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Abstract

The neurobiological mechanisms underlying the association between cannabis use and acute or 

long-lasting psychosis are not completely understood. While some evidence suggests altered 

striatal dopamine may underlie the association, direct evidence that cannabis use affects either 

acute or chronic striatal dopamine is inconclusive. In contrast, pre-clinical research suggests that 

cannabis may affect dopamine via modulation of glutamate signaling. A double-blind, 

randomized, placebo-controlled, crossover design was used to investigate whether altered striatal 

glutamate, as measured using proton magnetic resonance spectroscopy, underlies the acute 

psychotomimetic effects of intravenously administered delta-9-tetrahydrocannabinol (Δ9-THC; 

1.19 mg/2 ml), the key psychoactive ingredient in cannabis, in a set of 16 healthy participants (7 

males) with modest previous cannabis exposure. Compared to placebo, acute administration of Δ9-

THC significantly increased Glutamate (Glu) + Glutamine (Gln) metabolites (Glx) in the left 

caudate head (P=0.027). Furthermore, compared to individuals who weren’t sensitive to the 

psychotomimetic effects of Δ9-THC, individuals who developed transient psychotic-like 

symptoms (~70% of the sample) had significantly lower baseline Glx (placebo; P=0.023) and a 

2.27-times higher increase following Δ9-THC administration. Lower baseline Glx values (r=-0.55; 

P=0.026) and higher previous cannabis exposure (r=0.52; P=0.040) were associated with a higher 

Δ9-THC-induced Glx increase. These results suggest that increase in striatal glutamate levels may 

underlie acute cannabis-induced psychosis while lower baseline levels may be a marker of greater 

sensitivity to its acute psychotomimetic effects and may have important public health implications.
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Introduction

Cannabis is the most widely used illicit drug in Europe and over the world, with 

approximately 200 million users (1) and an estimated 13 million individuals with cannabis 

dependence (2). It represents a public health concern as cannabis use can induce transient 

psychotic symptoms (3–5) and trigger the onset of psychosis in vulnerable individuals (6). 

Moreover, cannabis use can exacerbate psychotic symptoms (7–9) and increase risk of 

relapse (10–12) in patients with established psychosis in a dose-dependent manner (13).

Cannabis exerts its psychotomimetic effects primarily through its psychoactive component 

delta-9-tetrahydrocannabinol (Δ9-THC) (14–16). Δ9-THC is a partial agonist at the 

endocannabinoid receptor type 1 (CB1), which is widely expressed throughout the brain (17) 

and downregulated in response to sustained cannabis use (18). Δ9-THC has consistently 

been shown to stimulate neuronal firing of mesolimbic dopamine neurons and elevate striatal 

dopamine levels in animal models (19). However, acute administration of Δ9-THC has been 

shown to induce striatal dopamine release in some (20–22) but not all human studies (23, 

24) (also reviewed in (25)), while a deficit in striatal dopamine release has been reported in 

cannabis dependence (26). Additional evidence suggests that Δ9-THC disrupts striatal 

function (27), and genetic variation in dopamine signaling modulates this effect (16).

The difficulty in capturing the acute effect of Δ9-THC on striatal dopamine in man may be 

explained by the biological distance between Δ9-THC effects and dopamine dysregulation, 

as evidence suggests that Δ9-THC does not affect dopamine release directly but via CB1-

dependent modulation of glutamate signaling (17). Converging evidence from preclinical 

studies indicates that acute Δ9-THC administration induces a dose-dependent increase in 

cortical extracellular, striatal, and hippocampal intracellular glutamate levels through the 

activation of CB1 receptors at glutamatergic presynapses in cortical and subcortical brain 

regions, reflecting a reduction in synaptic glutamate levels and receptor functioning (28–30), 

also reviewed here (31). A limited number of studies consistently support the evidence for 

altered brain glutamate levels as measured by proton magnetic resonance spectroscopy (1H-

MRS) in otherwise healthy chronic cannabis users, with all (32–35) but one (36) of 5 studies 

indicating reduced levels of glutamate-derived metabolites Glutamate (Glu) or Glutamate + 

Glutamine (Glx) in both cortical and subcortical brain areas. The only study not showing an 

effect of cannabis on glutamate in man investigated a modestly sized sample of cannabis 

users with concurrent methamphetamine use (36). In contrast, another study conducted in a 

larger sample suggested reduced Glx metabolite concentration also in individuals with a 

history of other illicit drug use (37). However, the cross-sectional case-control design of 

these studies does not allow one to infer a cause-effect relationship underlying the observed 

association between cannabis use and glutamatergic alterations in the brain.

