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Abstract

Autism is a diagnostic label based on behavior. While the diagnostic criteria attempt to maximize 

clinical consensus, it also masks a wide degree of heterogeneity between and within individuals at 

multiple levels of analysis. Understanding this multi-level heterogeneity is of high clinical and 

translational importance. Here we present organizing principles to frame research examining 

multi-level heterogeneity in autism. Theoretical concepts such as ‘spectrum’ or ‘autisms’ reflect 

non-mutually exclusive explanations regarding continuous/dimensional or categorical/qualitative 

variation between and within individuals. However, common practices of small sample size studies 

and case-control models are suboptimal for tackling heterogeneity. Big data is an important 

ingredient for furthering our understanding heterogeneity in autism. In addition to being ‘feature-

rich’, big data should be both ‘broad’ (i.e. large sample size) and ‘deep’ (i.e. multiple levels of data 

collected on the same individuals). These characteristics increase the likelihood that the study 

results are more generalizable and facilitate evaluation of the utility of different models of 

heterogeneity. A model’s utility can be measured by its ability to explain clinically or 

mechanistically important phenomena, and also by explaining how variability manifests across 

different levels of analysis. The directionality for explaining variability across levels can be 

bottom-up or top-down, and should include the importance of development for characterizing 

changes within individuals. While progress can be made with ‘supervised’ models built upon a 
priori or theoretically predicted distinctions or dimensions of importance, it will become 
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increasingly important to complement such work with unsupervised data-driven discoveries that 

leverage unknown and multivariate distinctions within big data. A better understanding of how to 

model heterogeneity between autistic people will facilitate progress towards precision medicine 

for symptoms that cause suffering, and person-centered support.

Autism occurs in approximately 1-2% of the population1 and autistic individuals’ mental 

health difficulties are a major public health issue. In economic terms, the lifetime individual 

cost of autism is estimated at $2.4 (£1.5) million in the USA and UK and annual population 

costs are around $268 billion in the USA2, 3. While interest in and science investigating 

autism has been growing rapidly, progress towards translating scientific knowledge into 

high-impact clinical practice has been small and slow in pace. We are still far from 

delivering more effective intervention for unwanted symptoms, more precise and earlier 

diagnosis, better understanding and prediction of prognosis and development, and 

personalization of support and intervention. All of these points are within the scope of 

stratified psychiatry4 and precision medicine5. To arrive at this point, our contention is that 

we will first need to grapple with an important issue holding back progress – heterogeneity 

within the autistic population.

The field is currently addressing this issue. Some have argued that we are at a crossroad and 

must acknowledge that the concept of autism as a single entity lacks validity at a biological 

level6, 7 and that autism must be taken apart8. This idea relates to what others have 

discussed regarding autism as an umbrella label referring to many different kinds of 

‘autisms’9 and how the scientific community should abandon attempts to continue 

characterizing all of autism under a single theory10. Research has begun along these new 

directions but is highly fractionated because heterogeneity is discussed across multiple levels 

of analysis, from genetics11, neural systems12–14, cognition15, behavior and 

development16–18, and clinical topics (e.g., response to treatment or outcome19, 20). 

Approaches differ in how heterogeneity should be decomposed, from utilizing theoretical a 
priori known stratifiers21, 22 or dimensions, to data-driven approaches12, 23–25. Models 

for understanding heterogeneity also differ, with some conceptualizing distinctions as 

categorical/qualitative, continuous/dimensional, and/or where distinctions or similarities 

may cut across diagnostic boundaries25–27. Work can also differ with regards to aims that 

are specific to understanding heterogeneity within one level of analysis28, 29, while others 

attempt to explain heterogeneity across levels30–35.

The purpose of this paper is not to provide an in-depth review of the literature on these 

areas. Rather, we see a need to provide organizing principles for framing these diverse areas 

of research, so that future synthesis and theoretical development about heterogeneity can be 

facilitated. Specifically, we first discuss how commonly used terminology such as 

‘spectrum’ or the ‘autisms’ can be used to imply different types of models for understanding 

heterogeneity in autism. Next, we discuss how heterogeneity arises within the context of the 

historical change in diagnostic criteria. Third, we provide arguments behind why 

understanding heterogeneity is critical for furthering progress towards precision medicine. 

Fourth, we discuss some of the problems with the dominant paradigm in the field – the case-

control paradigm. In discussing these issues, we point towards problems with small sample 
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studies and the need for bigger data. This leads into a discussion regarding characteristics of 

big data that are important for studying heterogeneity in autism. We follow this with 

organizing principles behind how one attempts to understand multi-level heterogeneity. We 

then discuss the role of transdiagnostic viewpoints which go beyond understanding 

heterogeneity just within autism. Finally, we conclude with discussions about realistic 

challenges, mitigating strategies, and clinical implications of big data approaches.

Terminology behind ‘heterogeneity’ and impact on building and evaluating 

models

The concept of heterogeneity in autism dates back to the original conceptions of an ‘autistic 

spectrum’ by Lorna Wing36. Since then, we now apply the concept of heterogeneity beyond 

just clinical, behavioral, and/or cognitive levels. A hallmark of heterogeneity in autism is its 

multi-level presentation (Fig 1C), applicable from genotype through phenotype9, 10, 

throughout development16, 37, and manifesting as important clinical differentiation (e.g., 

outcome20, response to treatment19, etc.). Thus, the concept of heterogeneity not only 

applies to how individuals differ at one level of analysis, but also when and at which levels 

those differences arise, and potentially how heterogeneity across levels is coordinated. While 

the idea of heterogeneity itself has a longstanding history, better explanations are needed 

behind why heterogeneity manifests across different levels and how they are connected 

across levels and within or between individuals. Bringing such concepts back to 

developmental psychopathology, terms such as equifinality and multifinality38 may be 

helpful. For example, a diversity of different developmental starting points or causal 

mechanisms in the genome may reach similar endpoints (equifinality) at levels more 

proximate to clinical outcomes or behavior39. However, very similar mechanisms at one 

level could also result in a diversity of endpoints (multifinality)40. Currently the mapping of 

multi-level heterogeneity in autism is unclear, but it is imperative that we understand these 

mappings which are likely to be indicative of useful explanations towards precision 

medicine goals.

