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Abstract

Response-adaptive randomisation (RAR) can considerably improve the chances of a successful 

treatment outcome for patients in a clinical trial by skewing the allocation probability towards 

better performing treatments as data accumulates. There is considerable interest in using RAR 

designs in drug development for rare diseases, where traditional designs are not either feasible or 

ethically questionable. In this paper we discuss and address a major criticism levelled at RAR: 

namely, type I error inflation due to an unknown time trend over the course of the trial. The most 

common cause of this phenomenon is changes in the characteristics of recruited patients - referred 

to as patient drift. This is a realistic concern for clinical trials in rare diseases due to their lengthly 

accrual rate. We compute the type I error inflation as a function of the time trend magnitude in 

order to determine in which contexts the problem is most exacerbated. We then assess the ability 

of different correction methods to preserve type I error in these contexts and their performance in 

terms of other operating characteristics, including patient benefit and power. We make 

recommendations as to which correction methods are most suitable in the rare disease context for 

several RAR rules, differentiating between the two-armed and the multi-armed case. We further 

propose a RAR design for multi-armed clinical trials, which is computationally efficient and 

robust to several time trends considered.
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1 Introduction

Randomised controlled trials (RCTs) are considered the gold standard approach to learn 

about the relative efficacy of competing treatment options for evidence based patient care. 

The information provided by a RCT can subsequently be used to better treat future 

populations. Traditionally, patients are allocated with a fixed and equal probability to either 

an experimental treatment or standard therapy arm. We will refer to RCTs implemented in 

this way as incorporating complete randomization (CR). However, there is generally a 
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conflict between the individual benefit of patients in the trial and the collective benefit of 

future patients. CR, by definition, does not provide the flexibility to alter the allocation ratios 

to each arm, even if information emerges that breaks the initial trial equipoise. This conflict 

becomes more acute in the context of rare life-threatening conditions, because the trial 

participants generally make up a sizeable proportion of the total patient population.

Response adaptive randomisation (RAR) offers a way of simultaneously learning about 

treatment efficacy while also benefiting patients inside the trial. It achieves this by skewing 

allocation to a better performing treatment, if it exists, as data is accrued. When RAR rules 

are used in a multi-armed trial, they also increase the probability of finding a successful 

treatment and speed up the process of doing so (Meurer et al, 2012, Wason and Trippa, 

2014).

However, RAR is still infrequently used in practice. One of the most prominent recent 

arguments against its use is the concern that the false positive error rate (or Type I error rate) 

may not be controlled at the nominal level (Thall et al, 2015). This can easily occur if the 

distribution of patient outcomes changes over time, and the traditional methods of analysis 

are used (Simon and Simon, 2011). One such example is when the underlying prognosis of 

patients recruited in the early stages of a trial differs from those recruited in the latter stages. 

This is often referred to as ‘patient drift’. (Karrison et al, 2003) investigate the type I error 

inflation induced by various RAR rules implemented within a two-armed group sequential 

design with a binary outcome in which, depending on the observed value of the 

corresponding z-statistics, the next group of patients is allocated in one of four possible fixed 

ratios R(z). They show that if all success rates increase by 0.12 over the course of a study 

with three interim analysis, the type I error rate achieved by a group sequential design is 

‘unacceptably high’, with the inflation being worst for the most aggressive RAR rules

Time trends are more likely to occur in studies that have a long duration. Consider for 

example, the Lung Cancer Elimination (BATTLE)-1 phase II trial which recruited patients 

for 3 years (2006-2009). It was found that more smokers and patients who had previously 

received the control treatment enrolled in the latter part of the study compared to the 

beginning of the study (Liu and Lee, 2015). Trials that last more than 3 years will often be 

required for rare diseases because of the recruitment challenge. It is also exactly for this case 

where the use of RAR can be most desirable as the trial patients represent a higher 

proportion of the total patient population and the suboptimality gap of traditional RCTs -in 

terms of overall expected patient benefit- increases as the prevalence of the disease decreases 

(Cheng and Berry, 2007).

There has been little work in the literature considering the impact of time trends on different 

RAR rules. In Coad (1991a) sequential tests for some RAR rules that allow for time trends 

are constructed while estimation and the issue of bias within this context are addressed in 

Coad (1991b). In Rosenberger, Vidyashankar and Agarwal (2001), a covariate-adjusted 

response adaptive mechanism for a two-armed trial that can take a specific time trend as a 

covariate is introduced. In the trial context investigated by Karrison et al (2003) an analysis 

stratified by trial stage eliminates the type I error inflation induced by a simple upward trend 

of all the success rates. A similar stratified analysis is used in Coad (1992). More recently, 
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Simon and Simon (2011) considered broad RAR rules for the two-armed case and proposed 

a randomisation test to correct for type I error inflation caused by unknown time trends of 

any type. There have been several recent papers comparing different classes of RAR rules 

under various perspectives (see e.g. Biswas and Bhattacharya, 2016, Gu and Lee, 2010, 

Flournoy et al, 2013, Ivanova and Rosenberger, 2000) yet most of these do not examine the 

effects of time trends as done in Coad (1992). An exception to this is Thall et al (2015) in 

which type I error inflation under time trends is pointed out as an important criticism of 

RAR. However, their paper only investigates a special class of RAR (based on regular 

updates of posterior probabilities). In this paper we identify and address a number of 

unanswered questions which we describe below, including the study of the multi-armed 

case.

If one is considering designing a clinical trial using a particular RAR rule then a 

fundamental question to consider is how large the temporal change in the trial data has to be 

to materially affect the results. In section 2 we address this question for a representative 

selection of RAR procedures.

If the possibility of a large drift occurring during the trial is a concern and a RAR scheme is 

being considered for designing such a trial, then subsequent and related questions are: Do 

any ‘robust’ hypothesis testing procedures exist that naturally preserve type I error in the 

presence of an unknown time trend? Should these procedures be different for two-armed and 

for multi-armed trials? Should they differ depending on the RAR rule in use? And, finally, 

what is their effect on statistical power? section 2 and section 3 address these questions for 

different RAR procedures. In section 4 we consider whether time trends can be effectively 

detected and adjusted for in the analysis, and how extended modelling approaches for 

modelling a time trend compare to model-free approaches in order to control for type I error. 

