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Abstract

Root-associated microbes play a key role in plant performance and productivity, making them 

important players in agroecosystems. So far, very few studies have assessed the impact of different 

farming systems on the root microbiota and it is still unclear whether agricultural intensification 

influences the structure and complexity of microbial communities. We investigated the impact of 

conventional, no-till and organic farming on wheat root fungal communities using PacBio SMRT 
sequencing on samples collected from 60 farmlands in Switzerland. Organic farming harboured a 

much more complex fungal network with significantly higher connectivity than conventional and 

no-till farming systems. The abundance of keystone taxa was the highest under organic farming 

where agricultural intensification was the lowest. We also found a strong negative association 

(R2=0.366; P<0.0001) between agricultural intensification and root fungal network connectivity. 

The occurrence of keystone taxa was best explained by soil phosphorus levels, bulk density, pH 
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and mycorrhizal colonization. The majority of keystone taxa are known to form arbuscular 

mycorrhizal associations with plants and belong to the orders Glomerales, Paraglomerales, and 

Diversisporales. Supporting this, the abundance of mycorrhizal fungi in roots and soils was also 

significantly higher under organic farming. To our knowledge, this is the first study to report 

mycorrhizal keystone taxa for agroecosystems, and we demonstrate that agricultural intensification 

reduces network complexity and the abundance of keystone taxa in the root microbiome.

Introduction

Agricultural intensification is one of the most pervasive problems of the 21st century [1]. To 

keep pace with the ever-increasing human population, the total area of cultivated land 

worldwide has increased over 500% in the last five decades [2] with a 700% increase in the 

fertilizer use and a several-fold increase in pesticide use [3, 4]. Agricultural intensification 

has raised a wide range of environmental concerns, including poor nutrient-use efficiency, 

enhanced greenhouse gas emissions, groundwater eutrophication, degradation of soil quality, 

and soil erosion [4, 5]. Alternate farming systems such as conservation agriculture (e.g., no-

till) and organic farming have been widely adopted to reduce such adverse environmental 

effects [6–8]. Organic arable lands represent 2.5% of the total arable lands in Europe, and 

over 3.5% in Switzerland [9]. The adoption of no-till globally has increased by 

approximately 233% in the last decade and it is over 3% of the total arable lands in 

Switzerland [10]. These farming systems are adopted to maintain environmental 

sustainability and ecosystems services, and at the heart of ecosystem services lies the 

contribution of microbial communities [11–13].

Microbial communities play an indispensable role in ecosystems and render a wide range of 

services [12, 14–16]. In agroecosystems, microbes modulate a number of processes, 

including nutrient cycling, organic matter decomposition, soil aggregate stabilization, 

symbiotic and pathogenic interactions with plants, and thereby play an essential role in the 

productivity and sustainability of agroecosystems [5, 12, 17]. The agricultural intensification 

with high resource-use and low crop diversity can affect soil- and plant-associated 

microbiota, with subsequent impact on ecosystem services [18, 19]. Increasing adoption of 

no-till and organic farming also warrants an investigation of their effects on microbial 

communities. Previous studies comparing the effects of conventional, no-till and organic 

farming have mostly focused on the soil microbiome [6, 8, 20–22], and our understanding of 

the impact of these farming systems on root-associated microbiota is minimal.

Root-associated microbiota plays a key role in determining the above-ground productivity 

[23–26]. No-till farming may affect root architecture and root distribution in soil, with a 

subsequent effect on microbial recruitment into the roots [27]. However, very few studies 

have assessed the effect of no-tillage on root microbial communities, and the ones that 

investigated root microbiota have only focused on root bacteria [28] or specific fungal 

groups, including arbuscular mycorrhizal fungi (AMF) using traditional techniques [29, 30]. 

Furthermore, the impact of agricultural intensification on the overall root fungal 

communities is still poorly understood [31, 32]. Plant root harbours a diverse assemblage of 

endophytic fungi that form symbiotic, parasitic or pathogenic associations, and through such 
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associations, play a key role in plant diversity, community composition and performance 

[26, 33, 34]. The widespread symbiosis of AMF and the array of benefits rendered by these 

fungi are now well-established [35, 36]. Moreover, mycorrhiza like endophytes, 

Piriformospra indica, also promote plant growth, stress tolerance and induce local and 

systemic resistance to pathogens [37]. Trichoderma spp. have also been shown to grow 

endophytically and enhance plant growth and systemic resistance to plant pathogens [38]. 

