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Abstract

Geppetto is an open-source platform that provides generic middleware infrastructure for building 

both online and desktop tools for visualising neuroscience models and data and managing 

simulations. Geppetto underpins a number of neuroscience applications including Open Source 

Brain, Virtual Fly Brain, NEURON-UI and NetPyNE-UI. Open Source Brain is used by 

researchers to create and visualise computational neuroscience models described in NeuroML and 

simulate them through the browser. Virtual Fly Brain is the reference hub for Drosophila 
melanogaster neural anatomy and imaging data including neuropil, segmented neurons, 

microscopy stacks and gene expression pattern data. Geppetto is also being used to build a new 

user interface for NEURON, a widely used neuronal simulation environment, and for NetPyNE, a 

Python package for network modelling using NEURON. Geppetto defines domain agnostic 

abstractions used by all these applications to represent their models and data and offers a set of 
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modules and components to integrate, visualise and control simulations in a highly accessible way. 

The platform comprises a backend which can connect to external data sources, model repositories 

and simulators together with a highly customisable frontend.

Introduction

Investigations of fundamental questions in neuroscience, such as the mechanistic basis of 

behaviour and cognition, generate large volumes of experimental data, as well as complex 

computational models spanning different levels of biological detail. These push the 

neuroscience applications available to researchers to their limits. Visualising and managing 

the heterogeneity of neuroscience data and models in a way that is accessible and usable for 

both experimentalists and modellers is crucial for driving the field forward. For example, it 

has been challenging to visualize the data and models required to link the dynamics of the 

nervous system of C. elegans to its behaviour [1], or to understand how the sleep regulatory 

circuit in Drosophila melanogaster is affected by the surrounding environment [2].

In neuroscience, visualisation and simulation tools exist for many of the levels of detail 

involved [3–7], but it is often far from trivial to use them in concert [8]. One popular 

approach to solving this issue involves using general purpose programming languages such 

as Python [9–11]. This approach enables the rapid development of toolchains to solve a 

specific visualisation and integration problem, gluing together multiple libraries and tools 

[12]. The problem with this approach is that these toolchains are usually developed for a 

specific use case, e.g. processing data from a specific source. Over time, as the application is 

modified to solve different problems (e.g. deal with a new model or with a new type of 

visualisation), the specificity becomes an obstacle and the codebase becomes a series of ad 

hoc extensions that are difficult to maintain [13]. An even greater problem comes from the 

fact that these tools, and even more so their combination, are rather inaccessible to many 

researchers. Such technological barriers have had a remarkable effect in the neuroscience 

field as a whole, resulting in modellers and experimentalists working as two different 

communities separated by a technological divide. This has resulted in computational models 

that are poorly validated and has left model-generated hypotheses unexplored.

Data and models come in many different types, which are subject to change as the field 

evolves. Handling such heterogeneities constitutes a significant challenge for neuroscience 

applications given that not all of the formats that will be required to answer novel scientific 

questions will be known at design time. Standard neuroscience formats that have emerged to 

date include NeuroML [14,15] for computational neuroscience and Neurodata Without 

Borders [16] for experimental data. Dealing with an extensible set of formats in a more 

generic yet customisable way requires decoupling the software infrastructure from these 

domain specific representations. Designing such system is not trivial considering that both 

experimental and computational data and models each come with their own set of 

challenges. The sheer size of experimental datasets, particularly those arising from 

connectomics and imaging, require specific visualisation capabilities and optimisations 

when handling them. Computational models need to be instantiated within an application to 

let users interact with their state variables and parameters. Different numerical solvers may 
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be required for these models to be simulated, but the user will not necessarily want to be 

exposed to the complexity of the software solution and low level libraries involved [17]. In 

addition, as the biological detail and scale of simulations increase, transparent access to 

high-performance computing infrastructures [18] will be required. Data and models are also 

likely to be stored in repositories and databases using disparate technologies, which poses 

yet another challenge for applications.

To address the challenges posed by heterogeneous data and models, as well as bridging the 

divide between users with different fields of expertise, we have developed Geppetto, an open 

source, modular middleware platform that can be used to build different neuroscience 

applications. In order to process diverse types of data and models in a reusable way, the 

software infrastructure is decoupled from domain data and model specification. This 

decoupling is achieved through the Geppetto Model Abstraction, designed to represent the 

underlying experimental and computational data and models in a standard way, via reusable 

modules. Geppetto is also optimized for coping with large amounts of data, through 

automatic compression and loading on demand, and is able to run simulations on remote 

supercomputers. To improve accessibility, Geppetto facilitates building novel interfaces by 

hiding the underlying technologies and by providing prebuilt user friendly User Interface 

(UI) components. By abstracting and integrating experimental data, computational models 

and simulators it is hoped that Geppetto will enable the building of neuroscience 

applications that can bring together theorists, modelers and experimentalists to formulate 

and answer increasingly challenging scientific questions related to brain function.

