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Abstract

Computational approaches are increasingly being used to model behavioral and neural processes 

in mood and anxiety disorders. Here we explore the extent to which the parameters of popular 

learning and decision-making models are implicated in anhedonic symptoms of major depression. 

We first highlight the parameters of reinforcement learning that have been implicated in 

anhedonia, focusing, in particular, on the role that choice variability (i.e., “temperature”) may play 

in explaining heterogeneity across previous findings. We then turn to neuroimaging findings 

implicating attenuated ventral striatum response in anhedonic responses and discuss possible 

causes of the heterogeneity in the literature. Taken together, the reviewed findings highlight the 

potential of the computational approach in teasing apart the observed heterogeneity in both 

behavioral and functional imaging results. Nevertheless, considerable challenges remain, and we 

conclude with five unresolved questions that seek to address issues highlighted by the reviewed 

data.
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Introduction

Mood and anxiety disorders are a major worldwide health burden across individual, social, 

and economic levels (Beddington et al., 2008). Despite a number of effective therapies and 

growing neuroscientific understanding of disease processes, resistance to established 

treatment strategies remains high (Yonkers, Warshaw, Massion, & Keller, 1996). This may 

be, at least in part, because current clinical diagnoses of these disorders rely primarily on 

subjective symptoms and behaviors, while the goal of neuroscience is to understand 

objective (i.e., observer-independent) biological mechanisms. Mapping these two 
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approaches onto one another is exceptionally difficult and fraught with potential bias but is 

ultimately critical if we want to improve our ability to develop new treatments and target 

current treatments more effectively. To this end, it has been suggested that computational 

modeling of behavior—the focus of this review—can provide a means of bridging the gap 

between observable symptoms and behavior to underlying neurobiological mechanisms 

(Huys, Maia, & Frank, 2016; Montague, Dolan, Friston, & Dayan, 2012).

Computational Modeling of Behavior

Computational models of behavior offer a large and powerful explanatory repertoire with the 

potential of integrating information derived from a variety of different sources (e.g., 

electrophysiology, neuroimaging, behavior) into a coherent theoretical structure. Applying 

such models to psychiatric disorder symptomology offers a number of advantages:

1. Models require hypotheses to be explicitly quantified. That is to say, 

experimental design and analysis require an explicit proposal of what is driving 

behavior or neural activity. Rather than specifying that major depression is 

associated with, say, “negative affective bias” (Roiser, Elliott, & Sahakian, 2012), 

the component parts driving that bias must be specified. For instance, one must 

specify if a single parameter drives sensitivity to reward and punishment 

processing (i.e., whether an individual dislikes punishments to the exact same 

degree that he or she likes rewards) or whether these should be considered 

separate processes (allowing particularly extreme dislike of punishments with 

ambivalence toward rewards, for example).

2. Although “all models are wrong” (Box, 1976), some are more wrong than others, 

and evaluation of the components that improve model fit in a model comparison 

procedure can formally assess the relative strengths of competing hypotheses to 
explain a given dataset. For example, the relative explanatory validity of single 

versus separate reward and punishment sensitivity parameters can be directly 

compared. Simulations and comparison across datasets can then provide further 

support for or against a given model (Palminteri, Wyart, & Koechlin, 2017).

3. Rather than relying on summary mean or variance statistics, models can be used 

to explore trial-by-trial variance. This is particularly important when studying 

cognitive and learning processes (which are strongly implicated in many 

psychiatric disorders, including major depression; Rock, Roiser, Riedel, & 

Blackwell, 2014) in which subjects’ behavior can change dynamically through 

the task. This temporally rich approach explores variance over time and thus 
obtains more information from a given dataset. Indeed, subtle effects that are 

often overwhelmed in collapsed mean accuracy or response times can only be 

revealed using the modeling approach (White, Ratcliff, Vasey, & McKoon, 

2010).

4. Models can be constrained by our understanding of what is biophysically 

plausible given our understanding of neuronal and pharmacological interactions. 

Combined with neuroimaging, winning model parameters can provide us with a 
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means of mechanistically linking observable behavior and underlying neural 
substrates.

5. Models can show emergent properties, and explanations that might otherwise be 

considered excessively complex can be specified and tested. A good example of 

this is where meta parameters—or variance of model parameters—are implicated 

in pathologies. For instance, trait anxiety is associated with reduced learning rate 

adaptability (Browning, Behrens, Jocham, O’Reilly, & Bishop, 2015). Specifying 

and identifying this alteration without a model would be more difficult from both 

practical and conceptual standpoints.

In this review, we focus on the application of computational modeling to anhedonia—

diminished reward processing—in major depression. We review findings from two primary 

classes of models (Figure 1) that have been implicated in anhedonia (and, to a lesser extent, 

in anxiety, which is often comorbid with depression): (a) reinforcement learning models and 

(b) reaction time models. We also briefly refer to (c) models of economic choice under 

uncertainty, as they allow us to illustrate a point about the importance of temperature (see 

section “Simulation Showing the Importance of Temperature in Decision-Making Models”). 

Notably, although we consider them separately here, these models can also be combined to 

generate more complicated models (Pedersen, Frank, & Biele, 2016).

Reinforcement learning models—Reinforcement learning (RL; Figure 1A) models 

seek to explain choice behavior based on response to rewards and punishments received 

from the environment. Specifically, organisms are thought to respond to deviations in 

expectancy about rewards and punishments based on a prior belief about how likely an event 

is to occur. Each occurrence of a stimulus–outcome pairing increases the expectancy of that 

outcome and gradually reduces prediction error (PE). The PE for the current trial is the 

actual outcome value of the current trial compared to the expected value of the outcome 

(Bush & Mosteller, 1955; Rescorla & Wagner, 1972). The expected value is calculated by 

adding the value of the previous trial to the PE of the previous trial multiplied by the rate at 

which an individual learns the new association, known as the learning rate (Equation 2); 

Sutton & Barto, 1998). This value calculation can also be influenced by Pavlovian biases 

that encourage a bias toward making actions that lead to reward and inhibiting actions that 

lead to punishment (as an evolutionarily efficient means of maximizing rewards and 

minimizing punishments (Equation 3); Guitart-Masip et al., 2011; Huys, Golzer, et al., 

2016). How these parameters may be related to symptoms of mood disorders are reviewed in 

Table 1. To compile this table, we primarily focused on salient exemplars of particular 

paradigms and analysis techniques. However, we also performed a literature search to 

include as many examples of data consistent or inconsistent with the construct in question as 

possible.

Reaction time models—While RL models are concerned with decision making and 

choices, diffusion models try to explain the distribution of reaction times to make those 

choices (Tsetsos, Gao, McClelland, & Usher, 2012; Figure 1B). There are a number of 

different frameworks, but most share the fundamental concept that information is 

accumulated (they are sometimes referred to as accumulator models) until a threshold is 

Robinson and Chase Page 3

Comput Psychiatr. Author manuscript; available in PMC 2018 February 02.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



reached and a decision is made (Ratcliff, Smith, Brown, & McKoon, 2016; Tsetsos et al., 

2012). The parameters in such models generally include (a) how far apart the decision 

options are (boundaries), (b) the rate at which a decision speeds toward the boundaries (drift 

rate), (c) whether the individual has a bias toward one or another of the options (starting 

point between the boundaries), and (d) the time to encode the stimuli and process a motor 

response (nondecision time; White et al., 2010). These parameters are then used to explain 

the distributions of reaction times for one decision over another (they are most commonly 

used for tasks in which participants have to decide between one of two responses).

Models of economic choice under uncertainty—Economic models of decision 

making can describe adaptive choice when options are uncertain or subject to various costs 

(Figure 1C). In general, most individuals overweigh losses relative to equivalent gains and 

show a preference for certain over-risky outcomes with equal or higher expected value. 