There are many ways to talk about how autistic individuals are similar to or different from 

each other41. On the one hand, we can understand phrases like the ‘spectrum’ as referring to 

heterogeneity as graded continuous change between individuals. ‘Spectrum’ can also apply 

to both the clinically diagnosed autism population or the whole population, including those 

with the ‘broader autism phenotype’42–45. The idea of a spectrum can be applied as a 

model for understanding heterogeneity between autistic individuals – a model we would 

refer to as a ‘dimensional model’. Dimensional models can also cut across traditional 

diagnostic boundaries, with the most prominent example of this being the NIMH Research 

Domain Criteria (RDoC) model46. However, we also use heterogeneity as a way of 

conceptualizing categorical or qualitative differences between autistic individuals. The term 

‘spectrum’ could also imply a qualitative, rather than a quantitative difference between 

individuals. However, terms that pluralize autism as ‘autisms’ may be more applicable here, 

as the idea of multiple kinds of autisms lends itself to categorical ways of thinking about 

individuals as ‘subgroups’ or ‘subtypes’. A subtype model for explaining heterogeneity in 

autism can also be called a ‘stratified model’.
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Since we have different ways of talking about heterogeneity, the question will naturally arise 

as to which way of conceptualizing heterogeneity is best. Are categorical ‘subtype’ models 

better than continuous ‘dimensional’ models, or vice versa? This could be an ill-posed 

question, since these concepts and models need not be mutually exclusive. First, 

theoretically we could imagine an important blending between the two types of models for 

understanding heterogeneity and this can be tested statistically (e.g., factor mixture 

models47). For instance, one could first subtype the autistic population, and then further 

characterize between-individual variability through continuous models within each subtype. 

Second, the answer to such a question may differ depending on the aim of the model. For 

example, a subtype model might be better at predicting treatment responses, whereas a 

dimensional model might be better at predicting basic biological mechanisms, or vice versa. 

As we build a literature on understanding heterogeneity in autism, it will be important to be 

clear about how different models conceptualize heterogeneity, as well as understanding that 

different models may be important for different types of aims. The aphorism by George Box 

that ‘all models are wrong, but some are useful’ is applicable here48. Models are simplified 

explanations that typically account only for a portion of variability in a phenomenon. Even if 

models are quite different in their explanation and predictive power, they can still be useful 

for a variety of different aims. Therefore, a pragmatic approach for evaluating heterogeneity 

models will be important for moving forward, since it is unlikely that we will converge on 

single explanations (models) that can explain the wide array of multi-level heterogeneity in 

autism.

Heterogeneity, evolution of the diagnostic concept

The evolution of the nosology and diagnostic concept of autism changes the definition of 

autism – who counts as being on ‘on the spectrum’ and who gets a clinical diagnosis49. This 

evolution also contributes to the discussion about heterogeneity in autism. When ‘autism’ 

was first defined as ‘autistic disturbances of affective contact’, the core features were 

considered to be ‘extreme self-isolation’ and ‘obsessive insistence on the preservation of 

sameness’50, 51. At the cognitive level, language impairments or peculiarities were seen as 

secondary to ‘basic disturbances in human relatedness’51. Moreover, both Leo Kanner and 

Hans Asperger recognized good cognitive potential in their child patients50, 52 and 

therefore autism was not necessarily tied to intellectual disability. However, at the next stage 

of nosological evolution, language and cognitive impairments began to be considered 

‘core’53 and this conceptualization directly impacted the first operationalization of autism in 

the DSM-III54, in which language deficits were core to diagnosis. Individuals identified as 

having autism in the 1970s and 1980s were therefore mostly those with marked difficulties 

in verbal communication, and many were considered to have intellectual disability. In the 

1980s, Lorna Wing and colleagues not only introduced the work of Hans Asperger into the 

English speaking world55 but also conducted epidemiological studies that demonstrated the 

heterogeneity in social, language, motor, and cognitive abilities in the autistic and 

developmentally delayed population56, 57. Wing’s ideas of the ‘triad of social, 

communication and imagination impairments and repetitive behavior’, the lack of clear 

division between Kanner’s autism and less extreme forms, and the shift of core social 

impairment from ‘extreme autistic aloneness’ to ‘deficits in the use and understanding of 
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unwritten rules of social behavior’, clearly broadened what autism encompassed. All these 

ideas were subsequently adopted into versions of diagnostic systems including DSM-III-R, 

DSM-IV and ICD-10. Phenotypic heterogeneity therefore increased, allowing an autistic 

individual to be verbal or minimally verbal, ‘active but odd’, ‘passive’, ‘aloof’ or ‘loners’58, 

and with various combinations of repetitive and stereotyped behaviors. The DSM-5’s 

exclusion of language impairments from, and inclusion of atypical sensory responses into 

core symptoms, reflects how the concept of autism nowadays is much broader than how it 

had initially been conceptualized. The most recent revision of ICD criteria (ICD-11) further 

emphasizes specific diagnostic subgroups that qualify whether an individual with autism has 

impairments with functional language and/or intellectual development. With the changing 

and broadening diagnostic concept comes increased heterogeneity, inevitably at the 

behavioral phenotypic level, and possibly also at other levels of analysis.

