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Abstract

Motivation—Genome-wide association studies have identified thousands of loci associated with 

human disease, but identifying the causal genes at these loci is often difficult. Several methods 

prioritise genes most likely to be disease causing through the integration of biological data, 

including protein-protein interaction and phenotypic data. Data availability is not the same for all 

genes however, potentially influencing the performance of these methods.

Results—We demonstrate that whilst disease genes tend to be associated with greater numbers of 

data, this may be at least partially a result of them being better studied. With this observation we 

develop PhenoRank, which prioritises disease genes whilst avoiding being biased towards genes 

with more available data. Bias is avoided by comparing gene scores generated for the query 

disease against gene scores generated using simulated sets of phenotype terms, which ensures that 

differences in data availability do not affect the ranking of genes. We demonstrate that whilst 

existing prioritisation methods are biased by data availability, PhenoRank is not similarly biased. 

Avoiding this bias allows PhenoRank to effectively prioritise genes with fewer available data and 

improves its overall performance. PhenoRank outperforms three available prioritisation methods in 

cross-validation (PhenoRank area under receiver operating characteristic curve [AUC]=0.89, 

DADA AUC=0.87, EXOMISER AUC=0.71, PRINCE AUC=0.83, P < 2.2 × 10-16).

Availability—PhenoRank is freely available for download at https://github.com/alexjcornish/

PhenoRank.

1 Introduction

Genome-wide association studies (GWAS) have identified thousands of genomic variants 

associated with a range of human traits, including susceptibilities to many diseases. Disease-

associated variants are themselves rarely causal and instead ‘tag’ regions of the genome 

containing variants in linkage disequilibrium, any one of which may be the causal variant. 

These causal variants may be located in the coding region of a gene, or in a regulatory region 

and disrupt the expression of a gene through cis or trans-acting regulatory mechanisms 
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(Jäger et al., 2015), making the identification of causal genes often difficult. This has led to 

the development of methods that integrate biological data to prioritise likely causal genes 

(Köhler et al., 2008; Vanunu et al., 2010; Erten et al., 2011; Yates et al., 2014; Smedley et 
al., 2015).

Network-based methods have been demonstrated to be effective at prioritising disease-

causing genes (Köhler et al., 2008; Vanunu et al., 2010; Erten et al., 2011; Yates et al., 2014; 

Smedley et al., 2015; Cowen et al., 2017). These approaches often score genes more highly 

if they, or their protein products, interact with genes known to be associated with the query 

disease, or genes associated with diseases that are phenotypically similar to the query 

disease (Vanunu et al., 2010; Erten et al., 2011; Smedley et al., 2015). Yates et al. found that 

disease proteins tend to occupy more central positions in PPI networks than non-disease 

proteins (Yates and Sternberg, 2013), whilst Das et al. found this to be true, but only for PPI 

networks generated through literature-curation (Das and Yu, 2012). Some network-based 

methods therefore score genes and gene variants whose protein products are more central in 

PPI networks higher than those that are less central (Fu et al., 2014; Yates et al., 2014). The 

centrality measures used by these methods are correlated with the number of interactions a 

protein is involved in (Valente et al., 2008). It has been suggested however that some 

proteins may be involved in more interactions in literature-curated PPI networks as a result 

of them being better studied (Das and Yu, 2012; Gillis and Pavlidis, 2012). If this is true, 

then network-based methods that score genes central in a network more highly may be less 

effective at prioritising genes that are less well studied, as these genes may be more 

peripheral in a network, as a result of them having fewer available data.

Databases such as ClinVar (Landrum et al., 2016), OMIM (Amberger et al., 2015) and 

UniProtKB (The UniProt Consortium, 2014) collate data on the relationships between 

genetic variation and human disease. Databases that associate genetic variation with 

phenotypic abnormalities have also been established for model organisms (Bult et al., 2016) 

and used to study human disease (Chen et al., 2012; Smedley et al., 2015). It has been 

demonstrated that disease genes can be prioritised by identifying genes implicated in 

phenotypically similar diseases (Vanunu et al., 2010; Smedley et al., 2015). For example, 

novel causal genes for prostate cancer may be inferred by identifying genes implicated in 

other cancers (Vanunu et al., 2010). Similarly, candidate disease genes in humans can be 

prioritised by identifying orthologous mouse genes whose mutation causes similar 

phenotypes in mice (Chen et al., 2012; Smedley et al., 2015).