Within this framework, economic decisions can be explained by a combination of two 

factors: reduced sensitivity to outcome value as value increases (i.e., risk aversion) and an 

overweighting of losses relative to gains (i.e., loss aversion; Charpentier, Aylward, Roiser, & 

Robinson, 2016; Sokol-Hessner et al., 2009; Tversky & Kahneman, 1992).

There is limited work exploring these models in depression (but see Beevers et al., 2013; 

Maddox, Gorlick, Worthy, & Beevers, 2012), so we do not review their relationship with 

anhedonia here. Rather, we use this model to make a point about the temperature parameter 

that is more clearly illuminated in the absence of the learning that is inherent in RL models 

(see section “Simulation Showing the Importance of Temperature in Decision-Making 

Models”). In other words, although we focus primarily on RL as a paradigmatic example of 

a broader decision-theoretical approach to psychopathology (Montague, 2012), the 

theoretical and practical issues raised may be broadly applicable across paradigms (e.g., loss 

or risk aversion but also temporal discounting, Lempert & Pizzagalli, 2010; Pulcu, Trotter et 

al., 2014, and social decision making, Gradin et al., 2015; Pulcu, Zahn, et al., 2014).

Anhedonia and Impairments of Reward-Directed Behavior

A recurrent feature of a variety of psychiatric disorders is a “loss of interest or pleasure” in 

previously enjoyable activities. This phenotype is referred to as anhedonia and is particularly 

prevalent in disorders such major depression, schizophrenia (SZ), and addiction (Franken, 

Rassin, & Muris, 2007). Here we focus on major depression, in which anhedonia is a key 

symptom used for diagnosis. Although anhedonia might be straightforwardly characterized 

in terms of a reduction in response (across cognitive domains) to rewarding events, many 

features of the phenotype remain puzzling (Pizzagalli, 2010). For instance, it has been 

argued that anhedonia should be broken down into anticipatory, decisional, and 

consummatory components (Argyropoulos & Nutt, 2013; Treadway & Zald, 2011) as well 

as further distinct disturbances in the social domain (Christianson et al., 2008). Within these 

categories, responses to certain kinds of reinforcers might be selectively altered (e.g., 

affective responses to music; Martinez-Molina, Mas-Herrero, Rodriguez-Fornells, Zatorre, 

& Marco-Pallares, 2016).
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Anhedonia is often measured, for both experimental and clinical purposes, using sel-freport 

questionnaires and interviews (Rizvi, Pizzagalli, Sproule, & Kennedy, 2016). Although these 

tools are frequently psychometrically reliable, they suffer from prominent limitations, 

namely, demand characteristics (i.e., individuals give you the answer they think you expect) 

and anchoring effects (i.e., individuals give answers consistent with the first answer they 

gave). Indeed, as highlighted by the memory literature, an individual’s pattern of behavioral 

responses on cognitive tasks can be a more reliable proxy of the degree of memory encoding 

than self-report (Shanks & St. John, 1994; Vadillo, Konstantinidis, & Shanks, 2016). 

Consistent with this is evidence that behavioral measures of anhedonia can vary 

independently from self-reported anhedonia (Pechtel, Dutra, Goetz, & Pizzagalli, 2013). 

Moreover, despite clear differences in self-reported anhedonia, prior reviews have yielded 

little evidence of substantial differences between depressed and healthy individuals in terms 

of their hedonic responses on consummatory tests (Treadway & Zald, 2011). For instance, 

the pleasure-evoking properties of sweet tastes are generally similarly rated by depressed 

and healthy individuals (Treadway & Zald, 2011). This discrepancy is somewhat perplexing

—if anhedonic individuals describe a selective lack of interest in rewarding experiences, 

why is this not borne out in their behavioral responses? The computational approach might 

help resolve this question. For instance, it may be that, while the end points (e.g., response to 

sweet tastes) appear identical in anhedonic individuals, the individual components of the 

mechanisms (e.g., detection of, or learning about, the tastes) that lead to this end point differ. 

The anhedonic individual may take longer, or require more evidence, to reach the same end 

point. These effects will be hidden if one measures the end point alone: Computational 

models enable the specification and exploration of these hidden component parts.

Applying Computational Approaches to Behavioral Findings in Anhedonia

Sensitivity to Value

One way to consider a deficit in reward-oriented behavior is to argue that individuals are 

able to learn associations between actions and reinforcers but fail to use this information to 

guide behavior. A typical choice rule (Equation 1), also referred to as an observation model, 
describes the probability of eliciting a response (i.e., action probability) given an action’s 

value using what is known as a softmax function:

(1)

The value that is entered into this equation needs to be acquired from the environment by the 

individual. This is commonly described via a RL process where outcomes are positive for 

gains and negative for losses and, crucially, that includes a free parameter, called sensitivity, 

that describes how much weight an individual ascribes to those outcomes:
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(2)

Looking at Equation 1, it is possible to see that if the value is low, then the probability of a 

response will be diminished. So if anhedonia reduces value—perhaps by decreasing the 

influence of outcome through the sensitivity parameter—a natural prediction is that it would 

suppress responding.

In two alternative forced-choice (2AFC) cognitive tasks frequently used to study RL, a 

participant will have no option but to accept one option, so two equally (un)attractive options 

will lead to essentially random responding, because neither is favored. In go/no-go tasks— 

where the alternative choice is to do nothing (no-go)—this would lead to random decisions 

to wait (or, in the case of animal models, engage in grooming behavior). Broadly, however, 

the empirical evidence has not strongly supported a clear role of reduced sensitivity to value 

in anhedonia. There are numerous examples of intact or at least adequate instrumental 

control by reinforcers: The majority of studies in Table 1 report broadly compatible task 

acquisition across healthy and depressed cohorts.

Learning Rate

While patients with depression can show moderate deficits in memory (Rock et al., 2014), 

they typically show broadly intact acquisition of the basic reward contingencies employed in 

RL tasks, indicating intact learning processes. Computational methods provide some support 

for this view, with tasks that are sensitive to anhedonia showing intact task acquisition 

learning (Huys, Pizzagalli, Bogdan, & Dayan, 2013). Moreover, tasks which have designed 

to isolate specific learning rates for rewards and punishments (i.e., where the learning rate is 

different for rewarding and aversive outcomes, respectively; see Equation 2) have provided 

mixed data but have frequently failed to support diminished reward learning or heightened 

punishment learning (see Table 1). For example, in the case of the Probabilistic Selection 

Task (PST), one study showed similar rates of positive and negative learning between 

controls and patients (Chase, Frank et al., 2010) and a second showed relatively enhanced 

positive learning in low-but not high-dysphoric individuals (Kunisato et al., 2012), while two 

further studies showed complex findings depending on trial type (Cavanagh et al., 2011) or 

rumination induction (Whitmer et al., 2012). Finally, a theoretically compatible but 

somewhat distinct procedure revealed asymmetrical learning rates as well as an influence of 

medication (Herzallah et al., 2013). Thus, when taken together, the complexity of these 

findings argues against a simple alteration of learning rates.

In some cases, differences in performance may emerge because individuals adopt a different 

learning model from that outlined in Equation 2. Individuals may vary in their tendency to 

change behavior on the trial immediately after unexpected feedback. Within the basic RL 

framework, this might be driven by a heightened (Murphy et al., 2003) or by a diminished 
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(Chase, Frank et al., 2010; Steele, Kumar, & Ebmeier, 2007) impact of the previous trial. 