To our knowledge, no study has as yet investigated the acute effect of Δ9-THC on brain 

glutamate levels in man as a potential mechanism underlying its psychotomimetic effects. 

Therefore, we employed a placebo-controlled acute pharmacological challenge design to 

investigate the acute effect of Δ9-THC administration on brain glutamate levels in man. We 

focused on 3 brain regions, the striatum, the hippocampus, and the anterior cingulate cortex, 
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as preclinical studies suggested that acute Δ9-THC administration increased glutamate levels 

not only in the striatum but also in other brain regions, such as the prefrontal cortex and 

hippocampus (28–30).

Evidence suggests that 1) Δ9-THC administration in animal models increases glutamate 

levels in the striatum (30), 2) Δ9-THC-induced increase in glutamate levels leads to an 

excess striatal dopamine via neuronal circuitry involving hypofunctioning N-methyl-D-

aspartate (NMDA) receptors (28), and 3) Δ9-THC-induced modulation of striatal activation 

is related to the severity of acute psychotomimetic effects induced by it in humans (15, 16, 

27). Hence, we specifically hypothesized that: 1) acute Δ9-THC administration would be 

associated with an increase in striatal glutamate-derived metabolites; 2) Δ9-THC-induced 

striatal glutamate increase would be associated with the development of psychotomimetic 

symptoms. Based on the limited evidence of a blunted effect of acute Δ9-THC 

administration on neurochemical markers ((brain-derived neurotrophic factor (BDNF)) in 

cannabis users compared to healthy subjects (38), the following hypothesis was also tested: 

3) previous cannabis exposure would modulate the acute effect of Δ9-THC on striatal 

glutamate. We also carried out exploratory analyses to examine whether the acute effects of 

Δ9-THC on brain glutamate levels in man were specific to the striatum or also noted in the 

hippocampus and anterior cingulate cortex.

Methods

A detailed description of the experimental procedure, psychopathological assessment, image 

acquisition, 1H-MRS quantification, and statistical analyses is provided in the 

Supplementary methods and is summarised here briefly.

We employed a double-blind, randomized, placebo-controlled, crossover design, with 

counterbalanced order of drug administration, using an established protocol (16, 39). Sixteen 

right-handed healthy participants (7 males), abstinent from cannabis for at least 6 months 

and with no history of alcohol abuse, nicotine dependence, or illicit drug use, were assessed 

on two different occasions separated by at least a two-week interval, with each session 

preceded by intravenous administration of Δ9-THC (1.19 mg/2 ml) or saline. A power 

analysis indicated that a total sample of 16 people would allow detection of a medium effect 

(d=0.65) with 80% power using a one-tailed paired t-test.

Immediately before and at 20 mins and 2.5 hours after drug administration, 

psychopathological ratings (40–43) were recorded by an expert clinical researcher.

1H-MRS spectra (Point RESolved Spectroscopy- PRESS; TE = 30 ms; TR = 3000 ms; 96 

averages) were acquired on a 3 Tesla MR system in the left caudate head, anterior cingulate 

cortex (ACC), and hippocampus (Figure 1), employing the standard GE probe (proton brain 

examination) sequence, which uses a standardised chemically selective suppression 

(CHESS) water suppression routine (44) that has been employed before at this centre (45–

47). Data were analysed with LCModel version 6.3-1L (48).

Data was normally distributed. Paired t-tests were used to estimate the effects of Δ9-THC on 

symptoms (focusing on peak changes from the baseline, as we did not expect symptom 
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manifestation by the 2.5-hour time point (14)) and striatal Glx values, and t-tests to compare 

Δ9-THC-induced Glx changes between subjects sensitive to and those not sensitive to the 

psychotomimetic effects of Δ9-THC, based on the manifestation of clearly detectable 

primary symptoms of psychosis (≥ 2-point increase in Positive and Negative Syndrome 

Scale (PANSS) (40) delusions, hallucinations, unusual thought content, suspiciousness, and 

grandiosity items), as drawn from previous factor analytic work (49) as well as previous 

work to characterize acute sensitivity to Δ9-THC (50). Pearson correlation analyses were 

used to test for an association between changes in striatal Glx values and previous cannabis 

exposure (SPSS version 22; SPSS Inc, Chicago, Illinois).