Multiple approaches have been proposed to quantify the phenotypic similarity of human 

diseases. Phenotype ontologies, such as the Human Phenotype Ontology (HPO) (Köhler et 
al., 2014) and the Mammalian Phenotype Ontology (MP) (Smith, Goldsmith and Eppig, 

2005), provide standardized and structured vocabularies of observed phenotypic 

abnormalities. Multiple phenotype ontology terms can be mapped to a human disease to 

describe the phenotypic features of the disease. These features can include abnormalities 

associated with the disease (for example ‘Abnormality of the outer ear’), its mode of 

inheritance (for example ‘Autosomal dominant inheritance’) and clinical features (for 

example ‘Childhood onset’). The structured nature of ontologies allows the similarity of 

terms to be quantified. For example, the HPO terms ‘IgM deficiency’ and ‘IgE deficiency’ 
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are both subclasses of ‘Decreased antibody level in blood’ and may therefore be considered 

similar. The HPO terms ‘IgM deficiency’ and ‘Dementia’ are less well connected in the 

ontology and may therefore be considered less similar. Semantic similarity methods such as 

simGIC measure the similarity of sets of terms in ontologies (Pesquita et al., 2008) and can 

therefore quantify the similarity of sets of phenotype terms annotating human diseases and 

mouse mutants, thereby providing a measure of their phenotypic similarity. It has been 

demonstrated however that semantic similarity methods can be biased by data availability. 

For example, the simGIC method tends to identify larger sets of terms, sets of terms that are 

more similar in size, and sets of terms from deeper ontology levels, as being more similar 

(Kulmanov and Hoehndorf, 2017). Gene prioritisation methods that use semantic similarity 

to quantify phenotypic similarity may therefore be biased by the numbers of phenotype 

terms annotating human diseases and model organism mutants, which may reflect how well 

studied these entities are.

In this study, we demonstrate that whilst disease genes are involved in greater numbers of 

PPIs than non-disease genes in some PPI databases, this may be at least partly a result of 

them being better studied. Scoring genes with more available data more highly may reduce 

the ability of a method to prioritise less-well-studied genes, for which fewer data are likely 

to be available. We therefore develop PhenoRank, which uses PPI and phenotype data from 

multiple species to prioritise disease genes, whilst avoiding being biased by the number of 

data associated with each gene. Bias is avoided by comparing gene scores generated for the 

query disease against gene scores generated using simulated sets of phenotype terms. Using 

this simulation-based approach ensures PhenoRank is not biased towards genes with more 

available data and improves its performance.

2 Methods

2.1 PPI data

PPI data were downloaded from four databases: BioGRID (version 3.4.131) (Chatr-

Aryamontri et al., 2015), HI-II-14 (on 27 November 2015) (Rolland et al., 2014), HPRD (on 

30 March 2015) (Keshava Prasad et al., 2009) and IntAct (on 4 January 2016) (Orchard et 
al., 2014). Only direct interactions, associations and physical associations were obtained 

from BioGRID and IntAct. Duplicate interactions, looping interactions and interactions that 

did not occur between two H. sapiens proteins were excluded. Some PPI resources do not 

record interactions between different protein isoforms and we therefore considered all 

interactions at the gene level. Combined data from the four resources, containing 210,914 

unique interactions spanning 16,184 genes, were used in PhenoRank (Supplementary Table 

1).

2.2 Human disease variant data

Data downloaded from ClinVar (on 22 October 2016), OMIM (on 1 November 2016) and 

UniProtKB (on 22 October 2016) were used to define the disease-gene associations used in 

PhenoRank. ClinVar variants not marked as pathogenic or likely pathogenic, or whose 

review status was less than two stars were excluded. Non-disease variants from UniProtKB 

were excluded. Disease-gene associations from OMIM were not considered if the molecular 
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basis of the disease is unknown. Diseases reported using vocabularies other than OMIM 

were mapped to OMIM terms using the cross-referencing provided by the Disease Ontology 

(DO) (Kibbe et al., 2015). Using these data, we define a disease as being associated with a 

gene if a gene variant is reported as being disease causing. The combined data set contains 

5,685 unique associations between 4,729 diseases and 3,713 genes (Supplementary Table 2).

2.3 Mouse phenotype data

Genotypes and phenotype term annotations for 24,834 mouse mutants and human-mouse 

gene orthology data were downloaded from the Mouse Genomics Database (MGD, on 13 

October 2016). Human orthologs of the mutated gene in 21,143 mouse mutants were 

identified using the orthology data.

2.4 Annotating diseases with phenotype terms

Mappings between disease terms (from OMIM) and phenotype terms (from HPO and MP) 

from HPO (Köhler et al., 2014) and Hoehndorf et al. (Hoehndorf et al., 2015) are used in 

PhenoRank to measure the phenotypic similarity of the query disease and diseases in 

OMIM. Hoehndorf et al. mapped phenotype terms (from HPO and MP) to disease terms 

(from DO) through automated text mining. Hoehndorf et al. determined that the 21 

phenotype terms most strongly associated with each disease were most informative when 

quantifying phenotypic similarity and we therefore include these phenotype term mappings 

in PhenoRank. The cross-referencing provided by the DO was used to transfer the mapped 

phenotype terms to the corresponding OMIM diseases. The combined data set contains 

128,695 unique mappings between 7,042 OMIM diseases and 8,313 unique HPO and MP 

phenotype terms (Supplementary Table 3).