The broader interpretation of this type of feedback sensitivity is a topic of active debate: 

Recent computational approaches sometimes posit a win–stay, lose–shift parameter (den 

Ouden et al., 2013; Myers et al., 2016), which is, in essence, a simplistic 1-back learning 

model and may reflect the function of working memory (Collins & Frank, 2012). This 

representational system does not keep track of reinforcement history beyond a very 

restricted number of recent outcomes (e.g., one). This approach can work well in some 

environments but will perform poorly on tasks (such as the commonly used Iowa Gambling 

Task; IGT) in which the most rewarding choice is also associated with large, if occasional, 

losses and in which incremental learning is necessary.

It is possible that these sorts of decision-making strategies (as well as different exploratory 

strategies; Knox, Otto, Stone, & Love, 2011), rather than a more fundamentally impaired 

learning rate mechanism, are responsible for the relatively subtle deficits that are observed in 

patient groups. Critically, the adoption of such strategies does not preclude intact learning: 

They may simply reflect selection of a strategy that will perform favorably in deterministic 

designs but suboptimally in others (Collins, Brown, Gold, Waltz, & Frank, 2014). Further 

support for this position is the presence of deficits on tasks with shifting contingencies, such 

as probabilistic reversal learning (Murphy et al., 2003) and the IGT (Must et al., 2006), 

performance on which may be particularly dependent on such strategies (e.g., den Ouden et 

al., 2013). Some modeling approaches (Collins & Frank, 2012; Myers et al., 2016) have 

therefore sought to combine these two approaches, with both RL and win–stay, lose–shift 
components in the same model, combined with a free parameter to determine the likelihood 

of one or another when the two systems come into conflict (e.g., straight after negative 

feedback). Overall, however, clear evidence for altered learning rates in anhedonia across a 

variety of paradigms is lacking.

Pavlovian Bias

Learned or prepotent Pavlovian biases can represent powerful decision-making shortcuts that 

can influence RL. Specifically, approaching rewards and avoiding punishments, or stimuli 

which may predict them, consitutes a simple behavioral heuristic that will serve well in a 

wide range of scenarios. These adaptive behavioral heuristics are often referred to as 

Pavlovian biases. Pavlovian instrumental transfer (PIT) describes the influence that these 

biases can have over instrumental control (e.g., the simple goal-directed behaviors described 

by Equations 1 and 2). Experimentally, this manifests as, for example, making it extremely 

difficult for both humans and animal models to “approach” (e.g., make a go response to) a 

cue that has previously been associated with punishment (Guitart-Masip et al., 2011). 

Cavanagh, Eisenberg, Guitart-Masip, Huys, and Frank (2013) have operationalized 

Pavlovian influence over RL as a multiplier on stimulus value (and is often represented by 

an independent, additive parameter to that representing action or instrumental value: cf. 

Holland, 2004):

(3)
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Where Value(st) is a state value, while Value{st}{a} is a state-action value-–both being 

independently learned by a prediction error mechanism (i.e., following the form of Equation 

2). Value′ determines choice via a softmax equation (e.g., Equation 1).

If the value (see Equation 2) is positive (i.e., rewarding), then this bias parameter increases 

value, whereas if the value is negative (punishing), this parameter serves to decrease value. 

Examining PIT, Huys, Golzer, et al. (2016) observed a reduced influence of Pavlovian bias 

on approach and avoidance behavior in depressed individuals compared to healthy controls 

(HC). Similarly, work has demonstrated that an approach bias for positive stimuli and an 

avoidance bias for negative stimuli in HC—that is, Pavlovian bias—is absent in depressed 

individuals (Radke et al., 2014). In other words, although overall instrumental behavior is 

generally intact in depression, the influence of incidental Pavlovian cues on behavior may be 

reduced. These findings from PIT or PIT-like paradigms may also be relevant for 

interpreting data from emotional cues more generally: A meta-analysis of responses to 

emotional cues, both positive and negative, suggested a general deficit in response to 

affective cues in depression (Bylsma et al., 2008).

Of note, however, the impact of Pavlovian bias is dependent on individuals having obtained 

the learned association. If they do not know that a cue leads to reward, then they will not be 

driven to approach it. As such, the impact of these sorts of biases may change over time. 

They will have minimal impact at the start of the process before the cue–outcome 

contingencies have been aquired. Reduced Pavlovian influence in depressed patients could 

therefore plausibly reflect delayed instrumental learning in some cases (despite eventual 

intact learning, given enough trials). Notably, reduced Pavlovian influence in depressed 

individuals may differ from what is found in those with increased clinical anxiety symptoms 

who demonstrate increased reliance on Pavlovian avoidance (and not approach) biases 

(Mkrtchian et al., 2017). Existing work is on this topic is limited, so further exploration of 

the interaction between Pavlovian bias and instrumental learning in major depressive 

disorder (MDD) would be worthwhile.

Choice Variability (Temperature)

Returning to the softmax choice function (Equation 1), we can add another parameter, which 

provides a modulatory impact on choice. This parameter is referred to in different ways 

across the literature, but one common description is temperature, with greater temperature 

referring to greater response variability:

(4)

In principle, it should be possible to distinguish changes in temperature-driven choice 

variability from the effect of value in the learning model, but in practice, it can be difficult to 

do so because of the ambiguity surrounding behavioral indicators of exploration. 

Specifically, choice variability could result from a deliberate exploration of the presented 
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options or simply from a failure to learn or otherwise express the true value of a given 

choice. Equation 4 reveals the problem explicitly: Value and temperature are directly 

proportional such that increases in value can simply be counteracted by increases in 

temperature (or vice versa).

Increased reliance on the temperature parameter has been used to explain performance on 

tasks in which depression is linked to increased exploration (Huys et al., 2012; Kunisato et 

al., 2012). Reinforcement learning–based analyses have argued that increased exploration 

drives response switching on RL tasks (Blanco et al., 2013), probabilistic reversal learning 

(Dombrovski, Szanto, Clark, Reynolds, & Siegle, 2013; Murphy et al., 2003; Taylor Tavares 

et al., 2008), and IGTs (Must et al., 2006). However, in many of these designs, it is also 

possible to explain behavior in terms of increased temperature. This, in turn, may be due to 

impaired task acquisition but could also be due to unmodeled decision-making strategies 

(e.g., the win–stay, lose–shift process described in section “Learning Rate”).

Perhaps the clearest evidence for the value–temperature trade-off comes from the 

probabilistic reward task (Pizzagalli, Jahn, & O’Shea, 2005), in which individuals are asked 

to discriminate between two lengths of lines presented on a screen. One of the responses has 

a greater probability of reinforcement following an accurate response, so that, for example, 

the accurate selection of the long line is three times more likely to be rewarded than the 

accurate selection of the short line. By providing asymmetric reward for one option, a 

reward-related bias is introduced in healthy individuals who normatively select the rewarded 

option if unsure (Huys et al., 2013). Individuals with high levels of anhedonia generally fail 

to show such a bias (Huys et al., 2013). Critically, a meta-analysis of this task using a 

computational analysis of performance identified increased temperature as the key parameter 

driving these effects in anhedonia (Huys et al., 2013). In other words, anhedonia led to 

noisier, more variable choices. As far as we are aware, the only existing study in which 

temperature was shown to be reduced by major depression/anhedonia (i.e., the opposite 

effect) was a study of the probabilistic selection task referred to in Table 1 (Chase, Frank et 

al., 2010). However, a reduced overall learning rate associated with anhedonia was also 

observed in this study, and it is generally difficult to dissociate estimation of temperature 

from overall performance or learning rate estimation (Daw, 2011). In summary, therefore, it 

seems plausible that anhedonia may be associated with increased temperature.