In section 5 some conclusions and recommendations for addressing this specific concern are 

given.

2 RAR rules, time trends and type I error rates

In this section we assess the impact of different time trend assumptions on the type I error 

rate of distinct RAR procedures. We assume that patients are enrolled in the trial 

sequentially, in groups of equal size b over J stages. We do not consider monitoring the trial 

for early stopping and therefore the trial size is fixed and equal to T = b × J. We have 

omitted it the possibility of early stopping in this paper to isolate the effects of an 

unaccounted for time trend in a trial design using RAR. Patients are initially allocated with 

an equal probability to each treatment arm. After the first interim analysis allocation 

probabilities are updated based on data and according to different RAR rules. In a real trial, 

this initial CR start-up phase could be replaced by a restricted randomisation phase (e.g. a 

permuted block design) to minimise sample imbalances and improve the subsequent 

probabilities updates (Haines and Hassan, 2015). For simplicity of presentation we consider 

a binary outcome variable Yi,j,k for patient i allocated to treatment k at stage j, (with Yi,j,k = 

1 representing a success and Yi,j,k = 0 a failure) that is observed relatively quickly after the 

allocation. An example might be whether a surgery is considered to have been successful or 

not.
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We consider a trial with K ≥ 1 experimental arms and a control arm and assume that every 

patient in the trial can only receive one treatment. We will also assume that for every j < J 
before making the treatment decisions for the (j + 1)th block of patients the outcome 

information of the jth block of patients is fully available. Patients in block j are randomised 

to treatment k with probability πj,k (for j = 1, . . . , J and k = 0, 1, . . . , K). For example, a 

traditional CR design will have πj,k = 1/(K + 1) ∀j, k. Patient treatment allocations are 

recorded by binary variables ai,j,k that take the value 1 when patient i in block j is allocated 

to treatment k and 0 otherwise. Because we assume that patients can only receive one 

treatment, we impose that ∑k = 0
K ai, j, k = 1 for all i, j. We denote the control treatment by k = 

0. Updating the allocation probabilities after blocks of patients rather than after every patient 

makes the application of RAR rules more practical in real trials (Rosenberger and Lachin, 

1993).

An appropriate test statistic is used to test the hypotheses that the outcome probability in 

each experimental treatment is equal to that of the control. That is, if we let Pr(Yi,j,k = 1|ai,j,k 

= 1) = pk, then we consider the global null to be H0,k : p0 = pk for k = 1, . . . , K. Generally, 

any sensible test statistic will produce reliable inferences if the outcome probability in each 

arm conditional on treatment remains constant over the course of the trial. If this is not the 

case, then the analysis may be subject to bias. To illustrate this we shall assume the 

following model for the outcome variable Y

Logit [Pr(Y i, j, k = 1|Zi, j, ai, j, k = 1)] =
β0 + βtt j + βzZi, j k = 0
β0 + βtt j + βzZi, j + βk k ≥ 1 (1)

where tj = (j − 1), Zi,j is a patient-level covariate (e.g. a binary indicator variable representing 

whether a patient characteristic is present or absent) and therefore βt is a time trend effect, βz 

is the patient covariate effect and βk is treatment’s k main effect. We shall assume that Zi,j ~ 

Bern(qj) and define Expit(u) = exp(u)
1 + exp(u) . Furthermore, we shall assume that the global null 

hypothesis is true, meaning H0,k holds for k = 1, . . . , K, or equivalently β1 = . . . = βk = 0. 

Patients with Zi. = 1 will have success rate when allocated to arm k equal to Expit(β0 + βttj + 

βz) while patients with a negative value Zi. = 0 will have a success rate of Expit(β0 + βttj).

If the covariate variable Z is unobservable then when analysing the data, response rates will 

in effect be marginalised over Z as follows:

Pr(Y i, j, k = 1|ai, j, k = 1) = ∑
f = 0

1
Pr(Y i, j, k = 1 Zi, j = f , ai, j, k = 1)Pr(Zi, j = f )

= Expit β0+βtt j 1 − q j + Expit β0 + βtt j + βz)q j

(2)

Assuming that equal numbers of patients are recruited at each of J stages then the mean 

response rate in arm k will be
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Pr(Y i, . , k = 1|ai, . , k = 1) = 1
J ∑

j = 1

J
Pr(Y i, j, k = 1 ai, j, k = 1) (3)

The inclusion of tj and Zi,j allow us not only to introduce time trends of different magnitude 

but also to describe two distinct scenarios that are likely to be a concern in modern clinical 

trials: changes in the standard of care (Scenario (i)) - or changes in the effectiveness of the 

control treatment, and patient drift (Scenario (ii)) - or changes in the baseline characteristics 

of patients. Under model (1) we shall consider that a case of Scenario (i) occurs if βt ≠ 0 

while βz = 0 whereas an instance of Scenario (ii) happens if βz ≠ 0 while βt = 0 and qj 

evolves over j.

In this section we consider the global null hypothesis by setting βk = 0 for all k for both 

scenarios. In subsection 3.3 and section 4 we consider extensions of these scenarios where 

βk > 0 for some k ≥ 1. Specifically, we consider alternative hypotheses of the form H1,k : pk 

− p0 = Δp > 0 for some k ≥ 1 with the treatment effect Δp defined as Δp = Pr(Yi,.,k = 1|ai,.,k = 

1) − Pr(Yi,.,k = 1|ai,.,0 = 1).

2.1 RAR procedures considered

Many variants of RAR have been proposed in the literature. However, different RAR 

procedures often perform similarly, because they obey the same fundamental principle. 

Myopic procedures determine the ‘best’ allocation probabilities for the next patient (or block 

of patients) according to some criteria based on the accumulated data (on both responses and 

allocations) up to the last treated patient. Non-myopic procedures consider not only current 

data but also all possible future allocations and responses to determine the allocation 

probability of every patient (or block of patients) in the trial (see chapter 1 in Hu and Rosen-

berger, 2006). Furthermore, RAR procedures can be considered to be patient benefit-
oriented if they are defined with the goal of maximising the exposure to a best arm (when it 

exists). Additionally, RAR procedures can also be defined with the goal of attaining a certain 

level of statistical power to detect a relevant treatment effect, thus being power-oriented. 

