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Abstract

Reliable estimates of future health impacts due to climate change are needed to inform and 

contribute to the design of efficient adaptation and mitigation strategies. However, projecting 

health burdens associated to specific environmental stressors is a challenging task, due to the 

complex risk patterns and inherent uncertainty of future climate scenarios. These assessments 

involve multi-disciplinary knowledge, requiring expertise in epidemiology, statistics, and climate 

science, among other subjects. Here, we present a methodologic framework to estimate future 

health impacts under climate change scenarios based on a defined set of assumptions and 

advanced statistical techniques developed in time-series analysis in environmental epidemiology. 

The proposed methodology is illustrated through a step-by-step hands-on tutorial structured in 

well-defined sections that cover the main methodological steps and essential elements. Each 

section provides a thorough description of each step, along with a discussion on available 

analytical options and the rationale on the choices made in the proposed framework. The 

illustration is complemented with a practical example of study using real-world data and a series 

of R scripts included as Supplementary Digital Content, which facilitates its replication and 

extension on other environmental stressors, outcomes, study settings, and projection scenarios. 

Users should critically assess the potential modeling alternatives and modify the framework and R 

code to adapt them to their research on health impact projections.
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Background

Climate change is one of the most important environmental challenges that humanity will 

face in the coming decades. Quantifying future health burdens associated with global 

warming is therefore a major priority for the scientific community, as attested by the 
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increasing number of publications on health impact projections. Several studies have focused 

on direct impacts of environmental stressors, such as non-optimal temperature and air 

pollution.1–5 Generally, these projection studies follow a common methodologic scheme. 

The basic idea consists in applying risk functions on simulated future exposure distributions 

generated by climate change models under specific emissions scenarios. However, this 

scheme entails important methodologic challenges due, for instance, to the complex patterns 

of health risks associated with environmental stressors, the inherent uncertainty of potential 

future climate change processes, and the set of (rarely stated) assumptions.6 A wide variety 

of data sources, statistical approaches and assumptions have been applied so far, as 

summarized and discussed in previous reviews.6–8 However, a structured illustration that 

covers the important steps and discuss the most recent statistical developments is still 

lacking.

Here, we illustrate a methodologic framework to estimate health impact projections under 

climate change scenarios, built on clearly defined assumptions and state-of-the-art statistical 

methodologies developed in time-series analysis in environmental epidemiology. This 

contribution extends a methodology previously presented to project temperature-related 

excess mortality in climate change scenarios.5,9 The proposed framework is illustrated 

through a hands-on tutorial, structured in well-differentiated steps that cover each of the 

methodologic issues and the essential elements. Each section provides a detailed description 

of the methodology and a discussion on the potential assumptions and limitations, compared 

to other available choices. The text is complemented with a practical illustration of a 

projection study using real-world data, and a series of R scripts included as Supplementary 

Digital Content, with updated versions available in the personal website and GitHub 

repository of the last author. The methodologic framework and R code can be modified and 

adapted to a broad range of health impact projection studies, optionally assessing different 

environmental stressors and health outcomes, and with different study settings.

Illustrative example

The practical example consists of a projection study on temperature-related mortality 

impacts in the city of London, United Kingdom. The dataset includes observed daily mean 

temperature and total number of deaths in London between 1990 and 2012. This is part of 

the large database collected within the Multi-City Multi-Country (MCC) network (http://

mccstudy.lshtm.ac.uk/), and has been previously used as example in other manuscripts.10 

We complement these observed data with daily-modeled temperature series for historical 

(1950-2005) and future (2006-2100) periods, projected under scenarios defined within the 

Coupled Model Intercomparison Project Phase 5 of Intergovernmental Panel on Climate 

Change (IPCC).11 Climate data was obtained, processed and made available by the Inter-

Sectoral Impact Model Intercomparison Project (ISI-MIP, https://www.isimip.org/).12 

Further details on the modeled data is provided in the Section 2 of the tutorial.
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Tutorial on the modeling framework

1 Estimation of exposure–response associations

One critical step in health impact projection studies is to appropriately define the 

relationship between the exposure to the environmental stressor of interest and the health 

outcome. While this information can be based on association estimates reported in the 

literature,13,14 this often requires strong assumptions due to extrapolation across 

geographic areas, and simplification of usually complex relationships.