The composite Glx peak has been widely used as a marker of glutamatergic function, 

because it likely predominantly reflects glutamate levels, which are typically 5 to 6 times 

higher than those of glutamine (51). Many of the functions of glutamine are connected to the 

formation of glutamate and the glutamate/glutamine cycle has to be seen as a bi-directional 

cycle involved in key aspects of metabolism and synaptic function (52). Research evidence 

suggests a close coupling of overall neuronal activity and glutamate-glutamine fluxes, with 

cortical synaptic glutamate release and glutamate-glutamine cycling consuming 

approximately 60–80% of the energy produced by oxidative metabolism of glucose. This 

evidence suggests that synaptic glutamate-glutamine cycling cannot be differentiated from 

overall glutamate metabolism (53). Therefore, Glx, the main outcome measure of the MRS 

study presented here, reflects the total glutamatergic pool available for synaptic/metabolic 

activity (54).

Ethics

The study was approved by the Joint South London and Maudsley (SLaM) and Institute of 

Psychiatry, Psychology & Neuroscience (IoPPN) National Health Service Research Ethics 

Committee (PNM/13/14-38), and the investigators had a license to use Δ9-THC for research 

purposes.

Results

Demographic variables, physiological measures, and whole-blood Δ9-THC levels

Study participants had a mean age of 24.44 years (SD: 4.29). They had a mean of 16.94 (SD: 

2.84) years of education.

Placebo administration had no effect on systolic (mmHg, M±SD; baseline: 117.31±13.26; 

drug: 118.56±9.75; P>0.1) and diastolic blood pressure (baseline: 62.5±9.32; drug: 

66.38±10.56; P>0.05), and heart rate (beats per minute; baseline: 69.44±13.28; drug: 

70.94±13.90, P>0.1). Δ9-THC administration had no effect on systolic (baseline: 

117.13±10.35; drug: 117.81±11.78; P>0.1) and diastolic blood pressure (baseline: 

64.25±9.28; drug: 66.13±7.05; P>0.1) but a significant effect on heart rate (baseline: 

68.69±12.72; drug: 89.31±22.57, t=4.65, P<0.001).

The Δ9-THC plasma levels (M±SE; Gas Chromatography - Mass Spectrometry, GC-MS) 

reached a peak 20 mins after drug administration (220.2±34.1 ng/mL), and then began to fall 

(2.5 hours after drug administration: 54.6±8.6 ng/mL).
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Acute effect of Δ9-THC on psychopathological measures

As expected, administration of Δ9-THC was associated with acute induction of transient 

psychotic symptoms (PANSS positive symptoms subscale, t=6.62, P<0.001; PANSS 

negative symptoms subscale, t=4.95, P<0.001; PANSS general symptoms subscale, t=6.85, 

P<0.001; PANSS total score, t=6.77, P<0.001). Also, Δ9-THC induced an acute and 

transient increase in symptoms of anxiety (STAI scale, t=3.72, P=0.002). Finally, subjects 

experienced significant Δ9-THC-induced intoxication (AIS, t=9.41, P<0.001) and sedation 

(VAMS mental sedation subscale, t =7.72, P<0.001; VAMS physical sedation subscale, 

t=4.90, P< 0.001; Figure 2). Eleven subjects (69%) were identified as sensitive to the 

psychotomimetic effects of Δ9-THC as determined on the basis of ≥ 2 point increase in the 

relevant PANSS items (as described in Methods) (49). They had a 5.91 (±4.18) point 

increase in the primary symptoms of psychosis compared to a 0.6 point increase (±0.55) for 

the remaining subjects (drug effect, t=4.13, P=0.002).

1H-MRS results

Voxel segmentation and spectral quality are reported in Table1.

Striatal Glx measures—As hypothesized, acute Δ9-THC administration increased 

Glutamate (Glu) + Glutamine (Gln) metabolites (Glx) in the left caudate head (placebo: 

10.03±2.25; Δ9-THC: 12.22±3.49; t=2.09, P=0.027; effect size: 0.75; Figure 3). There was 

an inverse relationship between baseline Glx values (as measured under the placebo 

condition) and change in Glx induced by acute Δ9-THC administration. This was such that, 

the lower the Glx values under placebo, the higher was the increase following Δ9-THC 

administration (r=-0.55; P=0.026). Furthermore, there was a positive correlation between 

previous cannabis exposure (as indexed using lifetime number of times of cannabis use) and 

Δ9-THC-induced increase in Glx (drug effect, r=0.52; P=0.040).