2.5 Measuring phenotypic similarity

PhenoRank uses the simGIC similarity measure to compute the phenotypic similarity of 

human diseases and mouse mutants (Supplementary Figure 1). Let Wi and Wj be two sets of 

phenotype ontology terms. In our case, these phenotype terms are terms from the HPO or 

MP that either annotate a disease or describe abnormalities observed in a mouse mutant 

(Supplementary Figure 2). Uberpheno, a cross-species ontology generated by integrating 

multiple phenotype ontologies, including the HPO and MP, is used to compare sets of terms 

(Köhler et al., 2013). The true path rule states that association with an ontology term implies 

association with all ancestors of the term (Pesquita et al., 2008), and we therefore add the 

ancestors of each term in Wi and Wj to the respective set using Uberpheno. Each term in 

Uberpheno is weighted by its information content (IC), defined as the negative logarithm of 

the probability that a given disease or mouse mutant is annotated with the term. Using 

simGIC, the similarity S of Wi and Wj is the Jaccard similarity coefficient weighted by the 

IC of each term:

S(Wi, W j) =
∑x ∈ Wi ∩ W j

IC(x)

∑y ∈ Wi ∪ W j
IC(y)
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2.6 Disease gene prioritisation using PhenoRank

Let D be the diseases represented in ClinVar, OMIM and UniProtKB, M be the mouse 

mutants reported in the MGD, q be the query disease so that q∈D, and Wi be the set of 

phenotype terms mapped to phenotype data source i, which can be either a human disease or 

mouse mutant. In PhenoRank, all diseases in D and mouse mutants in M are first scored by 

their phenotypic similarity to query disease q (Figure 1A). Phenotypic similarity is measured 

by comparing the ontological similarity of the set of phenotype terms mapped to q, to the 

sets of phenotype terms mapped to each disease in D and mouse mutant in M, using the 

simGIC method. Diseases and mouse mutants are therefore scored as being phenotypically 

similar to q if they are mapped to phenotype terms that are closely related in Uberpheno.

These phenotypic similarity scores are used to score each gene in a PPI network. Let 

G=(V,E) be this network, with V being nodes representing genes and E being edges 

representing physical interactions between the protein products of the genes. Gene scores are 

computed using disease-gene associations from ClinVar, OMIM and UniProtKB, and 

human-mouse orthology data from the MGD (Figure 1B). The score of gene i is defined as 

the sum of the phenotypic similarity of each associated disease and each mutant of an 

orthologous mouse gene, to q, divided by the numbers of associated diseases and mouse 

mutants:

Qi =
∑ j ∈ Yi

S(Wq, W j)

Yi
+

∑k ∈ Zi
S(Wq,Wk)

Zi

where Yi is the set of diseases associated with gene i, Zi is the set of mutants of mouse genes 

orthologous to gene i and Wq is the set of phenotype terms annotating q. Genes are therefore 

scored highly if they are associated with a disease that is phenotypically similar to q, or if 

they are orthologous to a mouse gene whose mutation produces phenotypic abnormalities 

similar to q.

These gene scores are next propagated across G using the random walk with restart (RWR) 

method (Figure 1C), as this approach has been shown to be effective when prioritising 

disease genes and variants using network data (Köhler et al., 2008; Vanunu et al., 2010). 

Propagation of gene scores ensures that genes that interact with many genes that are 

phenotypically relevant to the query disease are also scored highly.

To account for the differing availability of data between genes, gene scores generated for the 

query disease are compared against gene scores generated using simulated sets of phenotype 

terms (Figure 1D). Simulated sets of phenotype terms are generated by sampling from 

phenotype terms mapped to the same diseases by HPO and Hoehndorf et al. (Supplementary 

Figure 3B), to ensure that the simulated sets of terms closely resemble the sets of phenotype 

terms mapped to real diseases. Sets of phenotype terms equal in size to the set of terms 

mapped to q are simulated. To simulate a set of terms of size |Wq|, a single seed term is first 

sampled from HPO or MP. All phenotype terms in HPO and MP are then ranked by the 

number of times they are mapped to the same disease as the seed term, with ties ordered 

randomly. The seed term is itself included in this ranking. If fewer than |Wq| terms are 
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mapped to the same disease as the seed term, then a new seed term is sampled. The top |Wq| 

ranked terms are used as the simulated set of phenotype terms, ensuring that the simulated 

sets contain terms that are frequently mapped to the same disease.

For each simulated set of phenotype terms, all genes are rescored using the simulated set of 

terms in place of the query disease, and these scores again propagated across the PPI 

network. When rescoring genes all data are unchanged, ensuring that the effect of data 

availability on each gene score is the same for the query disease and each simulated set of 

phenotype terms. Comparing the gene scores generated using the query disease against the 

gene scores generated using each simulated set of phenotype terms therefore allows 

differences in data availability to be negated. An empirical P value is computed for each 

gene by taking the proportion of simulated sets of phenotype terms in which the gene is 

scored higher than when q is considered. These P values represent the probability of 

observing a gene score at least as great as that observed, given that the gene is not associated 

with the query disease. A minimum P value of 1/u, where u is the number of simulated sets 

of phenotype terms used, is applied to ensure that no P values equal zero. We run 

PhenoRank using 1,000 simulated sets of phenotype terms and use these P values to 

prioritise candidate genes. Through the application of PhenoRank to 100 randomly selected 

diseases, we demonstrate that PhenoRank correctly controls the type-1 error rate 

(Supplementary Figure 4). PhenoRank data is available to download (https://github.com/

alexjcornish/PhenoRank_Data).