A more appropriate approach is to directly estimate the relationship using actual 

epidemiologic data, for which several statistical methods are available.15,16 Among these, 

time series analysis using aggregated data has been shown to be ideal to assess short-term 

associations in environmental epidemiology,17 and often applied in climate change 

projection studies.1,18,19

A representation of the standard time series regression model is provided by the following 

equation:

log E Y t = α + f xt; θ + s t; β + ∑p = 1
p hp zpt; γp (1)

where typically the outcome Yt corresponds to daily counts assumed to follow a Poisson 

distribution with overdispersion, the function f(xt; θ) specifies the association with the 

environmental exposure of interest x at time t, s(t, β) represents the baseline trend which 

captures the effect of confounders changing slowly over time (i.e., seasonal and long-term 

trends), and hp(zpt; γp) models the contribution of other confounders varying on a daily 

basis.

The exposure–response association can be modeled using different types of function f, 
ranging from simple indicators for extreme exposure events, to linear or linear-threshold 

shapes, to distributed lag non-linear models representing complex exposure–lag–response 

surfaces.20 The selection of the function depends on the environmental stressor, for instance 

measured as a continuous exposure (e.g., temperature, rain fall) or defined extreme event 

(e.g., heat wave, floods), and the assumed dependency with the health outcome. As shown 

below, wrong assumptions on the shape of the dependency can introduce important biases in 

estimates and projections.

In our example, the environmental stressor and the outcome corresponds to historical series 

of daily mean temperature and death counts (Tobs and Dobs). Our main choice for the 

exposure–response function f(xt) is represented by a distributed lag non-linear model 

through a bi-dimensional cross-basis term, using flexible natural cubic spline functions to 

model both exposure–response and lagged-response dimensions, accounting for 21 days of 

lag, following previous work.10 As further described in Section 4 of this tutorial, the choice 

of natural splines allows the log-linear extrapolation of the function beyond the boundaries 

of the observed series, a step needed to project the risk using the modeled temperature. 

Figure 1A shows the resulting 3-D plot of the estimated exposure–lag–response association, 

Vicedo-Cabrera et al. Page 3

Epidemiology. Author manuscript; available in PMC 2020 May 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



and Figure 1B represents the overall cumulative exposure–response association across up to 

21 days of lag. As expected, we observe a non-linear temperature–mortality relationship, 

with increases in relative risk (RR) above and below the minimum mortality temperature 

(Tmm) that correspond to heat and cold associations, respectively. At the same time, risks are 

distributed differently across time, with immediate heat-mortality and more delayed cold-

mortality associations (Figure 1A).

Alternative models with different specifications of the exposure–response association, such 

as linear or double-threshold parameterizations, are shown in Figure 1C. While simpler, 

these choices seem less ideal for modeling the mortality risk of non-optimal temperature, 

highlighting the importance of the selection of suitable functions to represent the association 

of interest, and the potential bias of inappropriate simplifications.

2 Projected exposure and health outcome series

Two additional essential elements needed in health impact projection studies are the 

information on future climatic and population scenarios.

Data on future distribution of the environmental stressor (e.g., temperature, precipitation, air 

pollution levels) are commonly based on specific scenarios that account for changes in 

multiple and often inter-related factors. For instance, socioeconomic and technological 

changes, population growth, and land use changes can affect pathways of greenhouse gases 

emissions or atmospheric concentrations of other pollutants, which in turn will determine 

trends in global warming and potential levels of specific environmental exposures.21 Under 

each scenario, these trends can be generated from general circulation models, which offer 

projections of future conditions based on specific and simplified assumptions.21 To have a 

better representation of future trends, the usual approach is to combine impact estimates 

obtained either using more than one model per scenario or using ensemble members output 

from multiple runs of the same climate model, but with different initial conditions. 6,7

In our worked example, we applied the first approach by including modeled temperature 

data from five different general circulation models for two climate change scenarios, defined 

as representative concentration pathways 4.5 and 8.5 (RCP4.5 and RCP8.5).22,23 Figure 2 

shows the temporal trends in temperature for the historical (1971-2005) and future 

(2006-2100) periods projected in London under the two scenarios, depicted as general 

circulation model-ensemble averages (solid lines) and associated variability (shaded areas). 