Glx values under the placebo condition were significantly lower in subjects who were 

sensitive to Δ9-THC-induced psychotomimetic effects (9.20±1.93) compared to subjects 

who were not (11.85±1.93; t=2.54, P=0.023). Following acute Δ9-THC administration, 

compared to subjects who were not sensitive to the psychotomimetic effects (13.01±3.02), 

subjects sensitive to the psychotomimetic effects of Δ9-THC had a 2.27-times higher 

increase in Glx values (11.85±3.76). However, this difference failed to reach significance 

(P>0.1; Figure 4).

Acute Δ9-THC administration had no effect on ACC (placebo: 19.47±3.04; Δ9-THC: 

20.11±2.04) and hippocampal Glx (placebo: 11.74±2.32; Δ9-THC: 12.29±2.30; all P>0.1). 

Other metabolite levels are reported in Supplementary Table 1.

Discussion

This is the first human study to investigate the acute effect of intravenous Δ9-THC 

administration on brain glutamate levels, and whether glutamate level alterations underlie 

the acute psychotomimetic effects of Δ9-THC. Consistent with our first hypothesis and with 

previous evidence from animal studies (28–31) we found that acute administration of Δ9-

THC significantly increased Glx levels in the left caudate head compared to the placebo. As 
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predicted, we also found that this was associated with transient psychotomimetic effects 

induced by Δ9-THC. Our most novel finding is that individuals who experienced transient 

psychotomimetic effects following Δ9-THC (~70% of the sample) had significantly lower 

baseline Glx (as under placebo) and an almost two-and-a-half-fold higher increase in Glx 

following Δ9-THC administration compared to individuals who weren’t sensitive to the 

psychotomimetic effects of Δ9-THC. Finally, consistent with our prediction, previous 

cannabis exposure was positively associated with Δ9-THC-induced Glx increase. 

Exploratory analyses also suggested that the acute effects of Δ9-THC on human brain Glx 

levels are region-specific, as Δ9-THC administration increased Glx levels in the striatum, but 

not in the hippocampus or the anterior cingulate cortex.

In addition to the brain stem projections, the key inputs to the striatum are mesolimbic 

dopaminergic (DA) projections from the ventral tegmental area (VTA) as well as cortical 

and thalamic glutamatergic projections (55, 56). The activity of VTA DA neurons in vivo is 

dominated by pacemaker-like tonic firing interrupted by phasic bursts leading to striatal 

dopamine release (57), and this shift from tonic pacemaker firing to bursting is strongly 

controlled by synaptic input from glutamatergic and GABAergic afferents to the dopamine 

neurons (58). Upon acute exposure, endocannabinoids regulate synaptic strength by acting 

on glutamatergic afferents to VTA dopamine neurons via activation of CB1 receptors (59). 

Preclinical evidence also indicates that intravenous administration of Δ9-THC can increase 

VTA dopamine neuronal activity, being ultimately responsible for an increase in striatal 

dopamine levels through the mesolimbic pathway (19). However, in vitro studies have 

demonstrated that cannabinoids do not affect dopamine concentrations when locally applied 

in the striatum (60), while increasing dopaminergic firing when administered in the VTA 

(61). Since VTA dopamine neurons do not express CB1 receptor protein nor mRNA (62), 

this argues against a direct effect of cannabinoids on dopamine neuron activity, also 

potentially accounting for the inconsistent evidence on effects of Δ9-THC administration on 

striatal dopamine release in man (20–25). In contrast, the glutamatergic inputs to the 

striatum are especially relevant as they are involved in the processing of different stimuli, 

such as rewarding and stressful information, and the selection of related behavioral 

responses (63). In line with this, acute Δ9-THC administration in animal models has been 

shown to consistently increase glutamate levels in a number of brain regions including the 

striatum (28–31). Therefore, glutamate rather than dopamine may play a more important 

role in the neurochemical underpinnings of the acute psychotomimetic effects of cannabis 

(31). However, no acute challenge study had investigated the effect of acute administration 

of Δ9-THC on glutamate metabolism in humans. In sum, our study confirms preclinical 

evidence (28–31) that a single dose of Δ9-THC may increase striatal glutamate levels and 

suggests this as a potential mechanism underlying the acute psychotomimetic effects of 

cannabis.