Methods

Geppetto is a modular, extensible open source platform based on a client-server architecture 

(figure 1) that provides a framework for building neuroscience applications for visualization 

of data, models and for controlling simulations. The Geppetto Backend architecture defines 

a set of abstract services for which specific implementations can be provided for different 

domains. The Geppetto Frontend provides visualization capabilities that encompass a wide 

range of what is typically needed for neuroscience data visualization, be it experimental data 

or data resulting from simulations. The Geppetto Frontend is based on a typical modern web 

stack based on JavaScript and React [19], making use of npm [20] to manage dependencies 

and webpack [21] to package the code into a browser-ready application.

The Geppetto Model Abstraction (figure 1, orange boxes) enables the decoupling of domain 

specific modelling formats from the visualization components, by providing a meta-model 

that can be used to represent them in a declarative way. To this end, it defines a type system 

based on core concepts from Object Oriented Programming: Variables, Types and Values. 

By supporting Type inheritance (any Geppetto Type can extend another) and composition 

(Geppetto’s CompositeType can contain Variables of other Types) the Geppetto Model 
Abstraction makes it possible to represent hierarchical structures of data and models. 

Geppetto uses the Eclipse Modelling Framework (EMF) [22] to specify its models’ 

abstractions. The EMF schema is then used to programmatically generate an API for the 

Geppetto Model Abstraction for each one of the supported (user domain) languages [23,24]. 

Developers can build their own custom Types using this API, and use them in combination 
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with the ones provided in the Geppetto Common Library (e.g. State Variable, Parameter, 
etc.). Any model created using the Geppetto Model Abstraction takes the name of a 

Geppetto Model. Once a domain specific model is described in terms of the Geppetto Model 
Abstraction (e.g., by defining a custom Type) the entire platform becomes capable of 

treating its constituent elements appropriately. It is important to note that in Geppetto, Types 
are defined using a domain agnostic meta-model: while an application could for example 

create a Library of Types that represent computational models, another application might 

build one whose Types represent sets of microscopy images. Inside a Geppetto Model, 
developers can also specify the Data Source services used to fetch data from remote 

repositories, along with the Queries available to interrogate them. The Geppetto Model 
Abstraction also defines ImportTypes which can hold references to data and models existing 

on the backend that haven’t yet been loaded. Sending ImportTypes to the client, that will be 

fully loaded upon a request triggered by the user’s actions, is what enables Geppetto to load 

data on demand (i.e. lazy loading).

The entry point for a Geppetto application is the Geppetto Project. Each Geppetto Project 
holds a reference to a single Geppetto Model and in addition stores the current state of the 

application (e.g., which components are open along with their content and position). Every 

Geppetto application can make use of one or multiple Geppetto Projects. For example, in 

Open Source Brain (described below in the Results section), each computational 

neuroscience model (e.g., cell, network) loaded in from a NeuroML file is mapped to a 

Geppetto Model and contained within a Geppetto Project, through which the user will 

interact with the model.

The Geppetto Backend has a modular architecture that defines multiple service abstractions 

(figure 1, dashed lines) designed to perform different operations. The specific 

implementations of these services live in separate modules that can be optionally used by the 

different applications. For instance Virtual Fly Brain uses the OBJ and SWC [25] Model 
Interpreters while Open Source Brain uses the one for NeuroML (figure 2, 4, 6). New 

modules that implement these service abstractions can be contributed to expand Geppetto’s 

capabilities. The Geppetto Backend is responsible for loading in memory Geppetto Projects 
and for delegating the user actions that require server side operations to the appropriate 

services, as specified in the Geppetto Model. In this regard the main role of the Geppetto 

Backend is to orchestrate the interactions of all services available in a particular application. 

A Geppetto Backend implementation exists for both Java (the reference, fully featured, one) 

and Python. Different application servers can be used to host the Backend including Virgo 

[26] for Java and Django [27] or Jupyter [28] for Python. The needs of the specific 

application will determine the most suitable backend to use, with the Java one currently 

targeting robust client-server applications aimed at a multi-user deployment (e.g., OSB, 

VFB) and the Python one also useful for lightweight local deployments aimed at a single-

user (e.g., NEURON-UI, NetPyNE-UI).