2.7 Propagating scores across PPI networks

PhenoRank propagates gene scores across network G using the RWR method 

(Supplementary Figure 5) (Köhler et al., 2008). Let n be the number of vertices in G, A be 

the column-normalised adjacency matrix of G and Qt be a vector of length n and the 

distribution of scores across vertices at time t. Q0 is the initial distribution of gene scores. 

The distribution of scores across time points is computed iteratively:

Qt + 1 = (1 − r)AQt + rQ0

where r is the restart probability. To make these scores comparable across the query disease 

and the simulated sets of phenotype terms, a fixed number of iterations are completed and 

scores ranked before PhenoRank computes P values.

2.8 Evaluating method bias

We measured the correlation between the gene scores computed by PhenoRank and three 

published gene prioritisation methods (DADA (Erten et al., 2011), EXOMISER (Smedley et 
al., 2015) and PRINCE (Vanunu et al., 2010)) and the numbers of data associated with each 

gene, to determine whether the methods are biased towards genes with more available data. 

PhenoRank was run with and without simulated sets of phenotype terms (we refer to these 

method versions as PhenoRank-Simulation and PhenoRank-NoSimulation), to establish 

whether the use of these simulated sets of terms affects how biased PhenoRank is. 

EXOMISER prioritises disease genes and variants by combining a gene-based scoring 

method, which uses PPI data and phenotype data from multiple species, with variant-based 
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pathogenicity prediction. We use the gene-level scores produced by EXOMISER when 

evaluating performance and therefore refer to the method as EXOMISER-Walker for clarity. 

Gene scores were generated by applying each method to 200 diseases, randomly selected 

from those diseases than can be considered by all methods. We considered how five features 

of the data used by each method correlate with the computed gene scores:

i. Network degree of each gene.

ii. Number of sources of phenotype data. This is defined as the number of human 

diseases and (if used by the method) model organism mutants associated with 

each gene.

iii. Number of annotating phenotype terms. This is defined as the median number of 

phenotype terms annotating the sources of phenotype data associated with each 

gene.

iv. Difference in the number of annotating phenotype terms. This is defined as the 

median absolute difference between the number of phenotype terms annotating 

the query disease, and the numbers of phenotype terms annotating each source of 

phenotype data associated with each gene.

v. Ontology depth of annotating phenotype terms. This is defined as the median of 

the maximum ontology depth of the phenotype terms annotating the sources of 

phenotype data associated with each gene.

PhenoRank and EXOMISER-Walker both use phenotype terms annotating each source of 

phenotype data to measure phenotypic similarity, whilst DADA and PRINCE measure 

phenotypic similarity using text mining. We therefore test all five data features when 

considering PhenoRank and EXOMISER-Walker, but restrict our analysis to data features (i) 

and (ii) when considering DADA and PRINCE.

2.9 Evaluating method performance

The performance of each gene prioritisation method was evaluated using leave-one-out 

cross-validation. To ensure that any observed performance differences were a result of 

methodology, rather than the data releases used, we ran DADA, EXOMISER-Walker and 

PRINCE using the same disease-gene association data used by PhenoRank. Gene-phenotype 

associations used by EXOMISER-Walker were also updated and the IC of each phenotype 

term recalculated. HPO terms mapped to OMIM diseases by the HPO were used as input 

when running EXOMISER-Walker. We used our own implementation of the PRINCE 

algorithm, which is available in the PhenoRank package.

Leave-one-out cross-validation was completed using a set of 2,708 associations between 

diseases that can be input into all four methods, and genes that can be scored by all four 

methods. In each cross-validation trial, an association from this set (between disease Di and 

gene gj ∈ Si) was masked (i.e. removed from the data used by each method). Each method 

was then run using disease Di as input. All other genes associated with disease Di (gk ∈ Si, k 
≠ j) and genes not scored by all four methods were excluded from the results. The score of 

gene gj relative to the scores of the other genes in the results was used to evaluate the 

performance of each method. This process was repeated for each of the 2,708 disease-gene 
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associations. Receiver operating characteristic (ROC) curves and the areas under these 

curves (AUCs) were computed using the pROC R package (Robin et al., 2011).