RAR rules that score highly in terms of patient benefit generally have lower power.

Thus, in order to illustrate these four types of rules we focus on the following RAR rules: 

‘Thompson Sampling’ (Myopic-Patient benfit oriented), ‘Minimise failures given power’ 

(Myopic-Power oriented), the ‘Forward Looking Gittins Index rule’ (Non-Myopic-patient 
benefit oriented), and its controlled version, the ‘Controlled Forward Looking Gittins Index 

rule’ (Non-Myopic-Power oriented). A short summary of these approaches is now given, for 

a more detailed description see (Villar, et al., 2015).

(a) ‘Thompson Sampling’ (TS): (Thompson, 1933) was the first to recommend 

allocating patients to treatment arms based on their posterior probability of 

having the largest response rate.

We shall compute the TS allocation probabilities using a simple Monte-Carlo 

approximation. Moreover, we shall introduce a tuning parameter c defined as 
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( j − 1) × b
2T  where (j − 1) × b and T are the current and maximum sample size 

respectively. This parameter tunes the aggressiveness of TS allocation rule based 

in the accumulated data so that the allocation probabilities become more skewed 

towards the current best arm only as more and more data accumulates. Notice 

that TS is essentially the only class of RAR considered in Thall et al (2015).

(b) ‘Minimise failures given power’ (RSIHR): (Rosenberger et al, 2001) proposed 

and studied an optimal allocation ratio for two-armed trials in which the 

allocation probability to the experimental arm is defined as:

π j, 1 =
p1

p0 + p1
, (4)

This allocation procedure is optimal in the sense that it minimises the expected 

number of failures for a fixed variance of the estimator under the alternative 

hypothesis that there is a positive treatment effect Δp = p1 − p0 > 0. The optimal 

allocation ratios that extend equation (4) for the general case in which K > 1 do 

not admit a closed form, however numerical solutions can be implemented as in 

(Tymofyeyev et al, 2007).

In practice the allocation probabilities may be computed by plugging in a 

suitable estimate for the pk’s using the data up to stage j − 1. In our simulations 

we implemented the optimal allocation ratio for RSIHR using the doubly-

adaptive biased coin design. Specifically, we used Hu and Zhang’s 

randomization procedure with allocation probability function given by equation 

(2) in Tymofyeyev et al (2007). and γ = 2. Notice that we estimated the success 

rate parameters from the mean of its prior distribution for the first block of 

patients (when no data were available) and the posterior mean thereafter.

(c) ‘Forward Looking Gittins Index rule’ (FLGI): in (Villar, et al., 2015), we 

introduced a block randomised implementation of the optimal deterministic 

solution to the classic multi-armed bandit problem, first derived in (Gittins, 

1979, Gittins and Jones, 1974). The FLGI probabilities are designed to mimic 

what a rule based on the Gittins Index (GI) would do. See Section 3 and Figure 1 

in (Villar, et al., 2015) for a more detailed explanation of how these probabilities 

are defined and approximately computed via Monte-Carlo. The near optimality 

attained by this rule differs from the one targeted in procedure (b) in the sense 

that average patient outcome is nearly maximised with no constraint on the 

power levels that should be attained. Notice that before the introduction of this 

procedure based on the Gittins index an important limitation to the practical 

implementation of non-myopic RAR rules such as those in Cheng and Berry 

(2007), Williamson, et al. (2017) was computational, particularly in a multi-

armed scenario.

(d) ‘Controlled FLGI’ (CFLGI): In addition to the rule described in (c), for the 

multi-armed case (i.e. K > 1) we consider a group allocation rule which, 
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similarly to the procedure proposed in (Trippa et al., 2012), protects the 

allocation to the control treatment so it never goes below 1/(K + 1) (i.e. its fixed 

equal allocation probability) during the trial.

2.2 Simulation results

In this section we present the results of various simulation studies which show, for instances 

of scenarios (i) and (ii) (described in detail below), the degree to which the type I error rate 

can be inflated for different RAR rules relative to a CR design. As is the usual case when 

comparing RAR procedures we consider measures of efficiency (or variability) and ethical 

performance, assessing which ones of them (if any) provide a better compromise between 

these two goals (Flournoy et al, 2013). We therefore also compute the expected number of 

patients assigned to the best treatment (p*) and expected number of patient successes (ENS). 

However, under the global null considered in this section ENS and p* are identical for all 

designs and therefore we do not report them here. In Sections where we consider scenarios 

under various alternative hypotheses we report patient benefit measures as well as power. 

Specifically, we report p* and the increment in the expected patient benefit that the RAR 

rule considered attains over a CR design, i.e. ΔENS = ENSRAR − ENSCR.

For each scenario a total of 5000 trials were simulated under the global null and the same 

global null was tested. We used z-statistics for testing with RAR rules (a), (b) and (d) (when 

asymptotic normality can be assumed) and, given that bandit-based procedures can result in 

very small sample sizes for some arms, an adjusted Fisher’s exact test for procedure (c). The 

adjustment for the bandit rules chooses the cutoff value to achieve a 5% type-I error rate (as 

in Villar et al (2015)). For multi-armed trials, we use the Bonferroni correction method to 

account for multiple testing and therefore ensure that the family-wise error rate is less than 

or equal to 5%. In all simulations and for all RAR rules we assumed uniform priors on all 

arms’ success rates before treating the first block of patients.

2.2.1 Scenario (i): Changes in the standard of care—The first case we consider is 

that of a linear upward trend in the outcome probability of the control arm. This could be the 

case of a novel surgery technique that has recently become the standard of care but it 

requires a prolonged initial training period for the majority of surgeons to become proficient 

in these complex procedures until “failure” is eliminated or reduced to a minimum constant 

rate. In terms of the model described in equation (1) this corresponds to varying βt with all 

else fixed.