Thus, the structure and composition of root fungal communities play an important role in 

agroecosystems, and yet the effect of agricultural intensification on root fungal communities 

remains poorly understood.

The structure of a microbiome has substantial effects on its functioning [39]. However, 

studying the structure of a microbiome is not simple mainly due to complex 

interrelationships among the myriad of members. Microbial co-occurrence networks can 

unravel such relationships and offer insight into community structure [40–43]. Network 

analysis has been found particularly useful in recent years to understand how microbe-

microbe associations change in response to environmental parameters [42, 44–47]. Network 

scores can also be used to statistically identify the keystone taxa, i.e., taxa that have a large 

influence in the community [34, 48, 49]. A recent study has shown that despite being 

numerically inconspicuous, keystone taxa confer greater biotic connectivity to the 

community and thus, can be indicators of community shifts and compositional turnover [50]. 

It has also been observed that the impact of abiotic factors and host genotypes on the plant 

microbiome is facilitated via keystone taxa [51], and the root microbial network complexity 

is linked to plant survival [52]. Agricultural intensification may alter the structure of root 

microbial network and the abundance of keystone taxa, which in turn may have implications 

for crop performance [53]. However, so far, it has not been investigated whether root 

microbial networks differ between organic, conservation and conventional agriculture. A 

pertinent question is whether mycorrhizal fungi that are widely regarded for their role in 

plant productivity can also act as keystone taxa in the microbial community.

Here we explored the impact of farming systems on the fungal community structure using 

the latest PacBio SMRT sequencing and network analysis of wheat root samples collected 

from 60 farmlands in Switzerland. We aimed to address the following questions: a) does 

agricultural intensity affect the structure and composition of wheat-root fungal 

communities? b) do network complexity and the abundance of keystone taxa vary between 

conventional, no-till and organic farming? c) which taxa act as keystone and what are the 

drivers of such taxa in the root microbiota?

Material and methods

Site selection and sampling

Soil samples were collected in early May 2016 from wheat fields in 60 agricultural 

farmlands in the northeast and southwest regions of Switzerland (Figure S1). Wheat fields 

were either managed conventionally with tillage, conventionally under no-tillage, or 

organically under a mouldboard plough tillage for at least the last five years. Farming 

systems were distributed equally in both regions, and each system was represented by 20 

farmlands, resulting in a total of 60 farms. Conventionally managed fields applied pesticides 
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and synthetic fertilizers and were managed following the ‘Proof of Ecological Performance’ 

guidelines of the Federal Office for Agriculture, Switzerland (https://www.blw.admin.ch). 

No-till fields were without any soil tillage except for occasional use of strip till, and 

potential application of synthetic substances (www.no-till.ch). Organically managed fields 

received no pesticides and synthetic fertilizers and were managed according to the 

guidelines of BioSuisse, the Federation of Swiss Organic Farmers (www.bio-suisse.ch). In 

addition to inherent differences among the farming systems in the use of plough or synthetic 

fertilizer and plant protection products, farmers also planted 25 different wheat varieties, all 

belonging to the list of recommended winter wheat variates published annually by the 

Agrarforschung Schweiz (www.agrarforschungschweiz.ch) or BioSuisse, for conventionally 

or organically managed fields, respectively. While field sites showed a degree of variability 

in soil texture, elevation, and the mean annual temperature, none of these parameters 

differed significantly between the farming systems (Büchi et al., submitted). We calculated 

agricultural intensity index according to previous studies [55, 56] based on the information 

collected from 59 farmers; information could not be obtained from one farm (Büchi et al., 

submitted). Agricultural intensity index was calculated using the information on three 

anthropogenic input factors: fertilizer use, pesticide use and the consumption of fuel for 

agricultural machinery. These factors were also included in assessing agricultural intensity in 

a previous study.

At each farmland, 18 soil cores (4 cm diameter) were collected at 0-20 cm depth with a hand 

auger (Figure S2). These 18 samples were mixed and pooled to obtain a representative 

sample for a farm. The auger was cleaned between sites. Five undisturbed cylindrical soil 

cores of 100 ml volume and 5.1 cm diameter were collected for bulk density measurement 

and the median of the five measures was considered as the estimate of bulk density for each 

field. Root samples were collected in June 2016 at wheat flowering (BBCH growth stage 

69-75). At each site, ten wheat plants, five per transect, were excavated using a fork spade. 