Simulation showing the importance of temperature in decision-making 
models—Looking at the softmax choice equation (Equation 4), increasing the value of the 

chosen option can be directly counteracted by increasing the temperature parameter, such 

that these parameters are now necessarily “underdetermined” or, more informally, “two sides 

of the same coin.” This point is emphasized by Huys and colleagues (2013) in their analysis 

of the probabilistic reward task and is valuable for two reasons. First, it increases focus on 

aspects of paradigm design and model fitting that might obscure identification of choice 

variability (or be obscured by it). Second, it has implications for sample size and statistical 

power: Specifically, choice variability, whether well specified or controlled by a particular 

task, or not, adds noise and provides an impediment to accurately identifying other modeled 

parameters. This could potentially affect the estimation of model parameters for many 

choice-oriented tasks across a variety of cognitive domains.
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We can illustrate this interaction between value and temperature through simulation. Here 

we considered economic decision making under uncertainty (Figure 1C) rather than RL, 

because temperature is more transparently estimated in the absence of trial-by-trial learning 

(Daw, 2011). Critically, this simulation assumes that values and associated probabilities of 

outcomes are explicitly stated so that changes in decisions are not confounded with 

differences in learning the values:

(5)

Consider the following: A decision-making paradigm of 100 trials assesses risk preference 

by asking the participant to choose between a risky 50% chance of winning $1 (vs. $0) or a 

sure 100% chance of winning $0.50 (i.e., on average, the value of both options is the same). 

Preference is determined by the relative valuation of $0.50 relative to $1, for example, a 

curved utility function (Equation 5). If risk aversion is greater than 1, the risky option is 

preferred, and if it is less than 1, the safe option is preferred. However, we might also 

assume that choice is stochastic, controlled by a softmax function and an accompanying 

temperature parameter (Equation 4).

We conducted 10,000 simulations of this scenario, allowing temperature to vary between 0 

and 2 and the curvature (risk aversion) to vary between 0.5 and 1.5.1 A multiple regression 

model was then fit to the resulting data, with risk preference (the proportion of risky options 

selected) being predicted by temperature, risk aversion, and their interaction. As expected, 

the curvature/risk aversion parameter (t = 67.96) was a highly significant predictor of risky 

choice, and temperature on its own had little effect (t = −1.87). Critically, however, their 

interaction was highly significant (t = −62.99). This interaction reflects the crucial influence 

of the temperature parameter, controlling the effect of the mapping between the key 

construct of interest (the valuation function) and the dependent measure (risk preference; see 

Figure 1C). This simulation demonstrates how temperature can play a crucial moderating 

role, with increases in temperature diminishing the influence of a given manipulation (in this 

case, risk aversion). Specifically, as can be seen by the red dots in Figure 2, at high 

temperatures, the probability of a risky choice is essentially random (50%) regardless of the 

level of risk aversion, and the curvature evident in the low-temperature blue dots is absent.

Ultimately, choice variability can have a major impact on observed behavior, and failing to 

account for it may lead to erroneous inferences regarding the influence of an experimental 

manipulation. For instance, reduced temperature might lead to a pattern of risky choice in 

healthy individuals, while high temperature would lead to (relatively) more random 

responding in a patient group. A pattern of noisier decisions could therefore be incorrectly 

taken as evidence of reduced risk taking in the patient group. In fact, the consequences are 

much broader than the present example: High temperature would make any other parameter 

within the same model harder to estimate, regardless of the paradigm or direction of 

between-group effects.

1Code used in these simulations has been made available online at https://doi.org/10.6084/m9.figshare.5103322.v1 (Chase, 2017)
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A role for temperature in accounting for the influence of effort manipulations?
—With the preceding simulation in mind, enhanced temperature-driven choice variability 

might plausibly help explain conflicting findings within the literature. For example, there are 

ambiguities in data obtained using effort-based paradigms (e.g., Clery-Melin et al., 2011; 

Sherdell et al., 2012; Treadway et al., 2012) in which subjects are required to complete 

effortful tasks (e.g., press a button multiple times quickly or squeeze something with high 

pressure). On one hand, Treadway and colleagues (2012) found that anhedonic depressed 

participants were less likely overall to select high-effort option choices with a favorable 

expected value than healthy control subjects (see also Hershenberg et al., 2016). This would 

be consistent with reduced sensitivity to reward, given that effort-related costs are matched 

between the samples. On the other hand, Clery-Melin et al. (2011) showed that, unlike 

controls, MDD patients did not increase their grip force to obtain rewards of greater value 

but rather showed similar (mean) output across all rewards. However, this study also 
observed that effort could be enhanced in response to arousing stimuli in MDD patients but 

not in controls. In other words, some stimuli do have the capacity to elicit increases in effort 

in MDD patients, and effort expenditure is not reduced overall; rather, the increase in reward 

magnitude on this task is specifically ineffective at achieving increases in effort. This goes 

back to the point that most human research tends to employ forced-choice paradigms in 

which behavior is described by a choice between two options (i.e., 2AFC). If both options 

have low motivational properties overall, this would lead to low expected value and hence 

low overall action probability (e.g., Equation 4). In other words, if neither option is of much 

interest to the anhedonic participant, then he or she will respond more randomly—likely 

resulting in a high estimate of the temperature parameter. We should stress that this does not 

necessarily negate the role of reward sensitivity nor effort costs in the observed effort task 

effects (Treadway et al., 2012); rather, this highlights the broader potential of computational 

approaches in clarifying observed discrepancies.

Anhedonia Reduces Drift Rate but No Other Parameters in Drift Diffusion Models?

A smaller number of studies have explored the effect of the drift diffusion model in 

depression. In a study using the flanker task—where subjects have to identify the orientation 

of an arrow in the face of congruent and incongruent proceeding distractors—depressed 

individuals were slower but more accurate on incongruent trials. Modeling showed that this 

was driven by reduced prepotent and executive drift rates across both congruent error and 

correct incongruent trials (Dillon et al., 2015) in depressed individuals compared to controls. 

This replicated an effect of reduced drift rate in depressed patients on a signal (color ratio) 

detection task (Vallesi, Canalaz, Balestrieri, & Brambilla, 2015) and prior work with the 

flanker task (Pe, Vandekerckhove, & Kuppens, 2013). Critically, drift rate correlated 

negatively with overall depressive symptoms (Pe et al., 2013; Vallesi et al., 2015) and with 

anhedonia specifically (Dillon et al., 2015). In none of the studies was depression associated 

with increased nondecision time, arguing against a generic psychomotor slowing effect; 

decision threshold (boundaries), arguing against speed–accuracy trade-offs (Dillon et al., 

2015); or starting point, arguing against asymmetrical differences in boundaries.

However, it should be noted that there is some concern that the diffusion model can be 

overspecified, especially when trial numbers are limited and the study is not designed to 
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detect more subtle effects (van Ravenzwaaij, Donkin, & Vandekerckhove, 2017). Indeed, 

very basic versions of the model can outperform more complex versions in simulations (van 

Ravenzwaaij et al., 2017). This is because more complex models can lead to overfitting, 

especially when the number of trials recorded is limited, which in turn reduces the power to 

detect group differences in core parameters (e.g., decision boundaries; van Ravenzwaaij et 

al., 2017). Comprehensive model comparison is needed in future research to be confident 

that effects of depression are in fact restricted to drift rate.

Neuroimaging of the Anhedonic Phenotype

Altered Reward-Related Striatal Reactivity in Major Depressive Disorder

The learning and decision-making processes described can be integrated with neuroimaging 

in an attempt to map model parameters onto the underlying neuronal hardware and bridge 

the symptomatic, computational, and neurobiological levels. Release of dopamine in the 

striatum has long been linked to RL models (Kishida et al., 2016; Lohrenz, Kishida, & 

Montague, 2016; Pessiglione, Seymour, Flandin, Dolan, & Frith, 2006), so a large body of 

work has focused on the role of the striatum in anhedonia and depression. Before discussing 

explicitly computational work, we first highlight noncomputational work implicating the 

ventral striatum (VS) in anhedonia and depression.