A central abstract service defined in the Geppetto Backend is the Model Interpreter. Specific 

Model Interpreter implementations are used to let Geppetto essentially “understand” a given 

format representing concepts in the user's original domain – i.e., they allow building 

instances of the Geppetto Model Abstraction from descriptions in the users' domain 
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language. Model Interpreters for popular neuroscience formats such as LEMS [15], 

NeuroML [14] and NetPyNE [6] are already available.

The abstract Simulator service is designed to wrap and control simulators external to 

Geppetto. The Geppetto backend orchestrates the interactions between Model Interpreter 
and Simulator services so that models can be loaded, converted and simulated as result of 

user operations. Implementations of the Simulator service can wrap simulators as external 

processes or as remote ones running on external servers (e.g. the Neuroscience Gateway 

supercomputing facilities [29]). A number of computational neuroscience simulators such as 

NEURON [3] and NetPyNE [6] have already been wrapped and are available for reuse. 

Following this architecture new simulators can be integrated into Geppetto with relative 

ease.

Geppetto Data Source services are similarly implemented extending the provided abstract 

Data Sources, and allow Geppetto to pull in data by querying external systems. Multiple 

Data Sources are configurable in the Geppetto Model making it possible to use Geppetto as 

a data integration platform. Data fetched from external Data Sources can be post-processed 

to create a representation of the data once again compatible with the Geppetto Model 
Abstraction. Virtual Fly Brain [30], a hub for Drosophila melanogaster nervous system data 

built using Geppetto (discussed in detail in the Results section) uses two different 

implementations of the Data Source service, one for Neo4j [31] and one for AberOWL [32], 

to fetch data from their pre-existing data pipeline. Other Data Source services for other types 

of remote servers could be implemented following these existing examples and the same 

architecture.

For scenarios where user authentication is required and user data needs to be persisted, the 

Data Manager service can be used by developers to configure the Backend to enable 

authentication and database persistence of the Geppetto Projects and simulation results.

The Geppetto Frontend is responsible for presenting the models and data to the user and for 

allowing them to interact with the application and its workflows. The Geppetto Frontend 

offers a set of controls and components (figure 1) to build the user interface of Geppetto 

based applications. While controls (e.g., buttons, dropdowns, dialogs etc.) are generic and 

data agnostic building blocks, components are more complex constructs that can be used to 

display data (e.g. 3D, time series, connectivity, MRI, big images, stack, etc.) or to enable 

specific workflows (e.g., Control Panel, Search, Query, etc.). Components are built using 

various lower level JavaScript open source libraries (e.g. [33–36]) and are designed to 

integrate with the Geppetto Model using a specific API. Any component can be optionally 

created inside a draggable dialog window to facilitate data presentation. Components inside 

these windows are referred to in Geppetto as Widgets.

Geppetto Extensions let developers decide what controls and components they need for their 

specific application, control the layout and look and feel and also create additional domain 

specific custom components (Extensions are represented by the black boxes in Figure 1). 

Geppetto only loads the user interface components specified in the Geppetto Extension of a 

given application. A default Extension is provided as an example and is accessible via 
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https://live.geppetto.org. By loading the components asynchronously only once the interface 

needs them, Geppetto optimises the loading times of the application at startup.

Upon receiving a Geppetto Model from the Backend, when loading a given Geppetto 
Project, the Frontend will instantiate it. Instantiated Geppetto Types are mapped to 

JavaScript objects (e.g. a population of one cell Type would become a JavaScript array 

containing Instances of that Type) and augmented with specific Capabilities which confer on 

them the ability to be accessed via a specific API. So for instance, if a Model Interpreter in 

the Backend defined a custom Type including a State Variable, upon instantiation in the 

Frontend this would become a JavaScript object with an injected StateVariableCapability 
containing methods specific for state variables, e.g., getUnit(), getInitialValue(), etc. This 

has the advantage of giving developers the ability to build UI components that can interact 

with the Geppetto Model in an object oriented way, and allow all the user operations to be 

fully scriptable, reproducible and testable (e.g. a user interface button designed to plot a state 

variable would call Plot.plotData(myStateVariable.getTimeSeries()). The same principles 

apply when a custom Type defining a cell morphology (Values like Sphere and Cylinder are 

available to this end in the Geppetto Model Abstraction) is sent to the Frontend and passed 

to the 3D Canvas component using its API for display. Geppetto has the ability to either 

visualize a single instance of a Type (a cell morphology in this example) or an entire 

population based on it, depending on whether the Model Interpreter responsible for the 

creation of the model instantiated the Type only once or multiple times through an 

ArrayType. In some cases, as with the Stack Viewer which connects directly to an IIP3D 

Server [37], it might be preferable for the UI components to read directly a specific format 

without requiring a mapping to the Geppetto Model, which is also permitted by the 

architecture.

