN, we introduced code and implementation opti-
misations of ExomeDepth. DECoN includes two important code 
modifications of ExomeDepth v.1.0.0. First it enables detection of 
variants affecting the first exon on a chromosome, as defined in the 
BED file, which was not included in previous versions. Second, 
the HMM transition probabilities were altered to depend upon the 
distance between exons, so that exons adjacent in the list of targeted 
regions are treated independently if they are located so far apart on 
the chromosome that the probability of a germline variant spanning 
both exons is negligible. These two modifications have also been 
incorporated into ExomeDepth from versions v.1.1.0 onwards.

DECoN also includes several features to enhance and broaden the 
usability of ExomeDepth. ExomeDepth is an R package and thus 
requires a knowledgeable R user to select, specify, and run the 
appropriate functions in the correct order to generate easily inter-
pretable output. It also requires a number of dependencies, which 
themselves may have different versions depending on the user’s 
local R installation, potentially impacting the final output. DECoN 
optimises, standardises and automates the exon CNV calling and 
visualisation of ExomeDepth, implementing full version control 
using packrat19. This careful approach ensures DECoN implemen-
tation is suitable for clinical laboratories, is consistent across user 
installations and is not affected by future changes of incorporated 
packages or their dependencies.

To provide a simple interface for users, DECoN requires only a set 
of BAM files, a BED file and a reference FASTA file. The user can 
supply a custom annotation file to suit their needs, for example to 
provide the relevant exon numbering for their genes of interest.

DECoN relies on a high level of correlation between samples, com-
paring the sample of interest only to those with which it is well 
correlated. The DECoN output reports the correlation between 
samples and the number of samples selected for comparison for 
every call. This is very useful as robust variant calling in the clinical 
setting requires information on potential suboptimal performance 
in order to report positive and negative results. DECoN also allows 
the user to set thresholds to flag samples and/or exons which may 
have suboptimal performance.

The DECoN output contains information on all exon CNVs called, 
their clinical annotations, and a list of regions and/or samples 
where calling may be suboptimal. An automatic visualisation of 
each result is generated as a PDF file; typical examples are shown 
in Figure 1. Furthermore, interactive visualisation of results is 
implemented using shiny: Web application framework for R 
(v 0.12.0) (available from shiny archive link on https://cran.r-project.
org/web/packages/shiny/index.html) and can be launched in a  
modern browser such as Firefox, Chrome or Internet Explorer  
(v.10 or later) using a simple interface for Windows, Mac OSX 

Table 1. Exon CNVs in the 
evaluation set. A total of 31 known 
exon CNVs in the evaluation set 
that were previously identified 
by multiplex ligation-dependent 
probe amplification. CNV, copy 
number variant.

Gene CNV

BRCA1 Exon 5-8 duplication

BRCA1 Exon 13 duplication

BRCA1 Exon 20 deletion

BRCA1 Exon 1-12 deletion

BRCA1 Exon 1-2 deletion

BRCA1 Exon 21-24 deletion

BRCA1 Exon 8-13 deletion

BRCA1 Exon 16 deletion

BRCA1 Exon 22 deletion

BRCA1 Exon 20-22 deletion

BRCA2 Exon 14-16 deletion

BRCA2 Exon 1-11 deletion

BRCA2 Exon 1-2 deletion

BRCA2 Exon 2 deletion

BRCA2 Exon 21 duplication

BRCA2 Exon 21-24 deletion

EZH2 Exon 1-20 deletion

FH Exon 1-10 deletion

MLH1 Exon 16-19 deletion

MSH2 Exon 1-6 deletion

NSD1 Exon 1-2 deletion

NSD1 Exon 1-23 deletion

NSD1 Exon 1-5 deletion

NSD1 Exon 19-21 deletion

NSD1 Exon 9-13 deletion

NSD1 Exon 22 deletion

SDHB Exon 1 deletion

SDHB Exon 2-7 deletion

SDHB Exon 3-8 deletion

TP53 Exon 1-11 deletion

WT1 Exon 1-10 deletion

We used CASAVA v.1.8.2 to demultiplex and create FASTQs per 
sample from the raw base call (.bcl) files. The sequence reads, by 
sample, were then mapped to the human reference genome (hg19) 
using Stampy v.1.0.2018.