This history behind the evolving diagnostic concept is an important, yet often not fully 

acknowledged caveat for interpreting research on autism. Research spanning several decades 

may have been isolating phenomena in altogether different types of individuals than does 

more recent research. Since the spectrum of diagnosed individuals is wider today than in the 

past, interpretations behind lack of replication or inconsistencies across studies should take 

this into account, rather than assuming the population under study has not changed over 

time. As the diagnostic concept continues to change we must be mindful of this issue when 

interpreting how current research matches up to work that may be several decades old.

Shifting from the ‘one-size-fits-all’ paradigm towards understanding 

heterogeneity

Perhaps the most prominent justification behind why understanding heterogeneity is 

important is because individuals with autism widely differ in response to treatment. While 

most treatment approaches are early intensive behavioral intervention (EIBI) and naturalistic 

developmental behavioral intervention (NDBI), the existing literature suggests that they have 

variable levels of effectiveness and in some cases may not significantly affect core autism 

features such as social-communication difficulties59–63. Currently there are also no medical 

treatments that significantly affect the core characteristics of autism64, 65. Rather than 

advocating a ‘one-size-fits-all’ approach to treatment, most recent best practice 

recommendations specifically highlight the critical need for future research to identify 

factors that explain heterogeneity in response to treatment, in order to better individualize 

treatment and intervention approaches and to better target changes in core or functionally 

impairing symptomatology59, 63. A separate ethical issue raised by the neurodiversity 

movement is the idea that autism itself should not be a target for treatment, since it may be 

part of the individual’s genetic make-up and identity. Rather treatment should target specific 

co-occurring symptoms and difficulties in adaptive functioning that cause suffering and 

disability. Such co-occurring symptoms and maladaptation (in many cases the contributing 

reasons are not solely within the autistic person but also arising from the environmental 

contexts) comprise a critical, yet under-developed, angle to stratification of the autism 

spectrum which will guide ethical and personalized intervention.
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Heterogeneity also limits basic scientific progress towards understanding autism. To 

understand why, it is important to first make salient the problems with the dominant 

paradigm, which is ill-equipped to reveal heterogeneity – the case-control paradigm. The 

case-control paradigm exemplifies the ‘one-size-fits-all’ approach, since all cases are treated 

identically due to the same diagnostic label. Studies that attempt to identify ‘biomarkers’ via 

case-control designs have implicitly conceptualized the notion that if a strong biomarker did 

exist, it would completely differentiate cases from all controls. We have yet to isolate any 

biomarkers for autism that can reliably and consistently reach this high bar7, 66. One reason 

why case-control research has fallen short on identifying high impact biomarkers could be 

that we are looking at the wrong features. However, an alternative explanation is that high-

impact biomarkers are likely exclusive to specific subsets of autistic individuals. That is, a 

high-impact biomarker may be informative for one subtype of autism, but not others (Fig 

1B). In order to identify such stratification or dimensional biomarkers67, one will have to 

change the approach from the case-control model to a stratified and/or dimensional model. 

This is not to say that case-control studies are not useful. Isolation of consistent and reliable 

case-control differences are useful for identifying on-average differences, but typically with 

substantial degree of overlap in the distributions. However, if we are searching for 

biomarkers that could help us move towards precision medicine, we will need to pivot our 

approach away from case-control studies as the dominant paradigm and towards stratified 

and/or dimensional models that could yield much higher impact larger effects.

As an illustrative example, we take our own recent work on mentalizing ability in adults 

with autism. From a case-control perspective, autistic adults perform on-average lower on 

the ‘Reading the Mind in the Eyes’ Test (RMET) compared to matched typically-developing 

controls68. However, taking a stratified approach, we find that the autistic adult population 

can be reliably split into subtypes that either are completely unimpaired on the RMET, 

versus those who are highly impaired24 (Fig 2). Thus, in this example, while replicable on-

average case-control effects appear, a stratified approach that takes into account 

heterogeneity can isolate higher impact and more precise considerations about mentalizing 

as measured by the RMET in the adult autistic population.

Imprecise effect size estimates and lack of power in small sample size 

studies

Compounding the problem of utilizing ‘one-size-fits-all’ models like the case-control 

paradigm is the issue of small sample size studies. Over the last several decades, it has been 

common practice to conduct and publish small sample size studies. Small sample studies can 

be problematic from the statistical viewpoint that statistical power is low for all but the 

largest effects. Small sample size also means that estimated sample statistics vary 

considerably relative to their population parameters in small samples due to more 

pronounced sampling variability. In Fig 3, we show simulations that illustrate the issues of 

low power and imprecise estimates of effect size so that they are clear and salient to readers. 

A common case-control study with n=20 per group results in an effect size that varies 

considerably relative to the true population effect. This variability in estimated effect size at 

small samples is consistent irrespective of what the true population effect is. Only with very 
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large sample sizes (e.g., n>1000) can we see that the sample effect size hones in with some 

precision on the true population effect size. The histograms shaded in red in Fig 3 also show 

the limited statistical power one has at smaller effect sizes and small sample size.