Code availability

Geppetto is open source (http://git.geppetto.org) and released under the MIT license. 

Documentation is available at http://docs.geppetto.org. A live demo application to showcase 

the latest release of Geppetto (0.4.0 at the time of writing, new versions are released 

monthly) is available at http://live.geppetto.org. Docker images are available for Geppetto at 

http://docker.geppetto.org, which simplify creation of a local instance of the application with 

all required libraries preconfigured. Integration tests for the full stack and for the user 

interface are available for all the main features. These tests are automatically executed after 

every commit.

Results

In this section we present four examples of neuroscience applications that have been built 

using Geppetto. Thanks to Geppetto’s open source model, many of the features and 

components described in the Methods section have evolved in concert with the development 

of these applications in order to satisfy their requirements. Each of the applications have 

their own Extension, where their custom functionality is specified, and a specific 

deployment configuration. While the first two, Open Source Brain and Virtual Fly Brain, use 

the Java Backend and are deployed on public web servers where multiple users can access 
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them simultaneously, the last two, NEURON-UI and NetPyNE-UI, use a Python Backend 

and are designed to be local deployments aimed at a single user, similar to traditional client 

applications. Geppetto is currently being used to build a total of seven neuroscience 

applications [30,38–43].

Open Source Brain

Open Source Brain (OSB, http://www.opensourcebrain.org) is a platform for visualizing, 

simulating, disseminating and collaboratively developing standardized, biophysically 

detailed models of neurons and circuits [44]. OSB contains a range of published neuronal 

and circuit models from multiple brain regions including the neocortex, cerebellum and 

hippocampus as well as invertebrate neuron models. Model components (e.g. point neuron 

or morphologically detailed cell models including membrane conductances, synapses, 3D 

network structures) are contained in user-created projects, each linked to a public code 

sharing repository (normally hosted on GitHub) that holds the model source code, specified 

in NeuroML, a widely used model description format for computational neuroscience 

[14,15]. OSB provides an integrated browser-based workspace that captures many of the 

infrastructural demands of projects in computational neuroscience, and allows users to 

interact with the underlying neuronal models through a graphical interface, without 

requiring programming knowledge or installing and configuring simulators.

Figure 2 shows how Geppetto is configured for OSB. Many aspects of Geppetto’s 

functionality have been developed to provide the core functionality for OSB. The NeuroML 

Model Interpreter and the LEMS Conversion services were contributed to Geppetto to deal 

with the NeuroML and LEMS formats, reusing previously developed libraries [15]. The 

NeuroML Model Interpreter allows standardized model descriptions to be loaded into the 

OSB Geppetto deployment, providing automatic 3D visualization of morphologies and 

internal structure of models, such as state variables and parameters (figure 3a) and 

connectivity within the network (figure 3b). Structured metadata in the NeuroML files can 

be extracted, as well as the underlying mathematical expressions of dynamical components 

in the model (e.g. kinetics of membrane conductances). These data are made available in an 

accessible format to the user through a custom Extension to the Geppetto Frontend.

This OSB custom extension to Geppetto adds shortcuts and menu options for interacting 

with models, running simulations, and visualizing their results. A summary of information 

extracted from the NeuroML model can be accessed through a “Model Description” widget, 

which includes links to the source file and original data sources, giving model provenance. 

This widget also provides easy access to neuronal model specific functionality, such as 

plotting rates of activation and inactivation for ion channels and overlaying locations and 

densities of active conductances on neuronal morphologies (bottom right, Figure 3a). A 

shortcut to the Connectivity Widget allows the user to see synaptic connectivity of models at 

a glance: as a chord diagram (bottom left, Figure 3a), connectivity matrix with weights 

(bottom right, Figure 3b), force-directed graph, or hive plot. Key parameters present on any 

given model are thus automatically exposed in a format familiar to neuroscientists.