Previous preclinical research indicates that a history of psychostimulant self-administration 

leads to decreased basal glutamate in both the striatum and the primary neuronal source of 

striatal glutamate, the prefrontal cortex. Instead, acute psychostimulant drug administration 

in abstinent animal models previously exposed to the drug induces an enhancement of 

cortical and striatal glutamate release not seen in drug-naïve subjects (64, 65). Drug-induced 

heightened activation of cortical glutamatergic afferents to the VTA has been proposed to 
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modulate behavioral sensitization and addiction (66). In line with this evidence, we found 

that the lower the striatal Glx levels at baseline, the higher was the increase after Δ9-THC 

administration. Furthermore, we found that the higher the previous cannabis exposure, the 

higher was the Δ9-THC-induced striatal increase, potentially suggesting sensitization due to 

the effects of previous cannabis exposure. However, an important caveat to such an 

interpretation is the relatively modest levels of previous cannabis use (1≤ previous use≤60 

times, 10.4±14.4 times on average). Nevertheless, sensitization (if it is present) to such low 

levels of exposure is not surprising as preclinical evidence suggests that even a single 

exposure to psychostimulant drugs can be sufficient to induce long-lasting behavioral and 

cellular sensitization (66). One may therefore speculate that the glutamatergic system may 

have a different steady-state homeostasis as a function of previous exposure, from where the 

system is particularly susceptible to destabilizing influences that may affect it, such as the 

acute administration of Δ9-THC. As lower baseline Glx levels and related higher Δ9-THC-

induced increase were evident in individuals who developed psychotomimetic symptoms 

under Δ9-THC compared to individuals who didn’t, our findings suggest that Δ9-THC-

induced psychotomimetic symptoms could be explained by Δ9-THC effects on tonic (basal) 

versus phasic (burst) glutamate system function, which in turn are modulated by previous 

cannabis use.

ACC and hippocampal Glx weren’t significantly increased by acute Δ9-THC administration, 

suggesting that glutamate alteration in the striatum may represent a specific locus of 

abnormality underlying sensitivity to the acute and transient psychotomimetic effects of Δ9-

THC. However, this needs to be confirmed in larger samples.

Glutamate steady-state homeostasis and sensitization may also account for the apparent 

discrepancy between the reduction in glutamate observed in studies of chronic cannabis use 

in man (32–35, 37) and the increase in glutamate observed in preclinical acute challenge 

studies (28–31) as well as in the present acute challenge study in humans. Animal studies of 

chronic psychostimulant use clearly indicate drug-induced changes in glutamate regulation, 

such that basal glutamate levels are decreased while glutamate release is enhanced during 

drug exposure (64, 65). Cannabis use may involve progressive neurochemical adaptations in 

glutamate function, which need to be further investigated. Determining the regional changes 

in glutamate function that may result from repeated cannabis exposure is also imperative to 

understanding their relevance to the acute and chronic psychoactive effects of cannabis use. 

To date, there is robust evidence for altered glutamate steady-state homeostasis in animal 

models of addiction (64, 65). However, aberrant glutamate function has also been suggested 

in psychosis and related disorders. In particular, a systematic review of 63 studies 

investigating metabolite biomarkers of schizophrenia has indicated glutamate increase as 

one of the most consistent potential metabolite signatures of the disorder (67). Increased 

striatal glutamate levels have also been described in subjects at ultra-high risk for psychosis, 

and they are also associated with conversion to psychosis (68, 69).

The major strength of this study is its design. Study subjects were recruited if they had a 

minimal history of cannabis use, had been abstinent from cannabis for at least 6 months, and 

had negligible use of other substances (alcohol, tobacco, and other illicit drugs). Therefore, 

we can reasonably rule out the possibility that some of the results observed could be 
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attributed to the effects of other substance use or cannabis withdrawal, dependence, or 

intoxication. Moreover, for each study participant there was an interval of at least 14 days 

between the 2 study visits. This helps exclude the possibility of any carryover effects as Δ9-