A widely used paradigm for assessing reward and motivational processes in psychiatric 

populations is the monetary incentive delay paradigm (MID; Knutson, Fong, Adams, Varner, 

& Hommer, 2001; Knutson & Heinz, 2015). Although there are a variety of task versions, 

the general structure involves an expectancy cue that informs the participant about the 

amount of a reward he or she will receive if he or she makes a fast response. In general, the 

task is designed such that it is possible to separately model neural responses to (a) 

anticipation of reward and (b) receipt of rewarded outcomes.

We identified 13 studies in the literature using this task that are of relevance to the present 

discussion (Table 2). The task elicits quite reliable activation within the striatum in healthy 

individuals (Wu, Samanez-Larkin, Katovich, & Knutson, 2014), but there are inconsistencies 

as to when this activation occurs. While most studies reveal reduced activity in depression 

and anhedonia, they are coupled variably to anticipation or outcome and to different regions 

within the striatum. It is often less explicitly articulated (but see Knutson, Bhanji, Cooney, 

Atlas, & Gotlib, 2008) that the presence of null results—no difference between patients and 

controls—opens the potential for robust VS activations in the MDD group. Thus there is an 

obvious parallel with behavioral studies reviewed earlier: While deficits are regularly 

observed, the overall picture is not one of global hyporesponsivity to rewards. In addition, 

although there is a theme that less severely depressed individuals are less likely to show 

deficits (Hagele et al., 2015), Table 2 includes some studies with relatively severe patients 

that report null findings (Knutson et al., 2008).

It should be also noted that some studies, one in healthy adults (Schlagenhauf et al., 2013) 

and another in a geriatric depressed population (Dombrovski et al., 2015), have 

demonstrated correlations between VS activation and generic measures of cognitive function 

(IQ and self-reported executive function, respectively). These findings provide a 
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complication in that cognitive dysfunction and anhedonic symptoms may be correlated and 

confounded. It is not always possible to correct for these associations within a given 

analysis. Moreover, the limitations of reverse inference are relevant in interpreting striatal 

activations coupled to reward events (Poldrack, 2011). Specifically, a reduction in striatal 

response, frequently observed in the absence of behavioral or symptomatic effects, is often 

interpreted as reduced reward sensitivity. This is clearly an oversimplification, as many 

studies have shown that striatal activation can be elicited by a wide range of behaviors and 

stimuli, including, for instance, punishment (Robinson, Overstreet, Charney, Vytal, & 

Grillon, 2013). Nevertheless, we interpret the evidence in Table 2 as broadly supporting a 

role of attenuated VS response to reward in anhedonia.

Integrating Computational Approaches and Brain Imaging

The work reviewed in Table 2 nevertheless shows considerable heterogeneity. As argued 

earlier, computational models can help isolate sources of this variability. The integration of 

computational and fMRI methods is sometimes referred to as model-based analysis and 

represents a departure from the typical approach to modeling stimuli in neuroimaging that 

assumes that the eliciting stimulus is essentially equivalent on every trial. Specifically, 

computational models enable the exploration of parameters that vary on a trial-by-trial basis 

within subjects. Parameters such as temperature, explored in the section “Simulation 

Showing the Importance of Temperature in Decision-Making Models,” are generally fixed 

for individual subjects (i.e., they differ between subjects but do not change on a trial-by-trial 

basis), but these fixed values can be combined with the pattern of rewards and punishments 

received by the individual to calculate trial-by-trial regressors like PEs or value. These 

regressors can then be used as parametric modulators of functional magnetic resonance 

imaging acquisition outputs over time to determine their neural correlates. Specifically, PEs 

at a given time represent deviations from expected values (see also Equation 2).

(6)

where the expected values are often updated according to a learning rate:

(7)

Previous studies, particularly by Steele and colleagues (2007), have successfully used these 

or similar models to describe blood oxygenation level–dependent signal changes in the VS, 

finding that activation coupled to appetitive PEs is altered in major depression (Gradin et al., 

2011; Kumar et al., 2008). Other groups have made compatible observations (e.g., Robinson, 

Cools, Carlisi, Sahakian, & Drevets, 2012; Ubl et al., 2015) such that there is, at present, 

some evidence of attenuated outcome-locked reward PEs in major depression.

Reinforcement learning–linked striatal response locked to cue or outcome?—
The studies in Table 2 generally reported changes to striatal activation locked to outcome or 
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cue. However, the exact timing of the signal has critical implications for our understanding 

of the underlying deficit. Reduced anticipatory responses but intact outcome-locked 

responses might suggest a failure to learn about rewards (i.e., if a person has not learned that 

a cue predicts reward, the individual is not going to anticipate it) but an intact response to the 

rewards when received. The opposite pattern—reduced outcome but intact anticipation—can 

be harder to explain in the computational RL framework. Specifically, if outcome value is 

diminished (i.e., an individual cares less about rewards when they are received), then it is 

unclear how the individual would learn about the value of those rewards to develop an intact 

anticipation response. In other words, within RL, an intact response to value at outcome is a 

crucial step in the pathway to develop intact anticipation of that value. How, therefore, do we 

account for the outcome-linked effects reviewed in Table 2?

One potential explanation for outcome-linked effects is that there is faster learning or 

habituation in one group, such that early on in a paradigm, a participant might show intact 

outcome responses that enable learning, but then this outcome response (but not the 

anticipation response) declines over time, leaving the anticipatory response in place. It may 

also potentially be explained within a framework that posits separate systems for 

anticipation/preparation and consummation, such as wanting versus liking (Berridge & 

Robinson, 2003), sign tracking versus goal tracking (Flagel, Watson, Robinson, & Akil, 

2007), or even anticipatory versus consummatory anhedonia (Argyropoulos & Nutt, 2013).

Another way to account for anticipation versus outcome effects is to account for them 

explicitly within the same model. For example, Kumar and colleagues (2008) fitted a RL 

model to reward-related VS activations, observing reward-related hypoactivation in MDD, 

but they modeled cue and outcome stages within the same framework. Specifically, they 

employed a modified temporal difference (TD) model (Sutton & Barto, 1998): a real-time 

development of RL in which reward PEs are computed continuously within a trial, with 

reference to expected values. This model has outcome PEs (like Equation 6) but also 

represents PEs during anticipation. Specifically, cues that predict rewards can also elicit their 

own reward PEs if their presence is uncertain but (more or less) reliably predicts reward. 

Thus the TD PE signal represents deviations from the expected upcoming reward, whether 

signaled by cues or experienced directly at the outcome. Kumar and colleagues’ (2008) 

finding that TD-coupled striatal responses were reduced in MDD compared to controls 

represents a development of the traditional, independent modeling of cue- and outcome-

locked activation, as described in Table 2, toward a unified account in terms of a TD-derived 

PE signal.

A final way to account for outcome effects is to examine statistical relationships between 
anticipation- and outcome-locked striatal activations. Across two MDD cohorts using a 

reward-based guessing task, cue-locked reward expectancy and outcome-locked PE-related 

activations appeared similar across patients and controls, but the relationship between them 
differed (Chase et al., 2013; Greenberg et al., 2015). Specifically, on one hand, HC showed a 

negative relationship between expectancy and outcome, suggesting a different rate of 

learning-induced transmission from outcome to cue-related activity. On the other hand, 

individuals with MDD did not show this relationship, despite showing similar overall 

magnitude of reward anticipation- and outcome-locked responses. When examining this 
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effect at the whole-brain level using individual differences in anhedonia as a moderator 

(Greenberg et al., 2015), the largest effect size was found very close to a meta-analytically 

determined anterior caudate region of the VS (Zhang, Chang, Guo, Zhang, & Wang, 2013).