The simulator agnostic NeuroML format can be converted to simulator-specific formats such 

as NEURON [3] using a suite of existing converters that implement the Geppetto conversion 
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service interface (figure 2). Geppetto’s external simulator abstraction allows OSB to 

transparently interface with these converters and their associated simulators, allowing 

models to be simulated through a simple interface. Geppetto can either dispatch simulator 

jobs to the Neuroscience Gateway [29], a high-performance computing facility, or run them 

on OSB servers. The extension provides assistance for simulation workflows; basic 

protocols can be defined that create batched experiments with a given range of parameters or 

the user can record all membrane potentials with a single click. Upon completion, the data 

generated are sent to the browser for visualization using a Geppetto’s plotting widget (top 

left, Figure 3a), or recorded membrane potentials or calcium concentrations can be 

visualized by pseudocoloring the morphologies to show changes over the course of a 

simulation, and the simulation can be replayed at various speeds. Alternatively, the raw 

results can be downloaded or automatically uploaded to Dropbox via Geppetto’s dropbox 

interface functionality. Experiments run asynchronously on remote servers, so users do not 

need to keep their browser open.

The configurable functionality of Geppetto middleware enables OSB to make models 

accessible, opening them up to critical scientific scrutiny by a wide range of neuroscientists. 

This supports the process of ongoing model evolution, which is aided by OSB’s deep link to 

GitHub [45], preventing model development from becoming arrested at the point of 

publication. OSB therefore provides a resource of robust models that can function as best 

practice examples for model sharing for the neuroscience community.

In addition to this research aspect, OSB also leverages Geppetto’s tutorial component to 

provide interactive computational neuroscience tutorials aimed at students. These tutorials 

allow users to run virtual experiments and protocols through an easy to use web interface, 

allowing basic concepts in neurophysiology and computational neuroscience to be taught 

without installing simulators or writing code.

Virtual Fly Brain

Virtual Fly Brain (VFB, http://virtualflybrain.org) is a hub for Drosophila melanogaster 
neuroscience research which was born from the need to make the newly standardised fly 

neuroanatomy available to the public [47–49]. Along with extensive curation of literature in 

collaboration with FlyBase [50], VFB v1 allowed users to explore labeled confocal 

immunofluorescent slices of the adult fly brain across the internet. The user could step 

through the brain and identify anatomy by hovering over it. Later this expanded to include 

expression, transgene and single neuron image data published by multiple labs that was 

aligned to the same template brain enabling any of the 40,000 images to be overlayed. 

Whilst most researchers were used to viewing slices through the brain, with more single 

neurons appearing as tiny points in cross section, interpreting the morphology was 

increasingly difficult without a 3D representation.

VFB v2 was designed to provide access to all the complex queries and data an expert might 

require within an interface a novice can easily navigate. Geppetto’s existing 3D browser 

infrastructure atop a flexible modelling framework was used to enable VFB to run complex 

queries across multiple backend service APIs whilst maintaining an easy to use UI. The 

Geppetto Model has been utilized to provide abstraction of the specifics of 3rd party API 
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configuration, query construction and representation into a single simple human-readable 

file.

Display of the original immunofluorescent confocal gene expression data was implemented 

in Geppetto as point cloud renderings while the OBJ Model Interpreter was reused to display 

anatomy regions as surface renderings (figure 5a).

A Model Interpreter for the SWC format [25] was added to display segmented 

reconstructions of neuronal morphologies. A Stack Viewer was contributed to display 2D 

confocal microscopy data and synchronized with the pre-existing 3D Canvas component. 

Geppetto's ability to load data on demand and to optimise the visualisation of neurons as 

tubes or traced lines was essential for VFB to efficiently display larger amounts of imaging 

data on the screen. The ability to query third party RESTful APIs through the Data Source 
services allowed VFB to fetch remote data running complex queries (figure 5b) involving 

multiple configurable Data Sources (figure 1). VFB currently pulls data via an ontology 

reasoner (OWL-ELK [32]) as well as a graph database (Neo4j [31]). Geppetto's Control 

Panel and Search components were reused and customised within VFB's Geppetto Extension 
to show custom fields and to provide autocompletion search results utilising a (SOLR [51]) 

indexing server.

NEURON-UI and NetPyNE-UI

NEURON is a widely used simulator in the neural multiscale modeling domain, allowing 

models to be built that link reaction-diffusion dynamics at the molecular level, to neuronal 

electrophysiology, up to the large scale network level [3,6,52,53]. It has thousands of users, a 

model database [54] with over 600 models, and over 1900 NEURON-based publications. 

NEURON is being used by major brain research initiatives such as the Human Brain Project 

and the Allen Institute [18,55]. NEURON includes a native graphical user interface for 

model construction and control, which while fully functional has limited usability and 

graphical capabilities and is based on deprecated libraries (Interviews) originally developed 

in the 1980s.