2.10 Selecting method parameters

Scores propagated across a network using the RWR algorithm converge on a steady-state 

distribution (Cowen et al., 2017). To determine the number of RWR algorithm iterations 

required by PhenoRank for convergence, we ran PhenoRank using 200 randomly selected 

OMIM terms and calculated the mean absolute difference between the gene scores computed 

using between 1 and 29 iterations, and the gene scores computed using 30 iterations, 

demonstrating that scores converge and that the mean absolute change in gene score after 20 

iterations is <10-5 for all tested parameters (Supplementary Figure 6A). We next conducted 

leave-one-out cross-validation to select an optimal value for restart probability r, using only 

the 2,977 disease-gene associations reported by ClinVar, OMIM or UniProtKB that were not 

in the set of 2,708 associations used in performance evaluation. This ensured that parameter 

selection and performance evaluation were independent, therefore avoiding circularity. 

PhenoRank performs optimally when r=0.1 (Supplementary Table 4) and we therefore ran 

PhenoRank using 20 iterations and r=0.1. We used the same approach to determine the 

number of RWR algorithm iterations required by PRINCE and select optimal values for the 

two PRINCE parameters (α and c). Convergence is achieved by 20 iterations 

(Supplementary Figure 6B) and performance is optimal when α=0.5 and c=-15 

(Supplementary Table 4), and we therefore ran PRINCE using these values.

2.11 Disease classes

A disease class was identified for each OMIM disease using the ontological structure of the 

DO (Supplementary Table 5). Each OMIM disease was first mapped to a DO term using the 

cross references provided by the DO. Ancestors of these DO terms at the third level of the 

DO were then identified and these broader disease definitions used as disease classes. If an 

OMIM disease mapped to multiple third-level DO terms, then the third-level DO term 

mapped to the greatest number of OMIM diseases was used to classify the disease, to reduce 

the number of classes considered.

3 Results

3.1 Study bias in PPI databases

We analysed the numbers of PPIs involving disease and non-disease genes to determine 

whether disease genes are involved in greater numbers of PPIs than non-disease genes, and 

whether study bias is likely to contribute to any differences. PPI data were downloaded from 

BioGRID, HI-II-14, HPRD and IntAct and disease-gene association data were obtained from 

ClinVar, OMIM and UniProtKB. If a gene is reported as being disease associated by at least 

one resource, then it is defined as a disease gene. Otherwise it is defined as a non-disease 

gene.

BioGRID, HPRD and IntAct contain PPIs curated from the literature. The proteins screened 

in the studies contributing to these resources depend on the aims of the studies and the 

generation of these data was therefore hypothesis-driven (HD). Conversely, HI-II-14 
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contains interactions identified in a single unbiased screen of 14,000 proteins (Rolland et al., 
2014) and the generation of these data was therefore hypothesis-free (HF). If disease genes 

are truly involved in greater numbers of PPIs than non-disease genes, we would expect 

disease genes to be involved in greater numbers of PPIs than non-disease genes in data sets 

generated using both HD and HF approaches. However, whilst disease genes are involved in 

greater numbers of PPIs than non-disease genes in each of the HD data sets, disease genes 

are involved in similar numbers of PPIs as non-disease genes in the HF data set (Table 1).

If disease genes are better studied, and better studied genes are involved in greater numbers 

of PPIs in each of the HD data sets, then study bias may at least partially explain why 

disease genes are involved in more interactions than non-disease genes in the HD data sets, 

but not the HF data set. To determine whether disease genes are better studied, we used the 

number of PubMed-indexed publications related to each gene in gene2pubmed (NCBI 

Resource Coordinators, 2016) (downloaded 11 August 2017) as a measure of how well 

studied each gene is. Disease genes tend to be related to greater numbers of publications 

(median 59 publications) than non-disease genes (median 13 publications, P < 2.2 × 10-16, 

Wilcoxon rank sum test) indicating that they are better studied. Better-studied genes are 

involved in more PPIs than less-well-studied genes in each of the PPI data sets (Table 2), 

although this difference is much greater in the HD data sets than in the HF data set. The fact 

that disease genes tend to be better studied than non-disease genes, and that better-studied 

genes are involved in more PPIs than less-well-studied genes in the HD data sets, may partly 

explain why disease genes are observed as being involved in more PPIs than non-disease 

genes in the HD data sets. Study bias may therefore at least partially account for the 

differences in the numbers of PPIs that disease and non-disease genes are involved in in the 

HD data sets.

3.2 Bias in network-based gene prioritisation methods

We measured the correlations between gene scores computed by PhenoRank and three other 

prioritisation methods, and features of the data used by each method, to determine whether 

the methods are biased by the numbers of data associated with each gene. Gene scores 

computed by DADA, EXOMISER and PRINCE are positively correlated with the network 

degree of each gene and the numbers of associated sources of phenotype data (i.e. the 

number of human diseases and model organism mutants associated with each gene), 

suggesting that these methods score genes more highly if they are associated with more data 

(Table 3). The scores computed by PhenoRank-NoSimulation are similarly correlated with 

network degree and the number of associated sources of phenotype data, whilst the gene 

scores computed by PhenoRank-Simulation are less strongly correlated with these data 

features, indicating that the use of simulated sets of phenotype terms ensures that 

PhenoRank is less biased by data availability.