Effect size inflation in small sample studies

Our simulations also make salient another common characteristic of small sample size 

studies – the possibility for vast effect size inflation when statistically significant effects are 

identified69. Inflated effects occur because effect sizes that are deemed statistically 

significant in small studies benefit from noise in the direction of the effect. Such inflated 

effects present an over-optimistic view on the identified effects and are prone to the winner’s 

curse69. Inflated effects look attractive and may be easier to publish due to their apparent 

indication of large effects. However, in subsequent replication attempts, investigators likely 

will fail to identify effects as large as the original small sample study because the effect size 

in the original study was inflated by some degree70. We can see effect size inflation and its 

interaction with true population effect size in Fig 3. At very small true population effect 

sizes, sample effect size estimates that are deemed statistically significant (the red 

histograms in Fig 3A-E) are wildly inflated, and this problem is most pronounced for small 

sample size studies. For example, tiny population effect sizes of 0.1 standard deviations of 

difference show on-average greater than 300 to 350% effect size inflation when a study 

observes a statistically significant effect at p<0.05 with an n=50 or n=20, respectively (Fig 

3F). If the true population effect size is much larger (e.g., d>0.5), inflation in effect size is 

attenuated, and at relatively large sample sizes (n>100 per group), there is very little effect 

size inflation on-average for such effects. Of course, these simulations here are simplistic 

examples of studies with only one statistical comparison. The reality is that studies typically 

make multiple comparisons and sometimes on a massive scale (e.g., neuroimaging, 

genetics). In these situations, inflated effect sizes become an even bigger problem71.

Why is such a characteristic important in discussions of case-control paradigms versus 

paradigms that acknowledge heterogeneity? The pervasiveness of small sample sizes and 

effect size inflation in case-control studies tend to give over-optimistic views on the utility of 

case-control studies. Over the course of time, replication attempts typically decrease the 

enthusiasm for many such effects, because the reality is likely that most case-control effect 

sizes are much smaller than published small sample size studies would suggest. By 

portraying initial novel case-control studies as showing large effects, we may be less 

inclined to ask the question of whether heterogeneity is involved. Furthermore, small case-

control effects may be due to complicated heterogeneity in the autism population that hides 

potentially large effects restricted to specific subtypes. By focusing on heterogeneity, we are 

likely to better identify true population effects of much larger magnitude. Assuming that 

such research identifies true large effects in relatively large samples, the issue of effect size 

inflation may be much less of an issue (as the simulations here demonstrate). However, any 

model where statistical power is low can show inflated effect sizes. Therefore, models that 

try to explain heterogeneity can be prone to effect size inflation as well, hence the need for 

very large samples and high statistical power in stratified or dimensional models.
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Sampling bias across strata nested in the autism population

Small sample size case-control studies that do not acknowledge heterogeneity in the autism 

population are also particularly problematic because increased sampling variability has 

substantial biasing impact in enriching specific strata of the population over others. Ideally, 

to get a generalizable sample of the population in a case-control paradigm, one hopes that if 

there are unknown strata nested in the population, the sample prevalence of each strata 

reflects the true prevalence of that strata in the population. If such a criterion is not achieved, 

it means that samples can be biased by the enrichment of certain strata of the population 

over others. If enrichment of different strata of the population are present across multiple 

studies, they may paint a confusing and potentially contradictory picture of the phenomenon. 

A primary example of this is the systematic over-enrichment of males over females in most 

case-control studies, particularly intervention and biological studies72–74, which may lead 

to male-biased inferences about autism75. Another simulation shown in Fig 4 illustrates that 

small samples are much more prone to this bias due to enrichment of specific strata over 

others. In this simulation, there are 5 subtypes in the autism population, and each has 

different effects relative to the control population. Therefore, enrichment of different 

subtypes can have dramatic effects on the results of the study. Our simulation had equal 

population prevalence for each subtype (i.e. 20% of the autism population), which meant 

that from study to study, the specific strata that may be enriched is random. Obviously, in the 

likely scenario where population prevalence rates are asymmetrical across subtypes, the 

enrichment of specific strata could favor those subtypes with higher population prevalence.

Such biases due to sampling variability across subtypes have considerable importance for 

replicability. To illustrate, we give a simple example indicative of many cases in the current 

literature. For example, Study 1 may unknowingly possess a sample enriched with specific 

autism subtypes that show a decreased response on some dependent variable. Study 2 

unknowingly has a different autism sample enriched with subtypes that show a contradictory 

increased response on the same dependent variable. Both studies are published and the 

authors of each may get into a heated debate, each claiming that the other is wrong. Yet a 

third study comes out with perhaps a more unbiased (and possibly larger) sample, and given 

that the overall population effect could be near zero for a case-control comparison (as in the 

simulations in Fig 4), this third study finds no difference and claims that both studies 1 and 2 

are false positives. While the third study may be the clearest indication of what occurs as an 

overall case-control effect, this study too may be missing the point completely – the 

population under investigation is not homogeneous and is stratified. Therefore, each study 

could have merit, if better contextualized and with some attempt to grapple with issues of 

heterogeneity. Thus, it is clear from these examples that practices of running case-control 

studies, utilizing small sample sizes, and not fully confronting the issue of heterogeneity in 

autism, may compound problems and lead to a conflicted literature and delay scientific 

progress. Given these considerations, our recommendation is to move away from small-

sample case-control models and towards stratified and/or dimensional models that take into 

account important heterogeneity in autism.
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Essential big data characteristics for studying heterogeneity

While the idea of heterogeneity in autism has been around for some time, it is 

understandable why as a field autism research has made only limited progress. Conducting 

research on heterogeneity can be difficult for reasons of lack of datasets that are large 

enough to sufficiently answer such questions. As the previous discussions on issues with 

small sample sizes suggest, we would argue that one key ingredient to studying 

heterogeneity in autism successfully is ‘big data’. When we use the phrase ‘big data’, we are 

not necessarily referring to the ‘feature’ dimension of the data – that is, massively 

multivariate ‘feature rich’ data (e.g., neuroimaging or genomics data). Obviously, feature 

rich aspects of big data are indeed important in their own right and for the purposes of 

understanding heterogeneity. Rather, the dimensions we would emphasize about big data are 

the participant dimension (i.e. large sample size) and the depth of the measured features 

embedded in the participant dimension. Put another way, we need big data that have 

characteristics of being both ‘broad’ and ‘deep’76 (Fig 1C).