Although the reason for this anticipation–outcome correlation finding is unclear, it provides 

a novel interpretation of the mixed findings in Table 2 and of unified accounts, such as that 

of Kumar and colleagues (2008). Specifically, current RL models may not fit to VS 

activation in MDD owing to the presence of an unmodeled relationship between outcome 

and cue responses. In other words, attenuated reward-related activation in MDD might 

simply reflect an inadequate fit of the general linear model rather than hypoactivation per se 

(Xu, 2015). Critically, this provides a direct parallel with our behavioral simulation (see the 

section “Simulation Showing the Importance of Temperature in Decision-Making Models”), 

in which apparent reductions in reward response can actually be driven by poor model fit 

rather than meaningful parameter differences. Future work, ideally comprising more 

complex models alongside principled model comparison, is necessary to clarify this.

Five Questions for Future Research

The evidence reviewed earlier reveals a promising start. Notably, the computational 

approach may provide potential ways of reconciling apparently contradictory findings about 

the role of reward processing and the VS in anhedonia. However, as is also clear from the 

preceding simulations, the computational approach adds its own set of complications and 

assumptions that require further evaluation. In this final section, we outline five unresolved 

questions, which we believe will prove fruitful for future research.

What Is the Role of Temperature?

As discussed, it may well be that some decision-making differences in anhedonia are down 

to noisier decisions captured by the temperature parameter, but a major empirical challenge 

for studying the temperature parameter is that it is difficult to separate from value (see also 

Huys et al., 2013). Given that these two, supposedly distinct, constructs are inextricably 

linked within the choice rule (e.g., the softmax in Equation 4), it may not be possible to 

disambiguate them cleanly within one single paradigm. Moreover, although other choice 

rules for 2AFC paradigms might be considered, they often show very similar properties and 

a similar underlying mathematical form (Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006; 

Yuille & Gaiger, 2003).

We therefore identify four potential strategies for resolving the role of temperature. First, if 

noisy, temperature-driven choices are a critical component of anhedonia, then they should be 

seen across different paradigms and task contingencies. If high choice variability were not 

also seen on other, conceptually distinct paradigms in the same individuals, then it might be 

possible to build a case that the effects on an effort task (for instance) are not driven by 

temperature differences. Second, it may be possible to manipulate outcome uncertainty to 

promote or reduce noisy decisions (Le Pelley, Suret, & Beesley, 2009), while keeping value 

consistent (and vice versa). Alternatively, forms of directed exploration have been proposed 

(Frank, Doll, Oas-Terpstra, & Moreno, 2009; Wilson, Geana, White, Ludvig, & Cohen, 

2014), which might exist independently of a more passive, disinterested choice variability 
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and be revealed on certain kinds of paradigms. The temperature parameter as realized within 

the softmax algorithm (Equation 4) is theoretically silent on this difference, and it may be 

that isolating these two components will provide more specificity into the underlying 

alteration in individuals with MDD. Together, these experimental approaches might enable 

the identification of exploration-related phenomena, which can be modeled independently of 

option value.

Third, it is worth considering whether a participant whose data provide evidence of high 

choice variability is just poorly fit by the model employed. Temperature could simply reflect 

the “residual” behavior that is not explained by the model itself. Thus other potential models 

of behavior might be explored that would better account for observed performance to clarify 

whether increased temperature, rather than just a poorly fitting model, is indeed the driving 

factor. Full comparison of a wide range of models, followed by clear simulations that 

reiterate nonmodeled behavioral patterns, can help determine the extent of this issue 

(Palminteri et al., 2017).

Finally, following from the preceding, large sample sizes can also provide benefits to model 

comparison and fitting. They can provide a clearer picture of parameter distributions and 

assist in their estimation, while nonnormal or discontinuous distribution of data (e.g., Chase 

et al., 2017; Chung et al., 2017) may be more readily identified. In addition, deriving more 

precise predictions from previous studies and/or via direct replication may facilitate 

Bayesian parameter estimation (Gershman, 2016).

Can We Disentangle Responses to Outcome Versus Cue?

Adopting a reinforcement learning–based approach to modeling and interpreting ventral 

striatal activation may help to explain differences between findings arising from reward 

paradigms of different design or contingencies (e.g., see Table 2), without needing to suggest 

separate mechanisms for cue- and outcome-locked activation. For instance, some paradigms 

may employ relatively sparse reinforcement, that is, a weak relationship between predictive 

cues and rewards (e.g., Segarra et al., 2015), and thus show mostly low cue-locked reward 

anticipation. In this case, outcome-locked activation would be expected to carry a mostly 

PE-related signal, but it may also vary between subjects or groups in terms of outcome 

sensitivity, but not in terms of learning rate. In other words, a patient versus control group 

difference in a sparse reinforcement contingency is more likely to be driven by differences in 

outcome value or PE than by differences in learning rate. By contrast, in paradigms in which 

rewards are more frequent, and preceding cues can be effective predictors of the value of the 

outcome, both outcome- and anticipation-locked activation might show variability related to 

individual differences in both learning rate and outcome value. Thus, in this case, a group 

difference related to learning rate might be revealed in a way that would not be apparent in a 

sparse reinforcement design. Direct exploration of the impact of sparse versus frequent 

rewards in anhedonic individuals may help shed some light on this issue.

However, there are areas where the explanatory capability of a simple RL model may 

become limited. Importantly, for example, RL in neuroimaging has generally been applied to 

describe phasic, spiking responses of midbrain dopamine (DA) neurons (Schultz, Dayan, & 

Montague, 1997), as opposed to tonic DA release. While modification of the RL framework 
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has been suggested to account for tonic DA fluctuations (Daw, Kakade, & Dayan, 2002; Niv, 

Daw, Joel, & Dayan, 2007), other evidence suggests that DA release at different timescales 

can be integrated into a single signal (Hamid et al., 2016). The operation of motivational 

systems at different timescales may be relevant for MDD, with respect to both behavioral 

evidence (Dillon et al., 2015) and neural responses to the cue and to the outcome. In 

particular, several studies have suggested that sustained rather than phasic responses to 

reward can be associated with MDD (Admon & Pizzagalli, 2015) and response to treatment 

(Heller et al., 2013). Thus building models that distinguish between the phasic and sustained 

responses to reward is likely to be an important future direction and may contribute to 

resolving some of the existing discrepancies with respect to cue- and outcome-locked 

activations.

What Is the Role of Patient Heterogeneity?

Much of the logic behind the present work is based on the idea that patients with MDD will 

show high levels of anhedonia, which might drive the reward-related deficits observed. 

However, although it is true that anhedonia is a core clinical feature of MDD, a diagnosis of 

MDD may be given on the basis of heightened negative mood, despite normal hedonic tone. 

A radical consequence of this heterogeneity may be the inability to reproduce patterns of 

neuroimaging findings across cohorts (Muller et al., 2017). Although reward-based 

neuroimaging paradigms have been successful in identifying differences between patients 

with MDD and controls (Zhang et al., 2013), analyzing data as a function of continuous 

constructs may provide more rigorous tests by accounting for the heterogeneity within a 

given cohort. For example, using continuous measures, such as anhedonia questionnaire 

scores—as suggested by the research domain criteria framework (Kozak & Cuthbert, 2016)

—may help resolve aspects of the conflicting data presented in Table 2. However, this 

endeavor will also benefit from more effective and validated measures of anhedonia (Rizvi 

et al., 2016). In this regard, computational methods may provide some assistance: A metric 

of approach motivation or reward sensitivity derived from a computational model of 

behavior could, for instance, be used as a betweensubject continuous variable in such 

analyses.

Medication remains another important source of variability, one that can be difficult to 

control in patient populations (e.g., Hafeman, Chang, Garrett, Sanders, & Phillips, 2012). 