Multiplex ligation-dependent probe amplification (MLPA)
MLPA was used to evaluate all calls detected by DECoN using  
the appropriate probe kits and protocols from MRC Holland, as  
previously described14.
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Figure 1. Automated visualisations from DECoN. In all panels, the top plot shows the log-normalised coverage of the sample of interest 
(blue) relative to reference samples (grey) and the bottom plot shows the ratio of observed to expected coverage with a 95% confidence 
interval in grey. The relevant gene(s) are shown between the plots in red. Deleted or duplicated exons called by DECoN are in red. (a) A single 
exon deletion; (b) A single exon duplication; (c) A multi-exon deletion; (d) A multi-exon duplication.
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and Linux operating systems. For example, the user can vary the 
plotting parameters interactively, enabling closer evaluation of sup-
porting evidence and measures of confidence for specific calls as 
required.

The full DECoN documentation is given in Supplementary File 1. 
DECoN is publicly available from www.icr.ac.uk/decon and 
https://github.com/RahmanTeam/DECoN20.

Simulations
Detection of single exon CNVs is known to be particularly  
challenging7,21,22. To better evaluate DECoN performance in single 
exon CNV detection we simulated single exon deletions and  
duplications in BRCA1 and BRCA2 in a single pool, using 48 
samples from the evaluation set that were known to be negative for 
BRCA exon CNVs. This simulated data was based on real data, 
using the variation and fluctuations observed in the true coverage 
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to model the simulated coverage. To simulate a duplication or 
deletion of a single exon, the observed coverage of that exon in 
a randomly selected sample was increased or decreased by 50%, 
respectively. This was repeated 1,000 times for each possible 
variant. Sensitivity was calculated as the percentage of the 1,000 
repeats which were successfully detected.

We also performed simulations to evaluate the effect of varying 
the coverage and/or the number of samples in an enrichment pool. 
Simulated data was generated based on the evaluation set by first 
selecting an enrichment pool, then selecting samples from that 
enrichment pool for up or down sampling. When selecting 96 
samples, all samples from the evaluation set were used. For any 
read, r, it was assumed to contribute N

r
 times to the simulated 

data set, where N
r
 was drawn from a Binomial (n,p) distribution. 

This was assumed for all reads from the selected samples. The 
values of n and p were chosen to provide the correct level of up or 
down sampling and the closest approximation to a Poisson distri-
bution, which the original coverage values are assumed to follow. 
Sensitivity and specificity were determined by assessing detection 
of variants known to be present in the original data. Simulated 
datasets which did not contain any samples with an exon CNV were 
excluded from the sensitivity calculations and simulated datasets 
entirely comprised of samples with exon CNVs were excluded 
from the specificity calculations.

Results and discussion
DECoN evaluation
To evaluate sensitivity and specificity, we applied DECoN to the 
evaluation set data. DECoN had a 100% sensitivity for BRCA 
exon CNVs (16/16). The specificity for BRCA exon CNVs was 
99% as an exon 8-11 duplication in BRCA1 was not confirmed by 
MLPA. Inspection of the DECoN visualisation showed this was to 
be expected, as the trace did not show the clear separation from 
the reference samples observed in true CNVs (Supplementary  
File 2a). DECoN’s excellent performance was particularly 
striking as 33% of samples in one of the evaluation pools had  
BRCA exon CNVs (16/48), a highly unlikely scenario in clini-
cal testing. This might have compromised detection, due to the 
higher chance of selecting a sample in the reference set that also 
has a CNV. It is thus very reassuring that DECoN performed so 
well in this extreme setting. Amongst the other genes, only an 
exon 22 deletion in NSD1 was not detected, giving a sensitivity  
of 93% (14/15). Inspection of the DECoN visualisation showed 
this exon was below the reference samples, but the drop in cov-
erage for this single exon was not sufficiently large for automatic 
detection using the default parameters (Supplementary File 2b). 
Altering the transition probability would allow DECoN to flag this 
variant, but would also increase the false discovery rate. Users of 
DECoN can alter the parameters according to their needs and their  
required balance of the inevitable trade-off between sensitiv-
ity and false discovery. Of note, the NSD1 exon 22 deletion was  

successfully automatically detected by DECoN on repeat testing 
(Supplementary File 2c).