As discussed later in Section 6, the availability of exposure trends from multiple models can 

be used to determine the related uncertainty of the projected health impacts.

Projection exercises also depend on representations of future mortality trends, determined by 

the demographic structure and outcome baseline rates. Data on these population scenarios 

can be built following different approaches based on the adopted assumptions. The simplest 

procedure consists in assuming that populations and outcome rates will remain constant in 

the future, thus isolating the climate effect from other important trends.24–26 However, 

other studies relied on population projections derived from predictive models under varying 

levels of future fertility, mortality, and migration,27–29 a procedure that requires additional 

assumptions.
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In our example, we illustrate an application of the former method. First, we compute an 

annual series of total mortality counts as the average for each day of the year from observed 

daily deaths, thus keeping into account the seasonal structure of the observed mortality 

series (Figure 3). The annual series is then replicated along the whole projection period. The 

extension to more complex scenarios requires the derivation of age-specific mortality series, 

obtained using projection methods that model changes in the demographic structure and 

baseline rates, as further explained in Section 7 of this tutorial.

3 Downscaling and calibration

Climate simulations of historical periods usually show systematic deviations from the real-

world observations. This can be explained by real differences due to the different 

geographical resolution of the data (gridded versus point-source), or to biases due to poor 

performance of climate models, occurring in areas with sparse information from 

meteorological stations. These deviations should be carefully considered in climate change 

projection studies, as the predicted impacts will depend on the alignment of observed and 

modeled series.30,31 Corrections of biases related to these two aspects have been defined 

separately as downscaling and calibration, although in most cases they rely on similar 

analytic procedures. Downscaling refers to the process of obtaining location-specific climate 

information from global or regional models that provide data at a larger geographic 

resolution, and is based on either dynamic or statistical methods.7 Conversely, calibration is 

a more general concept of re-aligning two series of data, in this case observed and modeled 

series.

Bias correction methods have been proposed for both statistical downscaling and calibration, 

and encompass various different techniques with varying degree of complexity, ranging from 

basic statistical approaches (i.e., use of additive or multiplicative corrections, shifted 

distribution), to more complex statistical procedures.31 However, limited evidence exists 

about the potential impact of the choice of method on the estimated projections.

In the present tutorial, the model outputs from the general circulation models are first 

downscaled through bi-linear interpolation at a 0.5°×0.5° spatial resolution and linearly 

interpolated by day of the year. The resulting series are then calibrated with the observed 

data using the bias-correction method developed within ISI-MIP.32 This ensures that the 

trend and variability of the original data are preserved by adjusting the cumulative 

distribution of the simulated data to the observed one. In detail, the monthly variability and 

mean are corrected only using a constant offset or multiplicative correction factor that 

corrects for long-term differences between the simulated and observed monthly mean data in 

the historical period.32 Figure 4 shows a comparison between the modeled series from a 

specific general circulation model (Tmod, green area and line), and the observed series (Tobs, 

black area and line), in terms of their overall and cumulative distribution (left and right 

panels, respectively). It can be noted that the modeled series is shifted towards colder ranges, 

likely for the reasons mentioned above. As discussed, this would create a bias in the future 

projections. The bias-correction procedure described above calibrates the modeled series 

(Tmod* , green dashed line), re-aligning it to the observed one (Figure 4, right panel).
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4 Extrapolation of exposure–response curves

Risk estimates obtained over historical periods do not automatically apply to future 

scenarios, due to several reasons. For instance, it is possible that the estimated exposure–

response association will be different in the future, due to for example adaptation or changes 

in vulnerability of the population. However, even when assuming no changes in risk, the 

future distribution of a specific environmental stressor is likely to be different from that 

observed in the present days and can extend further than the region of the estimated 

exposure–response curve. Thus, we need to perform an additional step consisting in the 

extrapolation of the exposure–response beyond the observed boundaries. This, however, 

implies the adoption of additional assumptions on the hypothetical shape of the association 

over the unobserved range.