NetPyNE [56] is a high-level Python interface to NEURON that facilitates the development, 

simulation and analysis of biologically detailed neuronal networks. It provides a unique 

high-level declarative language designed to facilitate the definition of data-driven multiscale 

models (e.g., a concise set of connectivity rules vs. millions of explicit cell-to-cell 

connections). The user can then easily generate NEURON network instances from these 

specifications, run efficient simulations (including on high performance parallel computing 

resources) and exploit the wide array of built-in analysis functions. Its standardized format – 

compatible with NeuroML – makes it easier to understand, reproduce and reuse models. 

NetPyNE is being used to develop models of different brain regions – e.g. thalamus, cortex 

and hippocampus – and phenomena – e.g. neural coding and brain disorders [6,57].

Geppetto has been used to build user interfaces for both NEURON and NetPyNE. The two 

applications, designed to be installed and used locally by a single user, have in common an 

architecture based on the Geppetto interactive Python Backend. This Backend is 

implemented as a Jupyter Notebook [28] extension which provides direct communication 

Cantarelli et al. Page 9

Philos Trans R Soc Lond B Biol Sci. Author manuscript; available in PMC 2018 October 05.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



with the Python kernel. By defining a set of component extensions, Geppetto’s interactive 

Python Backend makes it possible to synchronize the data model underlying the user 

interface with a custom Python model. This functionality is at the heart of both NEURON-

UI and NetPyNE-UI and means any change made to the Python kernel is immediately 

reflected in the user interface and vice versa.

Although NEURON-UI and NetPyNE-UI share the same architecture (figure 6 gives an 

overview of the Geppetto components used in NetPyNE-UI), they differ in certain aspects. 

In NEURON-UI the graphical interface is created using a custom Python API meant to 

mimic NEURON’s Interviews based API. The panels, buttons and text boxes in the user 

interface are therefore created from Python and mapped to Geppetto UI components (figure 

7a). These components are then connected to the internal Geppetto API to visualize the cells 

and the networks, run the simulations and plot the results. The idea behind this approach was 

to retain backward compatibility with the numerous existing NEURON interfaces built with 

Interviews for various models. Our future aim is to fully map the NEURON API to our 

NEURON-UI therefore providing a comprehensive alternative to the traditional user 

interface.

In contrast, in NetPyNE-UI the user interface is defined entirely in JavaScript inside its 

Geppetto extension. This offers a flexible and intuitive way to create advanced layouts while 

still enabling each of the elements of the interface to be synchronized with the Python 

model. The user interface splits the workflows in three tabs: network definition, network 

exploration and network simulation and analysis (figure 7b). From the first tab it is possible 

to define -- or import via Python -- the high-level network parameters and rules that will be 

used for its generation. In the second and third tabs Geppetto’s 3D Canvas is used to 

visualize the instantiated network. The third tab lets the user simulate the instantiated model 

(this tab is selected in Figure 7b). Geppetto allows NetPyNE-UI also to display on the 

browser a number of plots that are defined in NetPyNE using matplotlib for network 

analysis and simulation. Both NEURON-UI and NetPyNE-UI can be installed via pip [58] 

or used inside provided Docker images.

The new Geppetto-based UIs will make NEURON and NetPyNE accessible to a wider range 

of researchers and students, including those with limited programming experience. This will 

enable experimentalists to better collaborate with modelers, or to directly reproduce and 

explore their own experiments via computational simulations.

Discussion

We have developed Geppetto, an open source middleware platform for building accessible 

neuroscience applications. Geppetto facilitates the development of complex applications by 

providing a well-tested, reusable set of building blocks to integrate diverse neuroscience 

data, models and simulators. Geppetto provides a modular Frontend, where multiple 

customizable user interface components and Widgets make it possible to visualise and 

analyse models and data, as well as a Backend capable of connecting to multiple data 

sources and lower level, domain specific descriptions and simulators. This was made 

possible by designing the Geppetto Model Abstraction that can be used to represent a variety 
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of neuroscience domain models, linked to a modular web-based architecture engineered 

using various open-source libraries. Geppetto has been used as the basis of a number of 

online and desktop applications in neuroscience: Open Source Brain, Virtual Fly Brain, 

NEURON-UI and NetPyNE UI described here, as well as Patient H.M. [38], WormSim [40] 

and SciDash [43].