Specifically, we let βt take a value such that the overall time trend within the trial

D = Pr(Yi, j, . = 1 t j = J − 1) − Pr(Yi, j, . = 1 t j = 0),

varies in D = {0, 0.01, 0.02, 0.04, 0.08, 0.16, 0.24}. Figure 1 (left) shows the corresponding 

evolution of the per block success rate of every arm over time across the scenario in which J 
= 5 and for the cases of: no drift (D = 0, dark blue) and the strongest drift considered (D = 

0.24, dark red).
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Figure 2 summarises the simulation results. The top row of plots show the results for the 

two-armed trials (i.e. K = 1) and the bottom row plots show the results for K = 2. In both 

cases the trial size was T = 100. The value of the sample size T might be interpreted as the 

maximum possible sample size (i.e. including a very large proportion of the patient 

population) in the context of a rare disease setting. The plots in the left column assume a 

block size of 10, and the plots in the right column assume a block size of 20. The initial 

success rate was assumed to be equal to 0.3 (which corresponds to β0 ≈ −0.8473) for all the 

arms considered.

Under the assumption of no time trend (i.e. βt = D = 0) the test statistics used preserve the 

type I error rate for all designs in all cases considered, except for Thompson Sampling for 

which the false positive rate is somewhat inflated (as pointed out in Thall et al (2015)). For 

CR the type I error rate is preserved even when a time trend is present and regardless of the 

block size, number of arms and the trend’s magnitude.

The error rates for some of the RAR rules (FLGI and TS) are substantial when overall time 

trends are of 0.08 and more. This is because these rules are patient benefit oriented, i.e. they 

skew allocation towards an arm based on data more considerably and/or earlier on in the 

trial. On the other hand, the RSIHR procedure, being a power-oriented rule, remains 

practically unaffected by temporal trends in terms of type I error inflation. This very 

important difference in performance amongst RAR procedures has not been noted 

previously.

Multi-arm allocation rules that protect allocation to the control arm, like the CFLGI, are also 

unaffected by type I error inflation, even for large drifts. Generally, the type I error inflation 

suffered by the other RAR rules seems to be slightly larger for the three-armed case than for 

the two-armed case.

2.2.2 Scenario (ii): Patient drift—For this case we imagine a simplistic instance in 

which patients are classified into two groups according to their prognosis. This occurs if, for 

example, Zi,j in model (1) represents the presence or absence of a biomarker in patient i at 

stage j, where Zi,j = 1 denotes a biomarker positive patient and Zi,j = 0 denotes biomarker 

negative patient. Alternatively, Zi,j can capture any other patient feature. It could, for 

example, represent if a patient is a smoker and previously received the control arm, which 

would be a relevant covariate in the BATTLE-1 trial. Moreover, we let the recruitment rates 

of these two types of patients, i.e. qj, vary as the trial progresses to induce the desired drift in 

the mix of patients over time. We will model this situation by letting βz > 0 in (1) whilst 

holding all else fixed. We start by assuming that Z is unobserved. In subsection 4.1 we 

explore the case where Z is measured and can be adjusted for.

The middle and right-hand side plots in Figure 1 show the evolution of Pr(Yi,.,k = 1|ai,.,k = 1) 

under differing patterns of patient drift over the course of the trial. The middle plot describes 

the case in which there is a linear trend in the average success rates of all arms created by 

the patient drift whereas the plot to the right considers the case of a more complex temporal 

evolution with the average success rates going up and then down or vice-versa. In both cases 

a trial of size T = 200 with J = 10 and therefore b = 20 was considered. The success rates for 
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all arms for the biomarker negative patients was Pr[Yi,j,. = 1|Zi,j = 0] = 0.3 (so that β0 ≈ 
−0.8473). For the biomarker positive group Pr[Yi,j,. = 1|Zi,j = 1] = 0.6 (such that βz ≈ 
1.2528).

Figure 3 summarises the simulation results for the cases depicted in Figure 1 (middle and 

right). The results show that the RAR procedures most affected by type I error inflation are 

those that are patient-benefit oriented (FLGI and TS). Type I error inflation is high only for 

the moderately large recruitment rate evolution assumed. As before, the power-oriented rules 

(RSIHR and CFLGI) have type I error rates that do not significantly differ from those 

obtained by a CR design. This further supports the argument that not all RAR procedures are 

equally affected by the presence of the same temporal trend.

3 Testing procedures and RAR designs robust to patient drift

In this section we describe a hypothesis testing procedure for RAR rules in a two-armed trial 

context and a RAR design for multi-armed trials that preserves type I error rates in the 

presence of an unknown time trend.

3.1 Two-armed trials: randomization test and the FLGI

The type I error inflation shown in scenarios (i) and (ii) for some of the RAR rules is caused 

by the fact that the test statistics used assume every possible sequence of treatment 

allocations (i.e., every possible trial realisation) is equally likely. For instance, this is the 

case for the adjusted Fisher’s exact test used for the FLGI in the previous sections. This 

assumption is not true in general as certain allocation sequences will be highly unlikely or 

even impossible for some RAR procedures. This is particularly well illustrated in the case of 

the FLGI rule where it is possible for one of the arms to be effectively ‘selected’ within the 

trial, since the probability of assigning a patient to any other arm from that point onwards is 

zero.

In this section we show the results of developing and computing a test statistic, introduced in 

(Simon and Simon, 2011), based on the distribution of the assignments induced by the FLGI 

under the null hypothesis. In their paper, the authors show that using a cut-off value from the 

distribution of the test statistic generated by the RAR rule under the null hypothesis, and 

conditional on the vector of observed outcomes, ensures the control of the type I error rate 

(see Theorem 1 in Simon and Simon (2011)). Their result applies to any RAR rule and any 

time trend in a two-armed trial, most importantly, its implementation does not require any 

knowledge or explicit modelling of the trend. In this paper we have chosen to implement it 

for the FLGI rule as this is the most recently proposed RAR procedure of the ones 

considered. Notice that Type I error rate preservation under time trends by means of 

randomisation based inference for restricted randomised procedures is established in 

(Rosenberger and Lachin, 2016, Section 6.10).