As shown in Figure 5 (top panel), a viable method is based on a log-linear extrapolation of 

the curve beyond the observed boundaries. The use of a natural cubic spline function to 

model the exposure–response dimension ensures this non-linear extrapolation, although this 

step can be more problematic when applying different functions. Nonetheless, this entails a 

series of strong assumptions on the future risk associated to environmental factors. The first 

assumption, mentioned above, is that the exposure–response association estimated on the 

currently observed range will not change in the future, for instance as a result of changes in 

susceptibility of the population, as discussed in Section 7. The second assumption is that the 

extrapolation represents appropriately the risk over the unobserved range. In addition, due to 

the nature of the epidemiologic approaches, the extrapolation of the curve over un-observed 

ranges constitutes an important source of uncertainty to our projection estimates. This last 

issue will be further described in Section 6.

5 Projection and quantification of the impact

The next step of the proposed analytical framework consists of estimating the projected 

health impacts estimates by applying the exposure–response association estimates over the 

modeled series of the specific environmental stressor and outcome. Previous studies reported 

measures of impact using various measures, for instance in terms of percent changes in the 

rate of the outcome, excess mortality or morbidity, or attributable fractions.5,18,33 Our 

framework incorporates the procedure previously developed to estimate the impacts in terms 

of attributable fractions within in time series analysis, applicable either with the distributed 

lag nonlinear model framework or with simpler exposure–response dependencies.34

In brief, the method consists of computing for each day of the series the number of cases 

attributed to a specific environmental stressor based on the estimated risk and the level of 

exposure in that specific day. Then daily attributable numbers are aggregated by defined 

intervals of time in the future period. It can be also expressed in terms of attributable fraction 

computed as the ratio with the corresponding total number of cases. Finally, projection 

studies are mostly interested in obtaining comparative measures of impact between climate 

change scenarios or timeframes, which can be easily computed as differences in attributable 

numbers or fractions.
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In the specific setting of the example of study, we estimate the attributable number of deaths 

Dattr due to non-optimal temperatures using the calibrated temperature series Tmod*

following:

Dattr = D · 1 − e
− f * Tmod* ; θb* − s* Tmm; θb* (2)

where f* and θ* represents the uni-dimensional overall cumulative exposure–response 

curves with reduced lag dimension, derived from the bi-dimensional term estimated in 

Section 1 of the tutorial. In Eq.2, we can also separate components due to heat and cold by 

summing the subsets corresponding to days with temperatures higher or lower than Tmm.10 

The same computation can be used with simpler exposure–response functions, and the 

equation simplifies to the usual (RR-1)/RR in the case of linear or binary unlagged 

relationships.

The selection of the Tmm is a critical step in the quantification of the attributable mortality. 

While this step has been shown to have little impact in well-powered multi-location studies 

relying on best linear unbiased predictions, this choice can be problematic in single-location 

analyses that can be affected by highly imprecise exposure–response curves.10,35

Figure 5 (mid and bottom panels) shows the distributions of temperatures and estimated 

attributable mortality, respectively, for the historic and future period in London under the 

assumption of stable populations and no changes in vulnerability. We can observe that the 

mortality burden due to cold temperatures is currently much larger than for heat, especially 

across the moderate cold temperatures. However, if we compare the estimates between each 

of the two periods, we can see that heat-attributable mortality will substantially increase in 

the future by 4.0% (95% empirical confidence interval (eCI): 0.7-6.8), while mortality due to 

cold will be reduced by 3.3% (95% eCI: 4.3-1.9). A description on the computation of the 

eCI is provided in the following section. The same methodologic procedure can be applied 

to derive attributable mortality for more complex scenarios, as illustrated in Section 7.

6 Ensemble estimates and quantification of uncertainty

A key methodologic issue in projection studies is to properly identify and deal with the 

different sources of uncertainty involved in the projection of impacts in future scenarios. 