Gene scores computed by PhenoRank-NoSimulation also correlate with the number of 

phenotype terms annotating the sources of phenotype data associated with each gene, and 

the ontology depth of these phenotype terms (Table 3). This suggests that PhenoRank-

NoSimulation scores genes more highly if the human diseases and mouse mutants associated 

with the gene are annotated with greater numbers of terms from phenotype ontologies. 
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Differences between the number of phenotype terms annotating the query disease, and the 

numbers of phenotype terms annotating gene-associated human diseases and mouse mutants, 

do not correlate with computed gene scores, suggesting that this data feature is not a major 

source of bias. Gene scores computed by PhenoRank-Simulation are less strongly correlated 

with the number of annotating phenotype terms and the ontology depth of these terms, 

indicating that the use of simulated sets of phenotype terms reduces bias introduced by how 

well human diseases and mouse mutants are annotated with phenotype terms. Despite 

EXOMISER-Walker also using phenotype terms to score genes, the gene scores computed 

by EXOMISER-Walker are not strongly correlated with the numbers of annotating 

phenotype terms, or the ontology depths of these terms, possibly reflecting differences in the 

EXOMISER-Walker and PhenoRank-NoSimulation methodologies.

3.3 Evaluation of method performance

We used leave-one-out cross-validation to evaluate the performances of PhenoRank-

Simulation, PhenoRank-NoSimulation, DADA, EXOMISER-Walker and PRINCE (Figure 

2). Using simulated sets of phenotype terms improves the performance of PhenoRank 

(PhenoRank-Simulation AUC=0.89, PhenoRank No-Simulation AUC=0.77, P < 2.2 × 10-16, 

two-sided DeLong’s method). Reducing the bias of PhenoRank towards genes with more 

available data therefore also improve its performance. PhenoRank-Simulation outperforms 

DADA (AUC=0.87, P < 2.2 × 10-16), EXOMISER-Walker (AUC=0.71, P < 2.2 × 10-16) and 

PRINCE (AUC=0.83, P < 2.2 × 10-16). Whilst DADA is the method with overall 

performance most similar to PhenoRank-Simulation, it performs much worse than 

PhenoRank at higher specificities, with PhenoRank-Simulation and DADA achieving 

sensitivities of 87% and 47% at 90% specificity respectively. DADA however outperforms 

PhenoRank-Simulation at lower specificities, with PhenoRank-Simulation and DADA 

achieving sensitivities of 92% and 98% at 50% specificity respectively.

The bias of DADA, EXOMISER-Walker and PRINCE towards genes with more available 

data may affect their ability to effectively prioritise genes associated with fewer available 

data. To test this, we stratified the cross-validation procedure by the PPI network degree of 

each gene and the number of phenotype data associated with each gene. The set of 2,708 

disease-gene associations used in method performance evaluation was split into five strata 

based on the degree of the gene in each disease-gene association, and five strata based on the 

number of phenotype data associated with the gene in each disease-gene association. Cross-

validation was then run using each of the strata (Figure 3, Supplementary Table 6). Each 

method uses different data and how the disease-gene associations were stratified was 

therefore not the same for each method. DADA, EXOMISER-Walker and PRINCE perform 

better when applied to genes with greater degrees and associated with more phenotype data, 

reflecting their biases towards genes associated with greater numbers of data. Whilst the 

performance of PhenoRank-NoSimulation is similarly affected by the numbers of associated 

data, PhenoRank-Simulation performs more consistently across the strata, demonstrating 

that the use of simulated sets of phenotype terms reduces the effect of data availability on 

method performance. PhenoRank may therefore be especially useful when prioritising genes 

for which fewer data are available.

Cornish et al. Page 10

Bioinformatics. Author manuscript; available in PMC 2018 June 20.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Genes associated with diseases of different classes are associated with different numbers of 

data (Supplementary Table 7) possibly reflecting how well studied different disease classes 

are. To determine whether the performances of PhenoRank-Simulation, DADA, 

EXOMISER-Walker and PRINCE vary between disease classes, we ran the cross-validation 

procedure using disease-gene associations stratified by disease class (Supplementary Figure 

7, Supplementary Table 8). PhenoRank-Simulation was the best performing method in 20 of 

the 30 disease classes, DADA in 3 disease classes, EXOMISER-Walker in 2 disease classes 

and PRINCE in 6 disease classes. These performance differences may be influenced by the 

biases exhibited by the methods. PhenoRank-Simulation outperforms DADA, EXOMISER-

Walker and PRINCE in the Monogenic Disease and Integumentary System Disease classes 

(P<0.05), but PRINCE outperforms PhenoRank in the Cancer class (P<0.05). This may 

reflect the fact that the mean degree of genes in the PPI network used by PRINCE is higher 

for genes associated with diseases in the Cancer class (69.8), than genes associated with 

diseases in the Monogenic Disease (42.8) and Integumentary System Disease (29.6) classes.