However, computation of the null distribution can be challenging under realistic trial 

scenarios as it requires the complete enumeration of all trial histories and it is infeasible for 

response adaptive rules that are deterministic as e.g. the GI rule is. Therefore, there is a need 

to find ways of computing such a randomization test efficiently for the sake of its practical 
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implementation as well as evaluating its effect on power, which might differ across different 

rules.

We implement a randomisation test for the FLGI rule that is based on a Monte-Carlo 

approximation of the exact randomisation test. More precisely, our approach does the 

following: for a given trial history y= (y1, y2, . . . , yJ), where yj a vector of the b observed 

outcomes at stage j, we simulate M trials under the FLGI allocation rule. The FLGI 

allocation ratios are updated after each block using the allocation variables ai,j.k randomly 

generated under the FLGI rule by Monte-Carlo and the observed outcome data up to that 

point (i.e. (y1, …, yj)). For each of these M simulated trials we compute the value of the test 

statistic to assemble an empirical distribution of the test statistic under the null. We can then 

compare the test statistic observed in the original trial to the empirical distribution, rejecting 

the null hypothesis at level α if it is more extreme than its α percentile for a one-sided test 

(or than its α/2 or 1 − α/2 percentile for a two-sided test). Finally, we repeat this procedure 

for another Nr trial history replicates and report the average type I error rate achieved as well 

as the averages of the other ethical performance measures considered.

Table 1 shows the results from Nr = 5000 replicates using the approximate randomisation 

test for the case of scenario (i) displayed in Figure 2 (top-right). For each trial replicate the 

approximate randomisation-based test was computed using M = 500 simulated trials -or 

resamplings- to construct the empirical distribution function. The values of Nr and M are the 

same as those used by the simulations in Simon and Simon (2011). From Table 1, we see 

that the type I error rate is preserved at its 5% level even when the patient drift is severe. We 

also report p* and ΔENS, as defined in Section 2.

3.2 Multi-armed trials: protecting allocation to control

As shown in the simulation results reported in section 2 the RAR rules that include a 

protection of the allocation to the control treatment (specifically, the CFLGI) preserve the 

type I error rate. Matching the number of patients allocated to control to that allocated to the 

best performing arm has also been found to produce designs that result in power levels 

higher than that of a CR design (See e.g. Trippa et al., 2012, Villar, et al., 2015). In the next 

section, we report on results that indicate that this matching feature not only preserves the 

type I error rates but also ensures high power levels when using the standard analysis 

methods as an approximation inference method and under the presence of time trends.

Therefore, if the design of the multi-arm trial incorporates protection of the control 

allocation there appears to be no need to implement a testing procedure that is specifically 

designed to be robust to type I error inflation. This is another important and novel finding.

3.3 Protecting against time trends and its effect on Power

Preserving the type I error rate is an important requirement for a clinical trial design. 

However, the learning goal of a trial also requires that, if a best experimental treatment 

exists, then the design should also have a high power to detect it. In this section, we 

therefore assess the power of the approximate randomisation test (for the FLGI) and the 

standard test (for the CFLGI).
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We first explore an extension of an instance of scenario (i) in which we assume there is a 

treatment effect of 0.4 (where p0 = 0.3 and p1 = 0.7, therefore β1 ≈ 1.6946) which is 

maintained even in the cases where we also assume a positive time trend in the standard of 

care. The trial is of size T = 150 with J = 5 stages (so that b = 30). Under this design the 

assumed treatment effect is detected with approximately 80% power by the FLGI rule if 

there is no time trend and the adjusted Fisher’s test is used. If a traditional CR design is used 

then the power attained is 99%, but the proportion of patients allocated to each arm is fixed 

at 1/2.

Table 2 shows the power to reject the null hypothesis as the overall time trend increases from 

0 to 0.24 (i.e. for βt ∈ {0, . . . , 0.24} while βz = 0) for a treatment effect of 0.4 (i.e. for β1 ≈ 
1.6946). We denote by (1 − βF) the power level attained by the adjusted Fisher’s test and by 

(1 − βRT) the power level when using the approximate randomisation test.

These results show that the power of the randomisation test is considerably reduced 

compared to that obtained using Fisher’s exact test. However, the patient benefit properties 

of the FLGI over the CR design are preserved in all the scenarios. The improvement in 

patient response of the FLGI design over CR is around 30% regardless of the drift 

assumption.

Next, we consider the multi-arm case by assessing the effect on power on the RAR rules that 

protect allocation to the control arm. In order to do so under different trend assumptions we 

extend a case of scenario (i). We assume then that there is a treatment arm that has an 

additional benefit over the other two arms of 0.275 (where p0 = p2 = 0.300 and p1 = 0.575) 

which is maintained even in the cases we assume a positive time trend in the success rate of 

the standard of care. Regardless of the trend assumption, a traditional CR design has a mean 

p* value of 1/3 by design and detects a treatment effect of such a magnitude with 

approximately 80% power.

Figure 4 shows the ENS-power levels for the designs considered. The CR design performs 

as predicted in terms of power and ENS. The power of the CFLGI is unaffected except for a 

small increase when the trend is very high. This approach attains an improvement over CR 

on ENS for every trend magnitude assumption considered (the improvement in ENS goes 

from 15.81% to 13.44% in the case of the largest assumed trend).

Figure 4 also includes the results for the FLGI for comparison. Power levels are increased 

when there is a positive time trend, as assumed in this case, compared to the case of no time 

trend. This is due to the temporal upward trend which for the FLGI rule causes an 

overestimation of the treatment effect. Notice that the probability in these simulations of the 

allocation imbalance observed in the FLGI being in the wrong direction (i.e. towards inferior 

arms) only occurred in less than 4% of all replicates.

4 Adjusting the model for a time trend

In this section we illustrate the extent to which adjusting for covariates can help to reduce 

type I error inflation and affect power. This section also discusses the problems that can be 

encountered when doing this after having used a RAR procedure and how to address them.
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4.1 Two-armed trials

We first study covariate-adjustment under instances of scenario (i). We consider a two-armed 

trial of size T = 100 with J = 5 and b = 20. We shall focus on the most extreme case 

considered in Figure 1 in which the overall time trend was D = 0.24 (or βt ≈ 0.2719). The 

initial success rates of both arms were set to 0.3 (i.e. β0 ≈ −0.8473).