These include those related to purely statistical aspects, such as the imprecision of the 

estimated exposure–response function, and the inherent uncertainty of the exposure 

simulations obtained from the climate and circulation models.6

Based on the proposed framework, uncertainty arises mainly from two main sources: the 

estimation of the exposure–response function, especially regarding the range over which we 

extrapolated the curve, and climate projections. These are represented by the covariance 

matrix V(θb) of the model coefficients estimated in Equation 1 defining the exposure–

response function, and the variability of the modeled series generated in each GCM (Figure 

2), respectively. In the tutorial, we quantify this uncertainty by generating 1000 samples of 
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the coefficients through Monte Carlo simulations, assuming a multivariate normal 

distribution for the estimated spline model coefficients, and then generating results for each 

of the five general circulation models.34 We report the results as point estimates, using the 

average across climate models (general circulation model ensemble) obtained by the 

estimated coefficients, and as eCI, defined as the 2.5th and 97.5th percentiles of the empirical 

distribution of the attributable mortality across coefficients samples and general circulation 

models. These eCIs account for both sources of uncertainty.

As briefly mentioned before, we did not account for additional uncertainty derived from the 

estimation of Tmm. If desired, it is possible to quantify it using probabilistic methods showed 

in recent publications.35,36 Likewise, other sources of uncertainty can arise in more 

complex projection scenarios, such as those assuming changes in vulnerability (adaptation) 

and population structure. However, these can be more difficult to integrate quantitatively in 

the overall estimate of uncertainty.

7 Accounting for complex scenarios: demographic changes and adaptation

The example illustrated so far is built under the assumptions of no-adaptation and stable 

populations. Findings from this exercise can answer the question: “What will the 

temperature-related impact be in the future if the current population would be exposed to 

warmer temperatures projected in the future?”. However, there is a growing interest in 

assessing environmental impacts under more complex scenarios that account for changes in 

both future risks and baseline population, which could a priori approximate more 

realistically future health impacts. This additional section aims at describing these potential 

extensions.

As mentioned before in the Section 2 of the tutorial, changes in size and population structure 

may have a strong influence on future health impacts, both by increasing the population at 

risk and by shifting it toward more susceptible groups with higher associated risks. Some 

studies have accounted for this using age-specific risks and outcome rates derived from 

socio-economic trajectories,18,19,27,37 defined for example in the so-called shared socio-

economic pathways.38 This can be incorporated in this framework by replicating the 

proposed procedure by each age category. This step requires the estimation of age-specific 

exposure–response associations, as shown in Figure 6A, and their application over the 

corresponding future age-specific outcome series built under a specific shared socio-

economic pathway. These modeled outcome series can be derived by re-scaling the observed 

seasonal counts in the current period using age-specific baseline populations and rates 

projected in the future under a specific shared socio-economic pathway. However, it should 

be noted that, while the “stable populations” approach is built on simplistic assumptions and 

cannot provide a realistic representation of future excess burdens, it offers a more 

straightforward interpretation as it separates the impact of global warming from other 

changes, such as those related to demographic variations, that would occur anyway even in a 

stable climate.

Another important issue to be considered in health projection studies is the potential changes 

in susceptibility to specific environmental stressors. For example, evidence obtained so far 

indicates that populations have partly adapted to heat stress in the last decades, with related 
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risks showing an attenuation along this period.39 Under these assumptions, exposure–

response associations obtained on historical data would not be representative of future risks, 

and several methods have been proposed to address this issue. These include the analogue 

city approach,14,40 which makes use of exposure–response estimates from a location with a 

climate similar to that projected in the future, or methods that allows direct changes in the 

estimated exposure–response function41–44 Both approaches can be incorporated into the 

proposed framework by replacing or modifying the estimated exposure–response function. 

As an illustrative example, Figure 6B shows the modified temperature–mortality curve for 

London, assuming a decrease in 30% in the mortality log-RR associated with heat only, 

obtained by applying a scaling factor to the related part of the curve. However, one should 

take into account that this approach, while potentially more realistic, often implies simplistic 

assumptions on the form of the future exposure–response shape and its changes due to 

adaptation (e.g., linear-threshold shapes, or shifts). In addition, while few studies have used 

empirical evidence from historical data,43 most of them have defined an arbitrary set of 

parameters to model the extent and timing of adaptation mechanisms.42 A recent 

publication has discussed problems and limitations of existing methods for modeling 

adaptation, also showing how the choice greatly influences the estimated health impacts, and 

discussing the difficulties in defining and quantifying valid adaptation mechanisms.45 Thus, 

further implications on the potential limitations of the applied method should be considered 

and clearly discussed when assuming hypothetical changes in vulnerability.