Broad data refers directly to the participant or sample dimension of the dataset (as opposed 

to the feature dimension) and is characteristic of massive sample size. Such a broad spread 

over individuals should ideally provide good coverage over the population of interest and 

allows for sufficient sampling of each strata of interest. Broad data is an essential ingredient 

for decomposing heterogeneity in autism since we can run into many problems with data 

that is not sufficiently large or do not allow for such broad coverage over the population. 

Sufficiently broad data can also open up opportunities for replicating findings, since 

experimental designs can be planned out to hold ahead of time to set aside a sufficiently 

large validation set to replicate findings from an initial broad discovery set. As data sharing 

and open data initiatives become more available, we should see more investigations on 

heterogeneity that meet this big data requirement. There are some current resources that are 

immediately available to meet such needs (e.g., the ABIDE datasets77, the National 

Database for Autism Research (NDAR)78, the Simons Simplex Collection79, SPARK80, 

the Healthy Brain Network81, and see82, 83) and we would expect much more in the 

coming years. As we get better at detecting what are the relevant dimensions and/or subtypes 

explaining important heterogeneity in autism, we may be better able to design high-powered 

targeted studies where the requirements for massive sample size may be reduced 

substantially. However, for most topics, we are not yet at this stage, and thus, broad data (i.e. 

massive sample size) is necessary.

Developing models to explain aspects of heterogeneity at one level is only the first step. 

Once we have built good models that explain heterogeneity at one level, we will need to ask 

the next translational question: ‘What else are these models good for?’ Put differently, 

stratified or dimensional models can be good at predicting phenomena at one level of 

analysis, but because autism is heterogeneous at multiple levels, could such models help us 

make sense of heterogeneity outside the domain that the model was originally built upon? 

Answering this question can have considerable relevance for precision medicine goals. For 

instance, a geneticist may have identified a unique biological subtype of autism based 

around a certain genetic mechanism. Such a genetic stratifier would already be useful for 

pinpointing a specific discrete cause for some proportion of the autism population. However, 
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working towards precision medicine, we would next want to know whether such a genetic 

subtype is different from other autistic individuals on clinically relevant aspects such as 

prognosis, response to treatment, symptomatology, cognition, etc. Thus, when we ask this 

type of question, we need big data that is not only broad, but also ‘deep’76. Deep data is 

data collected on the same individuals that penetrate through multiple levels of analysis (Fig 

1C). Deep data allows for stratifications or dimensional models to be built at one level, but 

the important tests of such stratifications can be done at other levels. An example of this can 

be seen in recent work on the Simons Simplex Collection. Here the authors made 

stratifications on the phenotype and then asked the question of whether such stratifications 

increased power for detecting GWAS-type effects at the genetic level30. Thus, to best 

answer questions by utilizing stratified or dimensional models, we will require big data that 

is both broad and deep, as the combination of both types of data can allow for discovery of 

explanations of autism heterogeneity and can immediately point towards the utility of such 

models for explaining the multi-level complexity inherent in autism. New multi-site studies 

such as EU-AIMS LEAP are targeted to directly address both issues of broad and deep 

data84–86 and we need other efforts along these lines.

Approaches to decomposing heterogeneity in autism: top-down, bottom-

up, and chronogeneity

Since the approach to decomposing heterogeneity in autism towards precision medicine 

goals is one of identifying clinically and mechanistically useful models, it is helpful to make 

salient some different approaches towards these goals. A common circumstance might be 

where a researcher makes a stratification at a level higher up in the hierarchy presented in 

Fig 1C. The translational next step may be to work down towards understanding how a 

stratified and/or dimensional model at this higher level of analysis can explain some 

phenomenon at a lower level. We refer to this as a top-down approach. For example, a 

clinically-important stratification can be made in the early development of autism regarding 

language outcome at 4-5 years of age. Some children keep up with age-appropriate norms in 

the areas of expressive and receptive language development, whereas others fall far behind 

in their language abilities across these domains. The empirical question after making such 

stratification could be whether such autism language-outcome subtypes differentiate at the 

level of neural systems organization, particularly neural systems that are developing 

specialization of function for speech and language processes22. In this example, it is clear 

that the stratifications were made at a level of analysis above the level that was later 

interrogated for mechanistic understanding. Thus, while early language outcome is itself a 

clinically important stratifier, this top-down work also indicates that the stratifier may also 

be mechanistically useful for pointing towards different underlying biology. Other examples 

of a top-down approach may be based on cognitive characteristics87, sex/gender75, and co-

occurring medical and psychiatric conditions (e.g. epilepsy88, ADHD26, etc). This type of 

top-down approach may ultimately motivate future work that could potentially identify 

unique discoveries about biology behind a subset of the autism population that was 

previously unknown.
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In contrast to top-down approaches, an approach that works from the bottom-up could be 

highly complementary. As the phrase implies, a bottom-up approach starts with identifying 

and building useful models from a lower level in the hierarchy, and then asks questions 

about how such low-level models can explain phenomena higher up in the hierarchy. For 

example, in the ‘genetics first’ approach, an investigator may be interested in identifying 

how different high-impact genetic causes of autism may be similar or different at a 

phenotypic or cognitive level of analysis89–92. In another example, an investigator may 

compare autism subtypes at the level of neural systems or structural brain features (e.g., with 

or without early brain enlargement), and then ask the question of whether such a 

stratification provides a meaningful indicator of differentiation at a clinical level14. Both 

top-down and bottom-up approaches can be useful, depending on the particular research 

question, and each can highlight different aspects of important heterogeneity in autism. In 

order to link up such multi-level complexity into explanations behind heterogeneity in 

autism, it will be imperative to have work from both approaches.