Potential solutions to this problem are to (a) examine the effect of medication in a control 

population on a comparable task (Kumar et al., 2008) or (b) examine unmedicated patients 

to compare with findings from medicated patients (Greenberg et al., 2015; Robinson et al., 

2012). All of these possibilities are associated with inferential blind spots, but there should 

be no reason why the influence of medication could not be isolated eventually, as has been 

possible with Parkinson’s disease, for example (Cools, Barker, Sahakian, & Robbins, 2001).

How Does Anxiety Interact With Anhedonia?

Related to the question of patient heterogeneity is comorbidity. Anhedonia is highly 

comorbid with anxiety. If anhedonia can be operationally characterized as reduced 

processing of rewards, the affective state of anxiety can be operationally characterized as 

increased processing of threats (Davis, Walker, Miles, & Grillon, 2010; Grillon, 2008; 
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Robinson, Vytal, Cornwell, & Grillon, 2013). These are complementary and competing 

drives, and a full understanding of mood disorders will likely require integrating 

understandings of both.

Prior work using computational approaches to understand elevated aversive processing in 

anxiety is, however, extremely limited (but for a review, see Raymond, Steele, & Series, 

2017). From a RL perspective, anxiety induced by threat of shock has been shown to 

increase a positively signed aversive PE signal to unexpected fearful face stimuli in the VS 

(Robinson, Overstreet, et al., 2013). This replicates animal work (Oleson, Gentry, Chioma, 

& Cheer, 2012) and is broadly consistent with a wide range of studies implicating the VS in 

aversive PEs under normal conditions (Delgado, Li, Schiller, & Phelps, 2008; Robinson, 

Frank, Sahakian, & Cools, 2010; Seymour, Daw, Dayan, Singer, & Dolan, 2007) but 

contrasts with the putative attenuated striatal response to reward in anhedonia reviewed 

earlier in this article. Similarly, while the earlier reviewed evidence did not suggest a role of 

learning rate differences in the manifestation of anhedonia, trait anxiety has been shown to 

be negatively associated with the ability to modulate learning rates (Browning et al., 2015) 

in response to environmental volatility. This could potentially result in aversive outcomes 

being experienced as less predictable and controllable than they are and thus help maintain 

the anxious state. Moreover, pathological anxiety has also been shown to increase rather 

than decrease reliance on Pavlovian avoidance parameters (Mkrtchian et al., 2017). Notably, 

in this particular study, the winning model had two separate Pavlovian parameters: one for 

approaching rewards and one for avoiding punishments. Anxiety disorders were associated 

with increased reliance on the avoidance parameter but not on the approach parameter. An 

interesting question for future work in anhedonia, therefore, is whether a similar, albeit 

attenuated bias exists for the approach parameter alone if it is modeled separately. Another 

study looking at models of economic decision making under uncertainty (Figure 1C) 

suggested that anxiety was associated with risk but not with loss aversion (Charpentier et al., 

2016). Finally, there is evidence that high trait anxiety is associated with increased boundary 

separation and nondecision time on the drift diffusion model (White et al., 2010) rather than 

the reduced drift rate seen in anhedonia (although see Aylward, Hales, Robinson, & 

Robinson, 2017, for potential evidence of drift rate changes in anxiety disorders).

In sum, research into the computational parameters of anxiety, while in their infancy, reveals 

effects that might differ in important ways from those in anhedonia, and understanding how 

these interact in the clinical manifestation of mixed anxiety and depression is a key 

unresolved question.

What Are the Clinical Implications?

The onset and causes of mood disorders remain puzzling (Kendler & Halberstadt, 2013). 

The efficacy of our dominant treatment strategies—pharmacotherapy and psychological 

therapy (NICE, 2014)—are unpredictable. The increasing empirical focus in the mood 

disorders literature on reinforcement processes has been accompanied by increasing 

acknowledgment of the antidepressant potential of dopaminergic agents (e.g., Fawcett et al., 

2016; Racagni, Canonico, Ravizza, Pani, & Amore, 2004), which may act by influencing RL 

processes. As such, understanding individual differences in reward pathways, for example, 
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using RL paradigms, may offer an effective way to stratify patients and predict treatment 

response. For example, SSRIs may show reduced efficacy for individuals with high levels of 

anhedonia and, hence, deficits in reward-related behavior (Vrieze et al., 2012), while there 

may be learning signatures that indicate that an individual will respond well to psychological 

intervention (see, e.g., Culver, Vervliet, & Craske, 2015). Future work integrating 

computational approaches with clinical trials may ultimately improve our ability to target 

treatments.

Overall Summary

The premise of the present review is that models of learning and choice can help illuminate 

the core symptoms of mood disorders. Indeed, we find some empirical support for the role 

of computational model parameters in explaining variability in behavioral and neural 

responses to obtaining rewards in anhedonia. Most notably, the reviewed data highlight—in 

contrast to the typical focus on reduced reward or enhanced punishment sensitivity—a 

potential role for attenuated response to Pavlovian biases, increased choice variability 

captured by temperature, and reduced drift rates in reaction times in driving anhedonia-

linked behavioral variability. These changes may cumulatively manifest as the attenuated 

striatal response to rewards that are often observed in neuroimaging studies. Critically, 

however, the adoption of computational methods has brought to light factors that would have 

been difficult to identify previously. Our final five unresolved questions build on the insights 

from the reviewed findings: Resolving these questions will, we hope, take us a step closer to 

understanding the precise nature of the behavioral deficits underlying mood disorders and to 

the ultimate goal of improving outcomes for patients.
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Figure 1. Schematic of the learning and choice models discussed in the article.
a) Illustrative example of reinforcement learning models. b) Illustrative example of reaction 

time models (e.g., drift diffusion models). c) Illustrative example of models of economic 

choice under uncertainty.
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Figure 2. Moderation of relationship between the risk aversion parameter (see Equation 5) and 
risk preference by temperature.
High temperatures are red; low temperatures are blue. A low score on the risk aversion 

parameter amplifies the utility of small wins, leading to risk aversion, but this is only clearly 

manifest in behavior if the temperature is low. Likewise, a high score reduces the utility of 

small wins, leading to risk seeking, but again, only if the temperature is low.
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Table 1

Reinforcement learning model parameters that could be altered in anhedonia

Construct Description Computational 
instantiation

Evidence implicating Evidence 
exonerating

Missing 
evidence

Value-guided 
behavior

Capacity of value 
representations to 
guide choice

Value (Equation 1) Most studies report 
broadly intact 
acquisition

Feedback 
insensitivity

“Blunted” response 
to feedback, both 
positive and negative

Reduced learning rate 
(Equation 2)

Chase, Frank et al. (2010), 
Steele et al. (2007)

Rothkirch, Tonn, 
Kohler, & Sterzer 
(2017)

Enhanced 
punishment 
sensitivity

Relatively enhanced 
response to negative 
feedback

Enhanced learning rate if 
outcome is aversive

Beevers et al. (2013), 
Herzallah et al. (2013), 
Maddox et al. (2012), 
Murphy, Michael, Robbins, 
& Sahakian (2003), Taylor 
Tavares et al. (2008)

Cavanagh, 
Bismark, Frank, & 
Allen (2011), 
Chase, Frank et al. 
(2010), Whitmer, 
Frank, & Gotlib 
(2012)

Reduced 
reward 
sensitivity

Relatively reduced 
response to positive 
feedback

Reduced learning rate if 
outcome is appetitive

Beevers et al. (2013), 
DelDonno et al. (2015), 
Herzallah et al. (2013), 
Kunisato et al. (2012), 
Maddox et al. (2012), O. J. 
Robinson et al. (2012), 
Treadway, Bossaller, 
Shelton, & Zald (2012)

Cavanagh et al. 
(2011), Chase, 
Frank et al. (2010), 
Chase, Michael, 
Bullmore, 
Sahakian, & 
Robbins (2010), 
Whitmer et al. 
(2012)

Pavlovian bias Influence of reward- 
or punishment-
predictive stimuli on 
behavior