Neuroscience applications are typically developed independently, to address a specific 

requirement. This leads to considerable redundancy with the same functionality being 

redesigned and implemented over and over again [59–65]. This approach is only justifiable 

when the shared set of features is negligible. In this paper, we have shown that even for 

applications whose requirements were specified independently and had minimal overlap, 

there can be a significant degree of shared infrastructure. Geppetto proposes an alternative 

approach by exploiting this fact, allowing neuroscience applications to be built from 

reusable modules – as illustrated by the overlapping blocks in Figures 2, 4 and 6. This 

strategy fits naturally into the open source model – components and modules are more likely 

to be reusable compared to monoliths – making Geppetto a flexible and extensible solution 

for multiple applications in neuroscience.

As middleware that factors out commonalities between different domains, Geppetto’s 

modular structure enables a high level of reuse, allowing developers to skip to writing only 

code specific to their neuroscience application resulting in a considerable saving of time. As 

with all software platforms, Geppetto has its own learning curve required for developers to 

understand its architecture and become familiar with its components. While at first this 

initial investment might be seen as a complication compared to the apparent ease of starting 

from a blank slate, developers associated with the applications described above, with no 

previous experience on Geppetto, have found it only takes from one to four weeks1 to 

become productive. This time investment is outweighed by the subsequent savings made in 

avoiding common pitfalls, replicating solutions to common problems and rewriting entire 

software components and workflows. There is also a significant advantage in interacting 

with the active community of Geppetto developers, who can assist with any queries. The net 

time saving compared to an approach that starts from scratch is difficult to estimate but is 

likely to range from six months to five years2 depending on the targeted scope – the more 

the features required that overlap with Geppetto’s the bigger the savings – and on the size 

and experience of the team of developers involved. Moreover, extensive sharing of modules 

between applications, results in them being thoroughly tested [66], while having a shared 

infrastructure that undergoes regular release cycles ensures maintenance is less burdensome 

for each specific application. Furthermore, the distributed nature of the Geppetto code base 

and the fact that updates are made independently of any specific project ultimately increases 

the longevity of any application built with this platform.

1Depending on the background and level of experience of the developer.
2Estimate based on the actual time that was spent designing and implementing various reusable components, e.g. 3D Canvas 6 
months, MRI Viewer 3 months, Plotting widget 6 months, Connectivity Widget 5 months, Stack Viewer 6 months, Control Panel 3 
months, Geppetto Model Abstraction 9 months, etc. Building of the infrastructure in its current form took 3 years. All these figures 
consider 1 Senior Development Engineer FTE.
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The diversity of applications that have been built so far with Geppetto illustrates the 

flexibility of its model abstraction capabilities, which can encompass different domains, data 

and scientific modelling formalisms. Also, as the platform keeps evolving, new solutions 

added for a specific application become immediately available to all the other applications. 

Examples of this include many of the features contributed by Open Source Brain being 

reused by multiple applications (e.g., Control Panel, Search Bar or the Experiments table); 

the SWC [25] Model Interpreter contributed by Virtual Fly Brain, which is reused in Open 

Source Brain; and the 3D Canvas, originally built for the first deployment of the platform 

and reused by every other application to date. Geppetto combines a model driven design 

with a service oriented architecture to enable reuse across multiple applications. Its 

modularity, a centerpiece of both the Backend and the Frontend, is obtained by engineering 

together a unique set of technologies [19,21,22,67,68] to provide novel functionality. By 

allowing different neuroscience applications to use the same technologies, Geppetto 

provides well-tested solutions that bring closer together otherwise disjoint research groups – 

both computational and experimental, thereby fostering collaboration.

The Geppetto applications described in the Results section are in active development. Some 

of the planned and ongoing projects include: extending OSB to bring together models and 

the experimental data used to build and test them, by adding standardised data interpreters 

(e.g. version 2 of the Neurodata Without Borders format); extending VFB to cover all stages/

regions of the fly CNS, incorporating synapse level connectomics data with the extensive 

light level image and literature knowledge; releasing a new version of WormSim, currently 

being developed within the OpenWorm project [1] that will integrate the Sibernetic [69] 

fluid dynamics simulator (see Palyanov et al. in current issue) with the NeuroML based 

nervous system model (see Gleeson et al. in current issue). The latter will be the first 

instance of a Geppetto application providing a non-computational neuroscience specific 

numerical engine, used for fluid dynamics simulations (figure 8).