Parts (I) and (III) in Table 3 show the results for the estimation of the models’ parameters 

using standard maximum likelihood estimation, when the (logistic) model is correctly 

specified. These results indicate, perhaps unsurprisingly, that for both designs the treatment 

effect is found to be significant in less than 5% of the 5000 trials, which suggests that by 

including a correctly modelled time trend, type I error inflation is avoided. However, we 

note that there is a strong deflation in the type I error rate of the FLGI design. This occurs 

because the testing procedure used in this section does not include an adjustment similar to 

the one used with Fisher’s exact test in section 2 and section 3. When we look at the mean 

estimated coefficient for the time trend we note that CR only slightly underestimates it, 

having a 40% power to detect it as significantly different from 0. The FLGI design results in 

a larger underestimation of the time trend coefficient. This underestimation is consistent 

with that observed in Villar et al (2015) for reasons clarified in Bowden and Trippa (2015). 

The power to detect a significant time trend for the FLGI is more than halved compared to 

CR. Since its estimate is negatively correlated with that of the time trend coefficient, the 

baseline effect β0 is also overestimated in both designs, but more severely for the FLGI.

Another consequence of the under-estimation of the time trend is that complete or quasi-

complete separation is more likely to occur (See Albert and Anderson, 2002). This happens 

for the FLGI for example when all the observations of one of the arms are failures (and few 

in number) and this arm is therefore dropped early from the trial (i.e. its allocation 

probability goes to 0 and never goes above 0 again within the trial).

When this problem occurs in a trial realization, the maximum likelihood estimates are highly 

unstable and will not be well defined. This can be observed in the MSE value for β̂0 in Table 

3 (III) for the FLGI. In order to address this, we applied Firth’s penalized likelihood 

approach (Firth, 1993) which is a method for dealing with issues of separability, small 

sample sizes, and bias of the parameter estimates (using the R package “logistf”). The use of 

Firth’s approach mitigates the bias due to the separability issue but it will not correct for the 

bias caused by the RAR procedure, which is addressed in Bowden and Trippa (2015) or 

Coad and Ivanova (2001). To the best of our knowledge, methods that simultaneously 

adjusts for both sources of bias do not exist. These results suggest that developing bias-

correction methods specially designed for the FLGI within this context could offer improved 

estimation results than those obtained here. In Table 3 parts (II) and (IV) results of deploying 

the Firth correction are displayed. These results show an improvement in the estimation of 

the baseline effect when using the FLGI design: the MSE value is significantly reduced and 

the average estimate of β0 is closer to its true value (though it is still overestimated). For the 

CR design there is also an improvement. Also, note that the type I error deflation has also 

been almost fully corrected by the Firth’s adjustment in the FLGI design.
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To assess the effect on statistical power in Table 4 we replicate the estimation procedure for 

the case studied in the 3rd row of Table 2 in which we let the treatment effect of arm 1 be 

positive (i.e. β1 ≈ 1.6946) while the overall drift assumed corresponds with D = 0.16 (or βt ≈ 
0.1840 and βz = 0). The initial success rate in the control arm was equal to 0.3 (i.e. β0 ≈ 
−0.8473). Because complete (or quasi-complete) separation affected the FLGI rule in all the 

scenarios considered here, Table 4 and the following tables only display the results using 

Firth’s correction.

As expected the power of a CR design displayed in Table 4 coincides with the value reported 

in subsection 3.3, which using both procedures (i.e. adjusting for covariates or hypothesis 

testing) yields an average value of 99%. The power value of the FLGI design when fitting 

the GLM model is lower than the 80% value reported in subsection 3.3 for the case of no 

time trend (i.e. ≈ 74%). The difference in power levels is explained by the adjustment in 

Fisher’s exact test done in that section which raises power by correcting for the deflation of 

the type I error rate of the standard Fisher’s test.

Our results suggest that correctly modelling a time trend and adjusting for separation via 

Firth correction can safeguard the validity of trial analyses using RAR. That is, by 

maintaining correct type I error rates and delivering a level of statistical power similar to that 

obtainable when no trend is present.

4.2 Multi-armed trials

In this section we consider the case of multi-armed trials and an instance of Scenario (ii) or 

patient drift. Also, we shall remove the assumption that the patient covariate or biomarker is 

unobservable, and allow for the availability of this information before analysing and 

estimating the corresponding model in (1).

First, we study the case of scenario (ii) in which the proportion of biomarker positive 

patients evolves as qj = 0.5 + (j − 1) × 0.05 for j = 1, . . . , 10 (See Figure 1, middle). We 

simulated 5000 three-armed trials of size T = 200 with J = 10 and b = 20. The differential 

effect of being biomarker positive was assumed to be of 0.3, which corresponds with βz ≈ 
1.2528. The initial success rates of all the arms for the biomarker negatives was equal to 0.3 

(i.e. β0 ≈ −0.8473).

Table 5 displays the results of the CR, FLGI and CFLGI designs under the null hypothesis. 

These results suggest that all designs attain the same power to detect the biomarker effect (as 

the adaptation is not done using this information, all designs have similar numbers of 

patients with a positive and a negative biomarker status). More importantly, incorporating 

patient covariate data into the explicative model dramatically reduces type I error inflation 

for the FLGI. Although the observed rates are close to 6% and thus, above the 5% target, 

they are well below the levels observed without this adjustment (approx. 17%).

In Table 6 we examine the effect on power by replicating the previously described scenario 

but allowing for the experimental arm 1 to have an effect for all patients of 0.2 (i.e. β1 = 

0.8473). These results show how the power to detect the treatment effect in arm 1 with a 

FLGI design is almost halved compared to that attained by a traditional CR design. Yet, the 
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CFLGI improves on the power level of the CR design by approximately 15%. Also note that 

the type I error rate for arm 2 appears to be deflated for the FLGI and CFLGI designs.

These results suggest that fitting a model that includes a time trend after having used a RAR 

rule can protect against the type I error inflation caused by patient drift as long as the 

patient-covariate information is observable and available to adjust for. However, the power 

level attained by covariate adjustment is considerably less than that attained by a design that 

protects the allocation to the control arm.