THC has been shown to have an elimination half-life of 18 hours to 4.3 days (70). Also, all 

the participants’ urine samples collected at each study visit at baseline were negative for the 

presence of Δ9-THC. However, these strict inclusion criteria, while offering advantages in 

terms of a controlled sample, may at the same time limit the generalizability of the present 

results to the wider population of cannabis users. Also, the intravenous route for Δ9-THC 

administration allowed much more consistent Δ9-THC blood levels across study subjects 

(14), but might have similarly affected the generalizability of the results to the effects of 

recreational cannabis use. Another limitation of the present study is that, due to its design, it 

was not possible to examine the test-retest reliability of the MRS Glx measure for the 

regions investigated. However, evidence indicates that GM Glx in healthy subjects has 

relatively high reproducibility and test-retest reliability at 3 Tesla (71). Furthermore, the 

within-subject design helped avoid the confounding effect of between-subject differences in 

the outcome variable (71).

It is worth noting that 1H-MRS does not allow us to disentangle whether measured 

glutamate is from the neurotransmitter or the metabolic pool. Nevertheless, research 

evidence indicates that majority of the brain glutamate is cycled through the 

neurotransmitter pool (53) and 1H-MRS-related glutamate measures are likely to be related 

to glutamatergic neurotransmission (54).

It is worth considering a few other potential alternative explanations for the results presented 

here, such as effect of spectral quality differences, effect of T2 relaxation and test-retest 

effect. Cramer-Rao lower-bound values were considerably below the 20% threshold under 

both drug conditions. Although Full Width at Half Maximum (FWHM) values showed a 

trend toward difference between the two drug conditions, they were also within the spectral 

quality recommended by Kreis (FWHM of metabolites <0.07–0.1 ppm) (72). Collectively, 

they suggest good quality data, and are more informative than a comparison of quality 

measures across the drug conditions (Δ9-THC, placebo) (72). Results presented here also 

point toward regional specificity of the acute effects of THC, as no effects on any metabolite 

were observed in the hippocampus and anterior cingulate, arguing against these effects being 

a result of spectral quality differences.

With reference to the possibility that a T2 relaxation effect might have occurred, decreasing 

the signal, this is expected to happen when a longer echo time (TE) is used (73). Instead, the 

combination of a short TE and a long repetition time (TR) used in this study is considered to 

allow the acquisition of signals with minimal signal loss due to T2- and T1-weighting (73). 

Nevertheless, the T2 relaxation of water, which differs between white matter, grey matter 

and CSF may be different between individuals because of presence of different fractions of 

these components in the MRS voxel, and arguably may introduce systematic bias in 

metabolite quantification due to group difference in T2 relaxation. However, this is unlikely 

to have systematically affected the results of the present study as we employed a within-

subject repeated measures design, thereby mitigating the effect of group difference in the 

fraction of grey matter, white matter and CSF in the MRS voxel contributing to difference in 
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T2 relaxation under the two drug conditions (Δ9-THC vs Placebo). Furthermore, the 

randomized crossover design with counterbalanced order of drug administration employed 

in this study also helped mitigate a possible test-retest effect.

In summary, this study suggests that striatal glutamate levels are increased following a single 

dose of Δ9-THC in healthy individuals. This Δ9-THC-induced glutamate increase likely 

underlies the acute cannabis-induced psychotomimetic effects, as it seems to be specific to 

subjects experiencing psychotomimetic effects. These results also suggest that lower 

baseline levels of striatal glutamate may be a marker of sensitivity to the acute 

psychotomimetic effects of cannabis and potential sensitization to the modulation of striatal 

glutamate levels by Δ9-THC as a function of previous cannabis exposure may develop early. 

Collectively, these results provide novel insight into the neurochemical underpinnings of the 

effects of cannabis in man and may point towards potential approaches towards mitigating 

the adverse effects of cannabis, which may have important public health implications.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 1H-MRS data acquisition
1H-MRS, proton magnetic resonance spectroscopy; A, Left Anterior Cingulate Cortex 

(ACC): B, Left Hippocampus; C, Left head of the Caudate
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Figure 2. Acute effect of Δ9-THC on psychopathological measures
THC, (−)-trans-Δ9-tetrahydrocannabinol; PLB, Placebo; PANSS, Positive and Negative 

Syndrome Scale; STAI, State-Trait Anxiety Inventory; AIS, Analog Intoxication Scale; 