In the data sets used by PhenoRank-Simulation, 3,713 human protein-coding genes are 

associated with at least one human disease, 8,607 with mouse phenotype data and 9,618 with 

either. To determine whether the performance of PhenoRank-Simulation is improved by 

using data from both species, we ran the cross-validation procedure using only human 

disease data and only mouse phenotype data. PhenoRank-Simulation performs better when 

using both human and mouse data (AUC=0.89), than when using only human data 

(AUC=0.85, P < 2.2 × 10-16) and only mouse data (AUC=0.80, P < 2.2 × 10-16) 

demonstrating that PhenoRank successfully integrates data from the two species.

3.4 Application of PhenoRank to genes in loci associated with rheumatoid arthritis

We prioritised likely causal genes in loci identified in a GWAS of rheumatoid arthritis 

(Okada et al., 2014) using PhenoRank. Candidate genes in the loci were identified by first 

selecting single nucleotide polymorphisms (SNPs) in linkage disequilibrium with the lead 

SNP (r2>0.05) in European populations (Machiela and Chanock, 2014). Regions spanning 

these SNPs were then defined and all genes whose protein-coding regions at least partially 

overlap these regions were considered candidates. Loci containing a gene already known to 

be associated with rheumatoid arthritis were not considered. PhenoRank was then run using 

rheumatoid arthritis as the input disease and the scores of the genes in these loci extracted 

from the generated results file. Four genes (PADI2, SYT7, LGALS1 and PLCL2) in the 

identified loci were implicated by PhenoRank as being involved in rheumatoid arthritis 

development (P<0.05, after within-locus correction for multiple testing, Supplementary 

Table 9). None of these four genes are associated with any human disease in the data used by 

PhenoRank, although inflammatory and autoimmune phenotypes have been observed in 

mutants of their mouse orthologs, including “increased susceptibility to experimental 

autoimmune encephalomyelitis” and “abnormal adaptive immunity” (Supplementary Table 

9). These genes also interact with genes with immune system functions, including CD4 and 

CD8A (Zhu, Yamane and Paul, 2010). It is for these reasons that PhenoRank identifies them 

as being potential candidates. Some of these genes have been previously implicated in 

autoimmune disease: PADI2 expression has been demonstrated to correlate with arthritis 

severity in mice (Johnsen et al., 2011), LGALS1 damages cartilage via inflammation in 
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osteoarthritis (Toegel et al., 2016) and PLCL2 has been associated with systemic sclerosis 

(Arismendi et al., 2015).

4 Conclusions

It has been suggested that the proteins involved in greater numbers of interactions may be 

less able to tolerate mutations, as a greater proportion of their sequence may be required to 

facilitate the interactions, thereby increasing the likelihood that they are disease-associated 

(Yates and Sternberg, 2013). In this study, we show that whilst the protein products of 

disease genes tend to be involved in greater numbers of PPIs in HD data sets, this may be at 

least partly a result of them being better studied. PPI networks generated through high-

throughput approaches, which are less susceptible to study bias, currently cover only a small 

proportion of the PPIs thought to occur in cells (Rolland et al., 2014). It may not be possible 

to determine whether the number of interactions a protein is involved in affects the 

likelihood of it being disease-associated until we have a more comprehensive, accurate and 

unbiased map of the interactome.

Genes associated with diseases of difference classes tend to be involved in different numbers 

of PPIs (Supplementary Table 7). In the PPI network used by PhenoRank, genes involved in 

cancer have a mean degree of 99.5, whilst genes involved in inherited metabolic disorders 

have a mean degree of only 18.2. The better characterisation of pathways involved in cancer 

may at least partly explain this difference. The differing performances of PhenoRank, 

DADA, EXOMISER-Walker and PRINCE across disease classes suggests that a user should 

consider how well studied a disease is when selecting a prioritisation method. A method that 

performs well when more data are available, such as DADA, EXOMISER-Walker or 

PRINCE, may be more suitable for studying diseases with more available data, whilst 

methods that are less biased by data availability, such as PhenoRank, may be more suitable 

for studying diseases with few available data.

Gillis and Pavlidis (2012) describe study bias in PPI networks in relation to predicting gene 

function. They suggest that genes involved in more interactions may represent highly studied 

genes, and that these genes may be more open to the accumulation of false positive 

interactions as a result of this. If highly studied genes are involved in more false positive 

interactions, then this may partially explain why the use of simulated sets of disease 

phenotype terms improves PhenoRank performance, as using this simulation-based approach 

reduces the score of high-degree genes, thereby reducing the influence of interactions that 

are more likely to be false positives.