Furthermore, these results fail to illustrate the learning-earning trade-off that characterises 

the choice between a CR and a RAR procedure and the reasons why the FLGI could be 

desirable to use from a patient benefit perspective (despite the power loss and the type I error 

inflation potential). The traditional CR design, which maximises learning about all arms, 

yields an average number of successfully treated patients (or ENS) of 116.83 when p* 
remains fixed by design at 1/3. The FLGI design, on the other hand, is almost optimal from a 

patient benefit perspective, achieving an ENS value of 135.21, 15.73% higher than with CR, 

and it achieves this by skewing p* to 0.7783. Finally, the CFLGI is a compromise between 

the two opposing goals that improves on the power levels attained by a CR design and also 

on its corresponding ENS value (though is below the value that could be attained with the 

unconstrained FLGI rule) by attaining an ENS vale of 126.32, 8.12% more than with a CR 

design, and a p* of 0.5618.

5 Discussion

Over the past 65 years, RCTs have become the gold standard approach for evaluating 

treatments in human populations. Their inherent ability to protect against sources of bias is 

undoubtedly one of their most attractive features, and is also the reason that many are 

unwilling to recommend the use of RAR rules, feeling that this would be a “step in the 

wrong direction” (Simon, 1977). Recently, Thall et al (2015) have suggested that a severe 

type I error inflation could occur if RAR is used under the presence of an unaccounted for 

time trend. The temporal heterogeneity of the study population is a reasonable concern for 

trials in rare diseases as they tend to last several years. However, there remains a strong 

interest in the medical community to use RAR procedures in this very setting (Abrahamyan 

et al, 2016). The considerable patient benefit advantages offered by non-myopic RAR 

procedures can increase trial acceptability among both patients and physicians and enhance 

patient enrollment. Additionally, in the multi-armed case, the modified non-myopic 

procedures offer also increased statistical efficiency when compared with a traditional RCT.

We have assessed the level of type I error inflation of several RAR procedures by creating 

scenarios that are likely to be a concern in modern clinical trials that have a long duration. 

Our results suggest that the magnitude of the temporal trend necessary to seriously inflate 

the type I error of the patient benefit oriented RAR rules needs to be of an important 

magnitude (i.e. change larger than a 25% in its outcome probability) to be a source of 

concern. This supports the conclusion of (Karrison et al, 2003) in a group sequential design 

context. However, we also conclude that certain RAR rules are effectively immune to time 

trends. Specifically, those that are power oriented such as the CFLGI rule (Villar, et al., 
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2015) or the ‘Minimise failures given power’ rule (Rosenberger et al, 2001). This suggests 

that when criticising the use of RAR in real trials one must be careful not to include all RAR 

rules in the same class, as they have markedly different performances in the same situation.

In addition, we have recommended two different procedures that can be used in an RAR 

design to protect for type I error inflation. For two-armed trials, the use of a randomisation 

test (instead of traditional tests) preserves type I error under any type of unknown temporal 

trend. The use of randomisation as a basis for inference provides robust assumption-free 

testing procedures which depend explicitly on the randomisation procedure used, be it a 

RAR procedure or not. The cost of this robustness may be a computational burden and an 

reduction in statistical power (although most patients are still allocated to a superior arm 

when it exists if using the FLGI procedures). This particular feature highlights the need to 

develop computationally feasible testing procedures that are specifically tailored to the 

behaviour of a given RAR rule. For example, as pointed out by Villar et al (2015), bandit 

based rules such as the FLGI are extremely successful at identifying the truly best treatment 

but, as a direct result, often cannot subsequently declare its effect ‘significant’ using 

standard testing methods.

For multi-armed clinical trials protecting allocation to the control group (the recommended 

procedure) preserves the type I error while yielding a power increase with respect to a 

traditional CR design. However, despite rules such as the CFLGI being more robust to a time 

trend effect, they also offer a reduced patient benefit in the case there is a superior treatment, 

when compared to the patient benefit oriented RAR rules such as the FLGI.

Finally, we also assessed adjustment for a time trend both as an alternative protection 

procedure against type I error inflation and to highlight estimation problems that can be 

encountered when an RAR rule is implemented. Our conclusion is that adjustment can 

alleviate the type I error inflation of RAR rules (if the trend is correctly specified and the 

associated covariates are measured and available). However, for the multi-armed case this 

strategy attains a lower power than simply protecting the allocation to the control arm. 

Furthermore, the technical problem of separation also complicates estimation after the 

patient benefit oriented RAR rules have been implemented and severely impacts the power 

to detect a trend compared to an CR design.

Large unobserved time trends can result in an important type I error inflation, even if using 

restricted randomisation algorithms that seek to balance the number of patients in each 

treatment group (Section 6.10 Rosenberger and Lachin, 2016, Tamm et al., 2014). Therefore, 

an important recommendation of this work is that in the design stage of a clinical trial, when 

a RAR procedure is being considered, a similar detailed evaluation of type I error inflation 

and bias as done in this paper is performed in order to choose a suitable RAR procedure for 

the trial at hand.

Further research is also needed to assess the potential size of time trends through careful re-

analysis of previous trial data (as (Karrison et al, 2003) do with data from (Kalish and Begg, 

1987)). Our results suggest that even in the case of a large time trend being a realistic 

concern there are still some RAR rules that, both for the two-armed and the multi-armed 

Villar et al. Page 15

Pharm Stat. Author manuscript; available in PMC 2018 March 30.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



case, remain largely unaffected in all the cases we have considered. Of course, these rules 

offer increased patient benefit properties when compared to a traditional CR design but 

reduced when compared to the patient benefit oriented RAR rules.