A final approach to decomposing heterogeneity deals with the lifespan developmental 

dimension across any level of analysis, or ‘chronogeneity’37. Several large longitudinal 

studies consistently indicate that there are several autism subtypes with different 

developmental trajectories16–18, 37, 93. Regression, a developmental feature seen in 

autistic individuals, is another key stratifier that is surprisingly under-studied but with 

plausible unique biological bases94, 95. Within the developmental dimension, heterogeneity 

can be assessed as both inter- and intra-individual variability, but can also cover 

individualized deviance from group trajectories over time37 or age-specific norms96, 97. 

Chronogeneity thus offers a unique vantage point on multi-level heterogeneity not covered 

by understanding heterogeneity at static time points.

Approaches to decomposing heterogeneity in autism: supervised versus 

unsupervised

In addition to conceptualizing stratified and/or dimensional models by top-down, bottom-up, 

or developmental approaches, it is also important to clarify how we build on the process of 

understanding heterogeneity. Ultimately, the scientific process of better understanding 

heterogeneity in autism is a learning problem. Taking ideas from statistical or machine 

learning, we can broadly divide learning processes into supervised and unsupervised 
learning98. Supervised learning deals with a priori knowledge about a topic (i.e. known 

labels), and then seeks to derive a model to best predict that known information. With regard 

to the process of understanding heterogeneity in autism, the analogy of supervised learning 

can apply to all instances where the experimenter uses their own knowledge and 

justifications to dictate where the stratifications are made (e.g., top-down, bottom-up, or 

developmental). In other words, knowledge from a supervised source (e.g., an investigator, a 

theory) informs the stratification or dimension to be modeled. This type of approach has the 

advantage of being theory-driven and/or builds on expert knowledge of the investigator (e.g., 

clinical intuition or experience), who may already have highlighted a distinction that is 

meaningful and justified in a variety of ways.
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The disadvantage of solely relying on a ‘supervised’ approach is that the investigator and/or 

a theory may be missing other important distinctions about how to model heterogeneity for 

the question of interest. In this case, the learning process can be helped by some type of 

‘unsupervised’ statistical learning process that uncovers distinctions that may not be readily 

apparent from a priori knowledge. Because big data is a key ingredient for building models 

to explain heterogeneity, we can utilize the feature-rich aspects of big data to embark on 

data-driven discovery of potentially complex multivariate patterns that distinguish different 

types of individuals. We refer to this data-driven approach as an ‘unsupervised’ approach 

since computationally, the learning occurs without any expert a priori knowledge and 

justifications and solely relies on statistical distinctions embedded in the data itself. With 

this approach we likely rely on advanced computational techniques from machine learning 

that are tailored to best identify complex multivariate distinctions. For example, we utilized 

clustering methods taken from systems biology and applied them to item-level patterning of 

behavioral responses on the Reading the Mind in the Eyes Test (RMET). This unsupervised 

approach yielded discovery of 5 different autism subtypes that could be replicably identified 

in an independent replication set (Fig 2)24. In other work, Ellegood and colleagues applied 

clustering to neuroanatomical phenotypes across a range of different mouse models for 

autism. This work illustrated that heterogeneous starting points (e.g., different genetic 

mutations highly associated with autism) can converge and diverge at the level of 

neuroanatomical phenotypes99. Using structural MRI measures of cortical morphometry, 

Hong and colleagues used clustering to identify 3 autism subtypes with different anatomical 

profiles. These anatomically defined subtypes were then found to be useful for increasing 

the performance of supervised learning models to predict symptom severity on measures 

such as the ADOS12.

It should be noted that both supervised and unsupervised approaches have their advantages 

and disadvantages, and can be complementary. An example of this complementarity can be 

seen in a hybrid supervised-unsupervised approach from Feczko and colleagues15. In this 

study, the authors utilized a supervised ensemble learning model called a Functional 

Random Forest (FRF) model, to classify autism versus typically developing children based 

on cognitive features from a neuropsychological test battery. In addition to classifying 

autism versus typically developing children, the FRF model produces a proximity matrix 

that indicates similarity between individuals. The authors then utilized this proximity matrix 

to identify subgroups in an unsupervised manner utilizing a community detection algorithm, 

typically used in network science to discover ‘modules’. This hybrid approach to cognitive 

subtyping proved useful as a top-down approach towards identifying different patterns of 

resting state functional connectivity across the subtypes. Thus, through the scientific process 

of building knowledge about important stratified or dimensional models, both unsupervised 

and supervised approaches can inform each other, and in some cases may be utilized 

together in a hybrid fashion.

Decomposing heterogeneity in relation to transdiagnostic constructs

Although so far we treat autism as an entity and focus on heterogeneity within it, this 

diagnostic construct is human-made, cumulative and evolving100, 101. Phenotypically, 

autism frequently co-occurs with other neurodevelopmental (e.g., ADHD, tic disorders) and 
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psychiatric (e.g., anxiety, depression, obsessive-compulsive disorder, psychotic disorders) 

conditions1, 102 and heightened autistic traits often cut across other categorical diagnoses as 

well103. Underlying this may be multi-level processes cutting across sets of frequently co-

occurring diagnoses104, which potentially can be delineated by transdiagnostic approaches 

such as using the RDoC framework46. In this respect, we should acknowledge that 

heterogeneity in autism is part of the broader heterogeneity existing across 

neurodevelopmental and (physical and mental) health conditions. In the same vein, the 

reasons, principles and approaches described above to tackle heterogeneity in autism can be 

similarly applied when autism is studied within a transdiagnostic framework cutting across 

multiple diagnoses. In the background of high co-occurrence, a transdiagnostic framework is 

necessary for deepening our understanding of the heterogeneity within and beyond autism.