See Equation 3 Bylsma, Morris, & 
Rottenberg (2008), Huys, 
Golzer et al. (2016), Radke, 
Guths, Andre, Muller, & de 
Bruijn (2014); see 
Mkrtchian, Aylward, 
Dayan, Roiser, & Robinson 
(2017) for anxiety

Temperature Stochastic choice Temperature (Equation 4) Huys et al. (2012), Huys et 
al. (2013), Kunisato et al. 
(2012); for indirect 
evidence, see Blanco, Otto, 
Maddox, Beevers, & Love 
(2013), Clery-Melin et al. 
(2011); for trend level, see 
Chase et al. (2017)

Chung et al. (2017), 
Rothkirch et al. 
(2017)

Reduced 
outcome 
magnitude 
sensitivity

Linear or nonlinear 
scaling of utility 
across increasing 
expected value

[Outcome*sensitivity] or 
[Outcomeˆsensitivity]

Indirect evidence: 
Herzallah et al. (2013), 
Treadway et al. (2012)

Effort costs Suppression of 
responding by effort

[Outcome value–effort cost] Hershenberg et al. (2016), 
Treadway et al. (2012), 
Yang et al. (2016), Yang et 
al. (2014)

No simple increase 
in effort costs: 
Clery-Melin et al. 
(2011), Sherdell, 
Waugh, & Gotlib 
(2012)

Working 
memory/
“model-based” 
learning

Rapid adaptation of 
behavior in response 
to feedback

Various approaches, e.g., 
control choice in terms of 
previous outcome (Myers et 
al., 2016)

N/A N/A Little direct 
examination 
in MDD

Uncertainty-
modulated 
learning

Increases or 
decreases in learning 
rate in response to 
uncertainty

Modulation of learning rate 
(e.g., Equation 2) by 
stimulus/outcome 
uncertainty

N/A N/A Little direct 
examination 
in MDD (but 
see Browning 
et al., 2015, 
on anxiety)

Note. Here we define indirect evidence as suggestive that the construct might be significant, but this was not assessed directly via a modeling or 
other analytic strategy. To complete this table, combinations of the following terms were used in systematic searches: reward, model-based 
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learning, Pavlovian, exploration, decision, choice, punishment learning, with anhedonia or major depression. The goal of the table is to provide an 
overview of salient exemplars of existing data from studies incorporating depressed, dysphoric, or euthymic individuals, which may be particularly 
relevant for the constructs listed.
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Table 2

Exploring reward processing in the striatum

Study Groups
Outcome 
magnitude

Probability 
(%)

Response 
contingent

Task 
length

Striatum 
differences

Reported null 
findings

Hagele et al. 
(2015)

AUD, SZ, 
MDD, BD 
(manic), 
ADHD, HC

±€0.1, €0.6, 
€3

67 Yes 2 × 72 
trials

Right VS: Increasing 
depression severity 
reduces reward 
anticipation vs. 
neutral

Stoy et al. 
(2012)

MDD (before 
and during 
treatment), HC

€0.1, €0.6, €3 67 Yes 2 × 72 
trials

VS: HC > MDD, 
reward and loss 
anticipation vs. 
neutral—partially 
recovers after 
treatment

Knutson et al. 
(2008)

Unmedicated 
MDD, HC

± $0.1, $0.2, 
$1, $5

67 Yes 
(individually 
calibrated RT 
threshold)

2 × 90 
trials

Putamen: HC > 
MDD, reward 
outcome vs. neutral

VS: Reward 
anticipation

Admon et al. 
(2015)

MDD, HC Variable: 
mean +$2.15, 
–$2

50 No; instructed 5 × 24 
trials

Caudate: HC > 
MDD, reward and 
loss outcomes vs. 
neutral

Wacker, 
Dillon, & 
Pizzagalli 
(2009)

Healthy 
individuals 
varying in 
anhedonic 
symptoms

Variable: 
mean +$2.15, 
–$2

50 No; instructed 5 × 24 
trials

VS: Increasing 
anhedonia reduces 
reward outcome vs. 
neutral

VS: Reward 
anticipation

Pizzagalli et 
al. (2009)

MDD, HC Variable: 
mean +$2.15, 
–$2

50 No; instructed 5 × 24 
trials

Putamen: HC > 
MDD, reward 
anticipation vs. 
neutral; Caudate/VS: 
HC > MDD, reward 
outcome vs. neutral;

VS: Reward 
anticipation

Smoski, 
Rittenberg, & 
Dichter (2011)

MDD, HC Money (+$1), 
IAPS pictures

67 Yes 2 × 2 × 40 
trials

Putamen: 
Anticipation Group 
× Reward Type 
interaction

Widespread 
anticipation-
related 
activation; 
little outcome-
related 
activation

Arrondo et al. 
(2015)

MDD, SZ, HC High (£1), 
low (£0.01)

70 high win, 
30 low win

No; instructed 30 win, 30 
neutral 
trials

VS: HC > MDD/SZ, 
reward anticipation; 
relationship of VS 
anticipation 
activation with 
anhedonia in SZ, not 
MDD

Dichter, 
Kozink, 
McClernon, & 
Smoski (2012)

Remitted 
MDD, HC

+$1 for wins 67 Yes 20 potential 
win, 20 
neutral

Caudate: remitted 
MDD > HC, reward 
anticipation

Mori et al. 
(2016)

Students with/
without 
subthreshold 
depression

±¥0, ¥20, 
¥100, ¥500

N.S. N.S. 40 gain, 40 
loss, 10 
neutral

Differences not 
within striatum

VS: Reward 
anticipation

Misaki, 
Suzuki, 
Savitz, 
Drevets, & 
Bodurka 
(2016)

MDD, HC ±$0.2, $1 66 Yes 
(individually 
calibrated RT 
threshold)

15 high 
win, 15 low 
win, 15 
neutral, 15 
high loss, 
15 low loss

Left VS: HC > MDD 
during high win 
anticipation

No differences 
seen at low 
reward 
anticipation in 
left VS or low/
high 
anticipation on 
right VS; no 

Comput Psychiatr. Author manuscript; available in PMC 2018 February 02.



 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Robinson and Chase Page 33

Study Groups
Outcome 
magnitude

Probability 
(%)

Response 
contingent

Task 
length

Striatum 
differences

Reported null 
findings

outcome-
locked 
differences but 
overall 
activations not 
strong

Ubl et al. 
(2015)

Remitted 
MDD, HC

High (±€2), 
low (±€0.2) 
wins and 
losses

50% 
(approx.)

Yes 
(individually 
calibrated RT 
threshold)

N.S. Differences not 
within striatum

Stringaris et 
al. (2015)

Clinical, 
subthreshold 
depression, HC 
(adolescent)

10, 2, 0 points 66 (approx.) Yes 
(individually 
calibrated RT 
threshold)

66 trials VS: HC > clinical/
subthreshold 
depression, reward 
anticipation; reduced 
VS activation to 
reward anticipation 
also predicted 
transition to 
depression at 2-year 
follow-up and was 
related to symptoms 
of anhedonia. VS: 
Subthreshold 
depression > HC, 
positive outcomes 
Subthreshold 
depression and 
anhedonia > HC, 
negative outcomes

Note. Table summarizing design and findings of studies of MDD or other depression-related cohorts that employed a reward-based version of the 
MID task. ADHD = attention-deficit hyperactivity disorder. AUD = alcohol use disorder. BD = bipolar disorder. N.S. = not stated. RT = reaction 
time. The contents of the table represent all the studies we were able to find using systematic searches for monetary incentive delay fMRI studies. 
A recent study of Admon et al. (2017) was not included, as it was focused on a dopaminergic drug manipulation, but it also found significant group 
(control > MDD) differences in the VS coupled to outcomes in the placebo condition.
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