Another area of future work is to explore the combination of randomisation tests with 

stopping rules in a group sequential context, specifically for the FLGI. Additionally, 

techniques for the efficient computation of approximate randomisation tests for the FLGI 

could be studied, similar to those explored in (Plamadeala and Rosenberger, 2012).
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Figure 1. 
The per block success rate under different time trend assumptions plotted over time. Left 

plot corresponds to scenario (i) (Changes in standard of care) and middle and right plot 

correspond to different cases of scenario (ii) (Patient drift).
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Figure 2. 
The type I error rate for Scenario (i) (changes in the standard of care) under different linear 

time trends assumptions and different RAR rules.
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Figure 3. 
The type I error rate for different group recruitment rates assumptions under scenario (ii) 

with βz ≈ 1.2528
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Figure 4. 
ENS-Power trade-off of CR, CFLGI and FLGI in 5000 replicates of a 3-arm trial of size T = 

100 with block size b = 20 (J = 5) under a case of scenario (i) with a treatment effect of 

0.275 for arm 1
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Table 1

The type I error rate for the approximate randomisation test from 5000 replicates of a 2-arm trial of size T = 

100 using a FLGI with block size b = 20 (J = 5) and under the case of Scenario (i) depicted in Figure 2 (top-

right plot).

α (s.e.) p* (s.e.) ∆ENS D

0.0445 (0.21) 0.501 (0.21)   0.19 0

0.0480 (0.21) 0.506 (0.22) −0.17 0.08

0.0449 (0.20) 0.494 (0.23)   0.02 0.16

0.0445 (0.21) 0.499 (0.24)   0.23 0.24
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Table 2

Power for the approximate randomisation test from 5000 replicates of a 2-arm trial of size T = 150 using a 

FLGI with block size b = 30 (J = 5) under a case of Scenario (i) with a treatment effect of 0.40.

(1 – βF)(s.e.) (1 – βRT)(s.e.) p*(s.e.) ∆ENS D

0.8086 (0.39) 0.6057 (0.48) 0.871 (0.09) 22.04 0

0.8972 (0.30) 0.6080 (0.49) 0.881 (0.04) 24.01 0.08

0.9524 (0.21) 0.6021 (0.50) 0.878 (0.05) 23.99 0.16

0.9802 (0.14) 0.5851 (0.48) 0.882 (0.03) 23.73 0.24
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Table 3

GLM estimated through MLE with and without Firth correction for T = 100, J = 5, b = 20 in a case of scenario 

(i) with D = 0.24. Results for 5000 trials. True values were assumed to be β0 ≈ −0.8473, βt ≈ 0.2719 and βz = 

β1 = 0.

(I) GLM fitting without correction for CR

E (β̂i) E (MSE) E (pvalue < 0.05)

β̂0 -0.8684 0.1992 0.5174

β̂t 0.2610 0.0243 0.4018

β̂1 0.0070 0.1900 0.0544

(II) GLM fitting with correction for CR

β̂0 -0.8370 0.1838 0.5224

β̂t 0.2509 0.0227 0.4012

β̂1 0.0067 0.1775 0.0534

(III) GLM fitting without correction for FLGI

β̂0 -1.4465 8.9957 0.4110

β̂t 0.1898 0.0307 0.1844

β̂1 0.0038 18.2440 0.0142

(IV) GLM fitting with correction for FLGI

β̂0 -0.9307 0.3947 0.4670

β̂t 0.1825 0.0301 0.1858

β̂1 0.0048 0.7993 0.0456
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Table 4

GLM estimated through MLE with Firth correction for T = 150, J = 5, b = 30 in a case of Scenario (i) with D 
= 0.16 and β1 = 1.6946. Results for 5000 trials. True values were assumed to be β0 ≈ −0.8473, βt ≈ 0.1840, β1 

= 1.6946 and βz = 0

(II) GLM fitting with correction for CR

E (β̂i) E (MSE) E (pvalue < 0.05)

β0̂
-0.8951 0.1413 0.7194

β̂t 0.1985 0.0175 0.3262

β1̂
1.7831 0.1488 0.9994

(IV) GLM fitting with correction for FLGI

β0̂
-0.8832 0.3192 0.3364

β̂t 0.2408 0.0291 0.3062

β1̂
1.6917 0.4313 0.7394
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Table 5

GLM estimated through MLE with Firth correction for T = 200, J = 10, b = 20, K = 3 in a case of scenario (ii) 

in which qj = [0.5 : 0.05 : 0.95]. Results for 5000 trials. True values were assumed to be β0 ≈ −0.8473, βz ≈ 
1.2528 and βt = β1 = β2 = 0

(II) GLM fitting with correction for CR

E (β̂i) E (MSE) E (pvalue < 0.05)

β0̂
-0.8527 0.1307 0.6778

β̂z 1.2597 0.1142 0.9758

β1̂
-0.0084 0.1305 0.0458

β2̂
-0.0029 0.1304 0.0486

(IV) GLM fitting with correction for FLGI

β0̂
-0.8771 0.1724 0.6740

β̂z 1.2471 0.1169 0.9702

β1̂
0.0114 0.2228 0.0598

β2̂
-0.0097 0.2246 0.0620

(VI) GLM fitting with correction for CFLGI

β0̂
-0.8455 0.1338 0.6632

β̂z 1.2505 0.1200 0.9686

β1̂
-0.0226 0.1471 0.0558

β2̂
-0.0196 0.1477 0.0492
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Table 6

GLM estimated through MLE with Firth correction for T = 200, J = 10, b = 20, K = 3 in a case of scenario (ii) 

in which qj = [0.5 : 0.05 : 0.95]. Results for 5000 trials. True values were assumed to be β0 ≈ −0.8473, βz ≈ 
1.2528 and β1 = 0.8473, βt = β2 = 0

(II) GLM fitting with correction for CR

E (β̂i) E (MSE) E (pvalue < 0.05)

β0̂
-0.8816 0.1324 0.7078

β̂z 1.3006 0.1239 0.9726

β1̂
0.9355 0.1549 0.6954

β2̂
-0.0032 0.1356 0.0516

(IV) GLM fitting with correction for FLGI

β0̂
-1.1635 0.5391 0.3994

β̂z 1.3492 0.1300 0.9762

β1̂
1.1300 0.5845 0.3672

β2̂
0.0041 0.7740 0.0246

(VI) GLM fitting with correction for CFLGI

β0̂
-0.8861 0.1378 0.6966

β̂z 1.3127 0.1243 0.9718

β1̂
0.8862 0.2077 0.7718

β2̂
-0.2487 0.5027 0.0288
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