Challenges for big data approaches in autism science and clinical practice

With all these advantages of big data in mind, we acknowledge it is easier said than done in 

practice. There are key practical challenges to be overcome. First, conducting studies with 

very large sample sizes is challenging and perhaps only the most well-funded laboratories 

and/or consortiums can regularly conduct such work. In a situation where we are 

investigating phenomena with stratified models, this problem is magnified since one now 

needs large sample sizes within each strata being investigated. The practical issues are 

further compounded when there is need to replicate – a need which is absolutely necessary 

to build confidence in identified effects. Second, broad and deep data are both desirable, but 

there are inevitable tradeoffs when considering feasibility. Current initiatives to collate 

existing data from smaller-scale studies (e.g., ABIDE77 and NDAR78) have stimulated the 

field of autism research to move towards broad data, and there are increasing consortium 

efforts taking a prospective, coordinated data acquisition protocol to synchronize the 

acquisition of broad and deep data (e.g., EU-AIMS LEAP84–86, the Healthy Brain 

Network81, the POND Network105). Continuous exchange across research teams to 

establish shared methodologies and measurements are critical, yet for the field to move 

forward, it is important to sustain flexibility and openness in incorporating new findings, 

methodologies and measures, especially considering that the samples to be enrolled in future 

research must be more representative of the autistic population at large – truly diverse and 

inclusive (e.g., in terms of age and life stage, ethnic background, genetic make-up, social-

economic status, cultural context, sex and gender, etc.) – in order to represent the full 

spectrum of individuals around the globe. Fundamental to these large-scale and long-term 

efforts is advocacy for funding support that encourages coordinated study designs and data 

merging efforts to achieve broad and deep data.

In the meantime, we believe there is still room for ‘smaller science’ in the era of big data. 

Contributions towards delineating heterogeneity could still be made by studies with 

moderately-sized but adequately-powered samples. By ‘moderately-sized samples’, we do 

not define this phrase in absolute terms (e.g., some rule-of-thumb sample size that can be 

applied irrespective of the context). Rather, what counts as moderately-sized samples will 

need to be defined for each research context. However, at the very least we do intend 

‘moderately-sized’ to mean sample sizes that are sufficiently statistically powered (e.g., 

>80%) for reasonably-sized effects of interest (e.g., medium or large effects). Such sample 
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sizes are different from what we consider as ‘large sample sizes’, which would be situations 

where the sample size offers more than enough statistical power (e.g., 90-100%) even for 

very small effect sizes and likely hones in on point-estimates of the population effect size 

with high precision. These moderately-sized studies can make substantial progress in autism 

research via several ways. First, such studies could focus on examining well-defined 
subgroups in the autism spectrum, derived either from hypothesis-driven strata (e.g., 

individuals with specific behavioral profile, specific neurobiological status, specific 

developmental characteristics, specific etiological factor, etc.) or strata discovered via prior 

big (broad) data studies. In this scenario of moderately-sized studies, case-control models 

could be meaningful with evidence of independent replication. However, such studies will 

likely yield more information if they also are stratified and/or use dimensional models to 

capture aspects of important heterogeneity within autism. Such studies could help isolate 

effects specific to subsets of autism where the effects are larger than smaller effects typically 

found in case-control studies. Studies like these could help canalize research in specific 

directions towards better understanding such reasonably-sized large or medium effects. 

Second, moderately-sized studies could hone their focus on well-defined mechanisms in a 

hypothesis-testing/driven manner or conducting clinical trials that target on specific 

mechanisms (instead of treating autism overall as a single category driven by an ubiquitous 

cause). In these scenarios, moderately-sized studies are not broad, but they could dive into 

deep data as a way to reveal more mechanistic insight and connect multiple levels of 

analysis. In sum, practical limitations likely require the field to alternate between 

investigations that are large-N and broad or more moderately-sized studies that feature deep 

characteristics of the data. This strategy may facilitate future work until opportunities arise 

that can truly allow for big data that is both broad and deep.

Although big data approaches can move our research closer towards precision medicine 

goals, it is an even bigger challenge to translate the work into real-world individualized care 

and support. As in other fields of health care, person-level information that parses 

heterogeneity and achieves individual-level accuracy as a biomarker or predictor (e.g., 

BRCA gene mutations, the utility of which comes from big data science in oncology) is only 

part of the whole decision-making process in health care. Optimal care and support for 

autistic individuals has to be embedded in a person-centered, lifespan perspective that 

incorporates shared decision-making and collaborative action planning106. Big data brings 

clarity to our understanding of individual differences on the autism spectrum and beyond the 

spectrum, yet in daily clinical practice, care and support can be improved only when such 

clarity is integrated with a perspective that respects the individuality of the autistic person 

and their personal contexts.

Conclusions

Understanding how heterogeneity manifests in autism is amongst the biggest challenges in 

our field. As we continue to develop models for explaining this heterogeneity, the organizing 

concepts laid out here could be useful in synthesizing very diverse areas of research. 

Heterogeneity must be interpreted relative to the zeitgeist, particularly as it pertains to how 

diagnostic concepts evolve. Models for explaining heterogeneity manifest in many ways, 

depending on whether the researcher conceptualizes the differences between individuals as 
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quantitative and dimensional, or qualitative and categorical. There is room for both models 

that fuse together both dimensional and categorical distinctions. In general, we need to move 

beyond one-size-fits-all models such as case-control models, and we need to be stringent 

with respect to methodology, since practices such as small sample size research cannot live 

up to the challenges that heterogeneity creates. Small samples cannot adequately cover 

heterogeneity in the autism population in a highly generalizable fashion, and hence there is a 

need for ‘big data’ when studying heterogeneity. Big data should be both broad and deep, to 

sample adequately across different strata from the population but also to examine how strata 

defined at one level may be relevant for explaining variability at other levels. Heterogeneity 