Simulation analyses
To further explore the performance of DECoN in the detection of 
single exon CNVs we simulated a single exon deletion and duplica-
tion for each of the exons in BRCA1 and BRCA2 using the observed 
TSCP data from the evaluation set. The sensitivity for each exon 
deletion or duplication is shown in Figure 2. Sensitivity for single 
exon deletions was excellent, >94% in every exon with a mean of 
98%. The sensitivity for single exon duplications was somewhat 
lower, with a mean of 95%, but these are known to be the most chal-
lenging exon CNV to detect.

In targeted sequencing, there are several experimental parameters 
that can impact exon CNV detection. For example, enrichment 
and/or sequencing can be performed in pools of different sample 
sizes. This will affect the coverage per sample and the number of 
samples available to use as reference samples. In turn this could 
affect DECoN performance. To evaluate this we extended our 
simulation framework to test in silico the effect of different 
combinations of sample size and coverage on DECoN’s sensitivity 
and specificity.

The 96 samples in the evaluation set were sequenced in a single 
HiSeq2500 run using Rapid-run mode and a single flow cell which 
outputs a maximum of 300 Million (M) read pairs per run, and thus 
have a maximum of 3.125M read pairs per sample. By comparison, 
a MiSeq platform using the reagent kit v2 can produce a maximum 
of 15M read pairs per run. The evaluation set was thus up-sampled 
or down-sampled to obtain varying numbers of reads per sample. 
DECoN was then run on each simulated set and the sensitivity and 
specificity were calculated using the known exon CNVs in the eval-
uation set.

The simulation results are shown in Table 2. If the sample size was 
reduced to six samples sequenced at 1.25M reads per sample, the 
sensitivity was compromised (87%), but if the six samples were 
sequenced with coverage ≥ 2.5M reads per sample, sensitivity 
of ≥ 95% was still achievable. Sequencing 12 samples at 1.25M 
reads per sample, compatible with a typical MiSeq run, produced 
good sensitivity (92%) and excellent specificity (99%). In general, 
sequencing higher sample sizes per pool increased sensitivity, but 
if at least 2.5M reads per sample are generated, the estimated 
sensitivity was ≥ 95% for all sample sizes evaluated (Table 2).

DECoN clinical implementation
DECoN was incorporated into a clinical pipeline for BRCA  
analysis using TSCP and applied to 1,919 samples. DECoN was 
run for each of the 40 pools of 48 samples and took, on average,  
24 minutes for each pool (range 19–29 minutes). In total, 23 
exon CNVs were detected by DECoN and confirmed by MLPA  
(Supplementary File 3). One exon CNV (a single exon  
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Figure 2. Sensitivity results for simulated single exon CNVs in BRCA1 and BRCA2.  Sensitivity is calculated as the percentage of correct 
detection of a given exon CNV out of 1,000 simulations. Exons are numbered within each gene according to the direction of the transcript.

Table 2. Results of simulations varying coverage and sample numbers. Simulations of DECoN exon CNV 
calling in the evaluation set, using different coverage and sample numbers, were performed. Average sensitivity 
and specificity values are shown, with the range in parentheses. Sensitivity and specificity achievable by an 
Illumina sequencing run generating 15M read pairs (typical of a MiSeq run) and 300M read pairs (typical of a 
HiSeq2500 Rapid run) are shown in green and blue, respectively.

Number of samples per sequencing pool

Coverage per 
sample in million 

(M) read pairs
6 12 24 48 96

1.25
Sensitivity 87% (0–100) 92% (40–100) 92% (60–100) 91% (81–100) 96% (94–100)

Specificity 98% (56–100) 99% (89–100) 99% (96–100) 99% (98–100) 99% (99–100)

2.5
Sensitivity 95% (0–100) 98% (67–100) 99% (83–100) 100% (94–100) 100% (100–100)

Specificity 97% (50–100) 99% (89–100) 99% (95–100) 99% (98–100) 99% (99–99)

3.125
Sensitivity 99% (67–100) 99% (75–100) 100% (100–100) 100% (100–100) 100% (100–100)

Specificity 97% (50–100) 99% (94–100) 100% (97–100) 99% (99–100) 99% (99–99)