VAMS, Visual Analog Mood Scale; mins, minutes; h, hours; P, 2-tailed; error bars show 

standard deviations
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Figure 3. Acute effect of Δ9-THC on glutamate measures in the left head of caudate
THC, (−)-trans-Δ9-tetrahydrocannabinol; PLB, Placebo; P, 1-tailed; error bars show 

standard deviations
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Figure 4. Acute effect of Δ9-THC on glutamate measures in the left head of caudate as a function 
of the psychotomimetic symptom manifestation
THC, (−)-trans-Δ9-tetrahydrocannabinol; PLB, Placebo; P, 2-tailed; error bars show 

standard deviations
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Table 1
Voxel segmentation and spectral quality

Brain region Δ9-THC PLB Statistics

Parameter M (SD) M (SD) t P value

Left Caudate Head

Cramér–Rao lower bound

Glu 9.25 (2.35) 9.00 (1.83) 0.37 0.71

Glx 11.12 (3.54) 10.87 (2.58) 0.24 0.81

NAA+NAAG 3.62 (1.15) 3.19 (0.54) 1.52 0.15

Cr 3.37 (0.62) 3.50 (0.89) -0.56 0.58

mI 8.07 (3.47) 9.67 (4.67) -1.50 0.15

GPC+PCh 4.31 (0.79) 4.44 (1.46) -0.34 0.74

Full Width at Half Maximum 0.07 (0.01) 0.06 (0.01) 1.91 0.08

Signal to Noise Ratio 16.50 (3.92) 17.88 (3.69) -1.14 0.27

Grey matter (%) 48.77 (7.05) 49.32 (5.65) -0.28 0.78

White Matter (%) 49.40 (7.26) 48.84 (6.73) 0.31 0.76

Cerebrospinal fluid (%) 1.81 (1.86) 1.80 (1.79) 0.02 0.99

Left Anterior Cingulate Cortex

Cramér–Rao lower bound

Glu 5.69 (0.79) 5.94 (1.06) -0.77 0.45

Glx 6.31 (0.87) 6.75 (1.06) -1.81 0.09

NAA+NAAG 2.69 (0.48) 2.69 (0.60) 0.00 1.00

Cr 2.75 (0.45) 2.62 (0.62) 0.70 0.50

mI 4.69 (0.60) 5.12 (1.89) -0.92 0.37

GPC+PCh 3.25 (0.58) 3.25 (0.45) 0.00 1.00

Full Width at Half Maximum 0.04 (0.01) 0.03 (0.01) 1.78 0.10

Signal to Noise Ratio 24.56 (5.20) 25.44 (5.50) -0.61 0.55

Grey matter (%) 67.64 (4.43) 67.06 (5.14) 0.94 0.36

White Matter (%) 10.94 (2.59) 11.85 (2.46) -1.59 0.13

Cerebrospinal fluid (%) 21.26 (5.36) 20.94 (5.36) 0.45 0.66

Left Hippocampus

Cramér–Rao lower bound

Glu 9.87 (1.82) 9.94 (2.52) -0.10 0.92

Glx 9.50 (2.85) 10.31 (2.73) -0.90 0.38
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Brain region Δ9-THC PLB Statistics

Parameter M (SD) M (SD) t P value

NAA+NAAG 4.00 (1.21) 4.75 (1.13) -2.16 0.05

Cr 4.06 (0.68) 4.19 (0.75) -0.81 0.43

mI 5.37 (1.09) 6.06 (1.65) -2.11 0.05

GPC+PCh 4.06 (0.44) 4.19 (0.83) -0.62 0.54

Full Width at Half Maximum 0.07 (0.01) 0.07 (0.01) 0.95 0.36

Signal to Noise Ratio 12.81 (2.14) 12.13 (2.28) 1.14 0.27

Grey matter (%) 59.86 (8.12) 60.23 (6.58) -0.20 0.85

White Matter (%) 36.42 (8.96) 35.68 (7.60) 0.36 0.72

Cerebrospinal fluid (%) 3.69 (1.39) 4.06 (1.56) -1.39 0.19

Δ9-THC, delta-9-tetrahydrocannabinol; PLB, placebo; Glu, Glutamate; Glx, Glutamate + Glutamine; NAA+NAAG, N-acetylaspartate + N-
acetylaspartylglutamate; Cr, Creatine; mI, myo-inositol; GPC+PCh, Glycerophosphocholine + Phosphocholine
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