Thanks to its open, modular, web-based architecture, Geppetto ultimately enables the 

engineering of a new breed of neuroscience applications that can be used in a collaborative 

way by theoreticians, modelers and experimentalists to formulate new scientific hypotheses, 

build and validate new models and help gain insights into the most pressing questions in 

neuroscience.
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Figure 1. Geppetto Architecture.
Graphical representation of the components of Geppetto illustrating how the Geppetto 
Model Abstraction (orange blocks) allows Backend model and data sources to be accessed 

by users through browser-based Frontend components. Black blocks in the figure are 

Geppetto Extensions, used by applications built on top of the Geppetto platform. The 

Geppetto Frontend (shades of blue) is shown containing a diverse set of visualization 

components. Communication between the Frontend and Backend happens via Websockets 

and a REST-API layer (grey block). The Geppetto Backend (light purple block) orchestrates 

the various services available in a given Geppetto application, including specific Model 
Interpreters (dark purple blocks), external Simulators (cream blocks), Data Managers (green) 

and Data Sources (pink).
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Figure 2. Geppetto OSB configuration.
Graphical representation of the components of Geppetto that are used on the OSB 

application (red). The ones not used are coloured in grey.
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Figure 3. 
(a) Screenshot of a reduced thalamocortical network model [46] on OSB showing analysis 

and simulation widgets provided by Geppetto and the Geppetto Frontend OSB extension. 

Centre of screen shows 3D rendering of the 12 populations of pyramidal cells and 

interneurons. Widgets shown are (clockwise from top-left): plot showing recorded 

membrane potentials from 3 cells of a previously run experiment; Run dialog for selecting 

simulators and running experiments; widget showing ion channels and their densities for a 

single cell model; chord diagram showing connectivity between populations. (b) 
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Visualisation of the neuronal network model of C. elegans being developed by the 

OpenWorm project. Centre of screen shows 302 neurons (red: interneurons; pink: sensory; 

purple: motor neurons) and four quadrants of body wall muscles (green) located away from 

the body for clarity. Connectivity widget on lower right shows chemical synapses between 

individual neurons/muscles. Inset on lower left illustrates interactive exploration of network; 

selecting a single motor neuron (RMED in head) highlights the neurons connected to it, 

along with 5 muscles in two of the ventral quadrants.
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Figure 4. Geppetto VFB configuration.
Graphical representation of the components of Geppetto that are used on the VFB 

application (red). The ones not used are coloured in grey.
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Figure 5. 
(a) Virtual Fly Brain main view shows a reference template for the Drosophila melanogaster 
from Janelia Research Campus using the 3D Canvas. Superposed on the template are various 

gene expression patterns visualized as point clouds, reconstructed neurons and segmented 

neuropil regions. At the bottom right corner the Stack Viewer shows a frontal slice through 

the superposed confocal microscopy images. The Stack Widget is fully synchronized with 

the 3D Canvas and a moving 3D plane indicates the specific slice currently displayed. On 

top of the Stack Widget a Geppetto viewer is used to display the ontological information 
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associated with the current selection. (b) Geppetto’s Query component is used to display the 

results of queries that can be executed from the UI, in this case the user interface shows all 

the neurons with synaptic terminals in the saddle. By clicking on the thumbnails the selected 

neuron is loaded on demand and visualized in the 3D Canvas, the Stack Viewer and the 

textual definition.
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Figure 6. Geppetto NetPyNE-UI configuration.
Graphical representation of the components of Geppetto that are used on the NetPyNE-UI 

application (red). The ones not used are coloured in grey.
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Figure 7. 
(a) Screenshot of NEURON-UI while in edit mode, a simplified cell builder (bottom left) 

lets the user edit any selected section (in yellow) while the Run control panel (right) is used 

to control the simulation (b) NetPyNE-UI showing the result of a simulation of a large-scale 

M1 microcircuit model with widgets showing a rasterplot (top left), individual cell 

membrane potentials (bottom left), population spiking statistics (middle) and the power 

spectral densities for two populations (right).
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Figure 8. 
Prototype of the integration between a nervous system model (top left widget) and a fluid 

mechanics based simulation of a worm body (background 3D Canvas) within Geppetto, 

currently under development. The mechanical model of the body of the worm, which 

includes musculature, is shown immersed in a simulated fluid environment. Both worm 

body and fluid are made of particles. Different colors on the worm body highlight different 

groups of particles (e.g. elastic particles for each of the worm muscles, liquid particles for 

the surrounding fluid, etc.). All around the fluid and the worm is the experiment bounding 

box, made of an impermeable layer of particles. The calcium concentrations in the muscles 

(four rows separated from the main body cells in top left widget) simulated by the model are 

translated into activation signals for the muscles cells in Sibernetic ultimately driving the 

locomotion of the worm.
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