can be parsed from multiple approaches that capitalize on information from levels of 

analysis either most proximate or most distal from the clinical phenotype and which work 

their way down or up through the hierarchy, or via an examination of change across 

development. Also important for conceptually organizing work on this topic is whether we 

utilize a priori knowledge to build heterogeneity models or whether we allow computational 

methods to inform us about data-driven distinctions that may be hidden and not readily 

apparent to most researchers. Models to understand heterogeneity can move beyond just 

those with clinical diagnoses of autism and, in the future, transdiagnostic approaches 

utilizing similar organizing concepts may provide complimentary information. Overall, the 

push to understand heterogeneity is critical as we attempt to move towards precision 

medicine, which will need to be embedded in a person-centered, lifespan-informed, shared 

decision-making and collaborative planning of care to provide holistic support for each 

unique autistic individual.
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Figure 1. Approaches to decomposing heterogeneity in autism.
Panel A shows a population of interest, and autism cases are colored in green, pink, and 

blue. The different colors are meant to represent different autism subtypes. In panel B we 

show the impact of ignoring heterogeneity on effect size. With a typical case-control model, 

we ignore these possible subtype distinctions and compare autism to controls on some 

dependent variable. In this example scenario there is no clear case-control difference but the 

autism group shows higher variability (indicated by the larger error bars). An approach 

towards decomposing heterogeneity might be to construct a stratified model whereby we 

model the subtype labels instead of one autism label, and then re-examine differences on the 

hypothetical dependent variable of interest. In this example the autism subtypes show 

contradictory effects. These effects are masked in the case-control model as the averaging 

cancels out the interesting different effects across the subgroups. Panel C shows 

heterogeneity in autism as multi-level phenomena. This panel also visualizes the difference 

between broad versus deep big data characteristics and labels the top-down versus bottom-
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up approaches to understanding heterogeneity in this multi-level context. Finally, this panel 

also shows how development is another important dimension of heterogeneity to consider at 

each level of analysis (i.e. ‘chronogeneity’). In this example chronogeneity is represented by 

different trajectories for different types of autism individuals.
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Figure 2. Case-control vs stratified model example with adult autism and mentalizing ability.
This figure reports data from Lombardo et al., (2016)24 on two independent datasets of 

adults with autism and performance on an advanced mentalizing test, the Reading the Mind 

in the Eyes Test (RMET). Panels A (Discovery) and B (Replication) show case-control 

differentiation and the standardized effect size for each dataset. Panels C-F shows RMET 

scores and standardized effect sizes from the same two datasets after unsupervised data-

driven stratification into 5 distinct autism subgroups and 4 distinct TD subgroups. Autism 

subgroups 1-2 are highly impaired on the RMET, while autism subgroups 3-5 are completely 

overlapping in RMET scores with the TD population.
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Figure 3. Simulation of sample effect size estimates at different sample sizes and across a range 
of true population effects for a hypothetical case-control study.
In this simulation we set the population effect size to a range of different values, from very 

small (e.g., d=0.1) to very large (e.g., d>1.0). We then simulated data from two populations 

(cases and controls), each with n=10,000,000, that had a case-control difference at these 

population effect sizes. Next, we simulated 10,000 experiments where we randomly sampled 

from these populations different sample sizes (n=20, n=50, n=100, n=200, n=1000, n=2000) 

and computed the sample effect size estimate (standardized effect size, Cohen’s d) for the 

case-control difference. These histograms (grey) show how variable the sample effect size 

estimates are (black lines show 95% confidence intervals) relative to the true population 

effect size (green line). Visually, it is quite apparent how small sample sizes (e.g., n=20) 

have wildly varying sample effect size estimates and that this variability is consistent 

irrespective of what the true population effect size is. Overlaid on each grey histogram are 

red histograms that show the distribution of sample effect size estimates where the 

hypothesis test (e.g., independent samples t-test) passes statistical significance at p<0.05. 

The rightward shift in this red distribution relative to the true population effect size (green 

line) illustrates the phenomenon of effect size inflation. The problem is much more 

pronounced at small sample sizes and when true population effects are smaller. We then 

computed what is the average effect size inflation for this red distribution and plotted this 

average effect size inflation as a percentage increase relative to the true population effect in 

panel F. This plot directly quantifies the degree of effect size inflation across a range of true 

population effects and across a range of sample sizes. The code for implementing and 

reproducing these simulations is available at https://github.com/mvlombardo/effectsizesim.
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Figure 4. Simulation showing sampling variability and bias of enrichment of specific strata in 
small sample size studies.
In this simulation we generated a control population (n=1,000,000) with a mean of 0 and a 

standard deviation of 1 on a hypothetical dependent variable (DV). We then generated an 

autism population (n=1,000,000) with 5 different autism subtypes each with a prevalence of 

20% (e.g., n=200,000 for each subtype). These subtypes vary from the control population in 

effect size in units of 0.5 standard deviations, ranging from -1 to 1. This was done to 

simulate heterogeneity in the autism population that is reflective of very different types of 

effects. For example, the autism subtype 5 shows a pronounced increased response on the 

DV, whereas autism subtype 1 shows a pronounced decreased response on the DV. Across 

10,000 simulated experiments, we then randomly sampled from the autism population 

sample sizes of n=20, n=200, and n=2000, and computed the sample prevalence of each 

autism subtype. The ideal result without any bias would be sample prevalence rates of 

around 20% for each subtype. This 20% sample prevalence is approached at n=2000, and to 

some extent at n=200. However, small sample sizes such as n=20 shows large variability in 

sample prevalence rates of the subtypes and this can markedly bias the results of a case-
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control comparison. The code for implementing and reproducing these simulations is 

available at https://github.com/mvlombardo/effectsizesim.
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