5
Sensitivity 96% (0–100) 99% (75–100) 100% (100–100) 100% (100–100) 100% (100–100)

Specificity 97% (50–100) 99% (84–100) 99% (93–100) 99% (96–100) 99% (98–99)

7.5
Sensitivity 96% (0–100) 99% (75–100) 100% (89–100) 100% (94–100) 100% (100–100)

Specificity 97% (56–100) 99% (84–100) 99% (92–100) 99% (96–100) 99% (98–99)
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duplication) detected by DECoN was not confirmed by MLPA, a 
false discovery rate of 4% (1/24). No exon CNV calls were made 
by DECoN amongst the 307 samples with pre-existing negative 
MLPA data, yielding an overall specificity of 99.7% (307/308) and 
a false positive rate of 0.3% (1/308).

Due to DECoN’s excellent performance and its fast, easy, user-
friendly interface it is now the standard first-line exon CNV 
detection method in both our research and clinical TSCP testing 
pipelines. DECoN runs automatically after the small variant 
calling, adding <30 minutes to the analysis time for batches of 
48 samples, and then both the small variants and exon CNVs are 
outputted for interpretation and management.

Conclusions
We have developed, validated and implemented a fast, accu-
rate, high-throughput, exon CNV detection tool, which we have 
called DECoN. DECoN is suitable for both research and clinical  
pipelines, but we have particularly focussed on optimising it for the 
needs of clinical laboratories. To facilitate evaluation and imple-
mentation of DECoN by other groups we have made the packaged 
version we use available at www.icr.ac.uk/decon, together with 
comprehensive documentation. The latter is also available as  
Supplementary File 1. DECoN is also available on GitHub to allow 
access and flexibility for the research user (https://github.com/
RahmanTeam/DECoN)20. We believe DECoN can serve as a first-
line method for exon CNV detection in targeted panels analysed 
to detect small intra-exon variants, obviating the need for a sepa-
rate, parallel method for their detection. In turn this can increase the  
performance, speed and cost-efficiency of NGS testing.
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gene panels, such as CoNVaDING.

The TSCP contains 94 genes. An explanation is needed why only 10 of those genes are used asP3. 
evaluation set.

‘DECoN relies on a high level of correlation between samples’. It is unclear if this correlation shouldP4. 
already be present in the samples analyzed (by analyzing only samples belonging to the same pool) or if
DECoN performs a correlation calculation and based on that calculation selects a subset of samples for
further calculations. Can DECoN also analyze samples that are not sequenced in the same pool?

Is the correlation score in the report used as a quality metric, and if yes, how? And how were theP4. 
correlation scores for the samples analyzed?

What are the suggested thresholds to flag samples /exons which may have suboptimal performance?P4. 
Were such thresholds used in the evaluation set? Is the Bayes factor used as part of the quality metric?
And if yes,   how many samples and exons were flagged? In my opinion this is a critical step inP6.
analysis. For clinical detection it is just as important to know which exons can’t be reliably analyzed in the
data as to know which can. This creates the difference between a false negative result and a failed
sample/failed exon analysis. What was the flag status of the exon 8-11 FP duplication.

Why were simulated samples entirely comprised of samples with a exon CNVs excluded fromP6. 
specificity calculations. There can still be a false positive result in other (two copy) exons.

Please state explicitly the specificity of the 8 non-BRCA genes in the evaluation set, even though thisP6. 
is 100%.

It would also be interesting to know the specificity and sensitivity for the other 84 genes in the TSCP.P6. 

How is the quality of the evaluated exons compared to the other exons in the TSCP? Can theP6. 
sensitivity and specificity and exons passing quality control be extrapolated to genes outside the
evaluation panel?

Instead of the number of reads per sample I would mention the average coverage / read  P6 and table 2.
depth of the evaluated exons. This is a more informative value, since it is independent of panel size.

 What is the flag status of exon 20 in the duplication set? In other words, why does this exonP7, figure 2: 
perform worse than the others, especially since the sensitivity for deletions is so high

 Can dots for specificity be added to the graph?P7, figure 2: 

How does DECoN perform compared to the other named tools?P8. 

Is DECoN tailor made for these 10 TCSP genes analyzed in pools, or is the performanceP8. 
generalizable to other targeted capturing panels?
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