Overview and final remarks

In this contribution, we have presented a well-structured and flexible methodologic 

framework, based on cutting-edge statistical techniques and clearly defined assumptions, to 

obtain health impact projections under climate change scenarios of variable complexity. 

Shaped as a hands-on tutorial, this article describes the key methodologic steps through a 

practical example of an applied analysis, complemented with real data and R code. While 

the analytical approaches described in the example are tailored to the specific study settings 

and should not be uncritically applied in a ‘cut-and-paste’ approach, this tutorial offers the 

reader the opportunity to advance through general methodologic steps, following how 

different statistical choices and assumptions have been translated in the analysis and code. 

At the same time, it enables the reader to replicate, adapt, and potentially extend the 

proposed modeling framework by applying alternative modeling choices using other 

environmental stressors, outcomes, study settings, and more complex climate change 

scenarios. In a more general context, this tutorial highlights the need of multi-disciplinary 

knowledge and skills for projecting health impacts under climate change scenarios, 

involving experts working in different research areas, such as epidemiology, statistics, and 

climate science, among other subjects. This contribution clearly advocates for collaborative 

research and emphasizes the benefits of reproducibility and transparency in science.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Temperature-related mortality in London (1990-2012).
Left panel: three-dimensional plot showing the estimated exposure–lag–response association 

between temperature and mortality. Mid panel: overall cumulative mortality risk (and 95% 

confidence interval). Right panel: comparison between the exposure–response shapes 

estimated using three modeling approaches.
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Figure 2. Temporal trends in projected temperature in London (1971 - 2099).
Solid lines correspond to the mean annual temperature estimated across the 5 GCMs-specific 

modeled series. The shaded area shows its variability, corresponding to the range for each 

year. The two horizontal bars in the right correspond to the average annual maximum and 

minimum for each modeled temperature series.
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Figure 3. Seasonal mortality trends in London.
Grey dots correspond to the observed daily mortality counts registered in each day of the 

year between 1990 and 2012. The blue line depicts the mean number of deaths per day of 

the year.
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Figure 4. Bias-correction of the modeled temperature series.
Comparison between the distribution (left panel) and cumulative distribution (right panel) of 

the raw and bias-corrected modeled temperature(Tmod, Tmod* ), and the observed temperature 

series (Tobs). GCM indicates general circulation model.
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Figure 5. Temperature and excess mortality in London for present and future periods.
Top panel: exposure–response curve represented as mortality relative risk (RR) across the 

temperature (°C) range, with 95% empirical confidence intervals (grey area). The dotted 

vertical line corresponds to the minimum mortality temperature (Tmm) used as reference, 

which defines the two portions of the curve related to cold and heat (blue and red, 

respectively). The dashed part of the curve represents the extrapolation beyond the 

maximum temperature observed in 2010-19 (dashed vertical line). Mid panel: distribution of 

Tmod*  for the current (2010-19, grey area) and at the end of the century (2090-99, green area), 
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projected using a specific climate model (NorESM1−M) and scenario (RCP8.5). Bottom 

panel: the related distribution of excess mortality, expressed as the fraction of additional 

deaths (%) attributed to non-optimal temperature compared with Tmm.
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Figure 6. Accounting for complex scenarios accounting for socio-demographic changes and 
adaptation.
Right panel: age-specific exposure–response curves, applicable to project health impact 

separately for each age category, thus potentially accounting for demographic changes by 

using differential baseline mortality trends. Left panel: comparison between the exposure–

response curves under scenarios of no adaptation (continuous line) and adaptation (dashed 

line), the latter under the (simplistic) assumption of an hypothetical attenuation of 30% in 

risk associated to heat.
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