The gene scores computed by PhenoRank-NoSimulation, DADA, EXOMISER-Walker and 

PRINCE most strongly correlate with the degree of the genes in the networks used by the 

methods. This suggests that differences in PPI network degree is a major source of bias 

affecting these methods. Whilst DADA adjusts for the degree of candidate genes in PPI 

networks in order to better prioritise genes of low degree, it is still biased towards genes of 

high degree. This is likely because DADA employs a “uniform scoring strategy”, in which 

raw and degree-adjusted gene scores are combined to produce the final gene ranking.
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While PhenoRank was developed to prioritise genes in disease-associated loci, the method 

could be extended to prioritise disease variants. Methods such as EXOMISER and eXtasy 

(Sifrim et al., 2013) have demonstrated that the integration of a variant effect predictor with 

gene-level prioritisation can aid in pathogenic variant identification. The use of a method 

that is less biased towards genes for which more data are available, such as PhenoRank, 

alongside a variant effect predictor may allow for the more effective prioritisation of variants 

in genes that are less well studied.

Whilst existing network-based gene prioritisation methods are biased toward genes for 

which more data are available, the use of simulated sets of phenotype terms ensures that 

PhenoRank is not similarly biased. Although high-throughput phenotypic screens are being 

completed (Brown and Moore, 2012), many data sources are still likely to be influenced by 

study bias. Approaches similar to the simulated sets of phenotype terms used by PhenoRank 

could be incorporated into existing prioritisation methods, such as DADA, PRINCE and 

EXOMISER, to reduce the influence of study bias.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
PhenoRank overview. (A) Phenotypic similarity of the query disease (q) to each disease in 

OMIM (D) and each mouse mutant in MGD (M) is quantified. Thicker lines represent 

stronger phenotypic similarities. (B) Phenotypic similarity scores are applied to genes in a 

PPI network, using known disease-gene associations and mouse-human gene orthology data. 

Darker red nodes represent genes with greater relevance to the disease of interest. (C) 

Phenotypic relevance scores are propagated across a PPI network, so that genes that interact 

with many high scoring genes are also scored highly. (D) Gene scores generated for the 

query disease are compared against gene scores generated using simulated sets of phenotype 

terms (S). By comparing the score the gene receives for the query disease against the 

distribution of scores the gene receives for the simulated sets of phenotype terms, a P value 

for each gene is generated. In this illustrative example, the computation of a P value for the 

gene marked X is shown. While only two simulated sets of disease phenotypes are shown, 

PhenoRank is run with 1,000 simulated sets by default.
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Figure 2. 
Performances of PhenoRank-Simulation, PhenoRank-NoSimulation, DADA, EXOMISER-

Walker and PRINCE in leave-one-out cross-validation.
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Figure 3. 
Method performance when applied to genes with different numbers of associated data. For 

each method, the testing data set of 2,708 disease-gene associations was stratified based on 

(A) the network degree of each gene and (B) the number of sources of phenotype data 

associated with each gene, and leave-one-out cross-validation completed. The size of each 

circle represents the numbers of disease-gene associations in the testing data set strata.
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Table 1

Numbers of PPIs disease and non-disease genes are involved in. Differences tested using a two-sided Mann-

Whitney U test.

Database

Disease genes Non-disease genes

Difference
Mean

n. PPIs
Median
n. PPIs

Mean
n. PPIs

Median
n. PPIs

BioGRID 26.3 10.0 18.5 8.0 P<2.2×10-16

HI-II-14 5.7 2.0 6.7 2.0 P=0.685

HPRD 10.7 5.0 7.2 3.0 P<2.2×10-16

IntAct 18.8 7.0 14.3 6.0 P<2.2×10-16
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Table 2

Numbers of PPIs better and less-well-studied genes are involved in. Better and less-well-studied genes are 

defined as those in the top and bottom thirds of genes ranked by the number of related publications in 

gene2pubmed. Differences tested using a two-sided Mann-Whitney U test.

Better-studied genes Less-well-studied genes

Database Mean
n. PPIs

Median
n. PPIs

Mean
n. PPIs

Median
n. PPIs

Difference

BioGRID 37.8 18.0 7.2 3.0 P<2.2×10-16

HI-II-14 6.8 2.0 6.2 2.0 P=0.013

HPRD 15.2 8.0 3.4 2.0 P<2.2×10-16

IntAct 26.4 12.0 6.5 3.0 P<2.2×10-16
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Table 3

Correlations between the gene scores computed by each method and features of the data used by each method. 

DADA and PRINCE do not quantify phenotypic similarity using terms from phenotype ontologies, and 

therefore correlations involving phenotype terms were not measured for these methods. Correlations measured 

using Spearman’s rank correlation coefficient.

Data feature PhenoRank-Simulation PhenoRank-NoSimulation DADA EXOMISER PRINCE

Network degree of each gene -0.04 0.91 0.64 0.46 0.47

Number of sources of phenotype data -0.03 0.21 0.32 0.18 0.26

Number of annotating phenotype terms -0.04 0.13 NA 0.01 NA

Difference in the number of annotating 
phenotype terms

-0.01 -0.03 NA -0.05 NA

Ontology depth of annotating phenotype 
terms

-0.03 0.18 NA 0.02 NA
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