Shoots were cut off at the height of approx. 5 cm and all roots of a specific site were pooled 

in a plastic bag for subsequent processing. Samples were placed on ice in a cooler box for 

transfer to the laboratory. Soil samples were processed on the same day as the collection by 

removing plant materials, homogenizing and passing through a 2 mm sieve. Sub-samples 

were taken for various soil physicochemical and biological analyses and stored at 4 °C or 

-20 °C as required.

Plant and soil analyses

Root microbiome comprises microbial communities associated with plant roots, including 

microorganisms in the endosphere, rhizoplane, and rhizosphere [55–57]. This study 

specifically focused on the root endophytic fungal communities. In the lab, roots were 

thoroughly cleaned under cold tap water. Subsequently, fine roots (< 1 mm) were cut into 

small pieces of about 1 cm length and thoroughly mixed. A subsample of 2 g of fine roots 

was stored in 1.5 Eppendorf tubes, lyophilized and stored at -20°C for DNA extraction. The 

rest of the samples was used to determine AMF colonization by estimating the abundance of 

arbuscules, hyphae or vesicles according to a modified line intersection method [58]. A 

minimum of 100 intersections per slide was examined with two technical replicates applying 

a blind procedure throughout the quantification process to avoid subjectivity related to the 
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origin of the sample. For soil samples, total phosphorus (P), plant available P, pH, and bulk 

density were measured using the Swiss standard protocols [59]. Plant available P was 

measured according to Olsen et al. (1954). The abundance of AMF in soil was assessed by 

phospholipid fatty acid (PLFA) extraction followed by analysis on gas chromatography mass 

spectrometry (GC/MS) [61]. We quantified the abundance of AMF in soil by using the 

PLFA 16:1ω5, which is well-regarded as a biomarker for AMF because it constitutes a large 

proportion of total PLFAs in AMF, and strong correlations between AMF abundance in the 

soil and concentrations of the PLFA 16:1ω5 have been observed previously [62]. Neutral 

lipid fatty assay or NLFA 16:1ω5 is also used as an indicator of AMF biomass, however, 

NLFA 16:1ω5 is mainly present in storage organs [63]. Thus, it is considered a weak 

indicator of active AMF in soil and a previous study also found low amounts of NLFA 

16:1ω5 in soil [64].

DNA extraction and SMRT sequencing

For each sample, 200 mg of roots (dry weight) was used for DNA extraction using 600 mL 

of Nucleo spin lysis buffer PL1 for 15 min at 65 °C followed by the NucleoSpin Plant II kit 

(Macherey & Nagel, Düren, Germany). The DNA samples were amplified with the primer 

pair ITS1F-ITS4 [65, 66] targeting the entire ITS region (approx. 630 bp) [67]. The forward 

and reverse primers were synthesized with a 5-nucleotide-long padding sequence followed 

by barcode tags at the 5’ end to allow multiplexing of samples within a single sequencing 

run [68]. Library preparation and SMRT sequencing were conducted at the Functional 

Genomics Centre Zurich (http://www.fgcz.ch) on the PacBio® RS II Instrument (PacBio, 

San Diego, CA, USA). Details of PCR conditions and sequence data processing are 

described in the Supplementary Information. In brief, the SMRT Portal was used to extract 

the circular consensus sequences (CCS) from the raw data (available from the European 

Nucleotide Archive, study accession number: PRJEB27781). The CCS of at least five passes 

yield similar error rates as 454 or MiSeq sequencing platforms [67, 68]. The CCS reads were 

quality filtered in Mothur (v.1.35.0) [69]. Quality reads were demultiplexed based on the 

barcode-primer sequences using flexbar [70]. De novo chimera detection was performed on 

quality reads using UCHIME [71]. To avoid unwanted multi-primer artefacts, we deleted 

reads where full-length sequencing primer was detected within the read [72]. We clustered 

the quality sequences into operational taxonomic units (OTUs) at ≥ 98% sequence similarity 

with the UPARSE series of scripts [73]. Reads were de-replicated, and single-count and 

chimeric sequences were excluded for OTU delineation. The OTUs of low abundance (less 

than 0.1% global abundance and less than 0.5% abundance within a specific sample) were 

removed from the dataset (Figure S3). We normalized the OTU table by rarefying to 1000 

reads per sample. On average 357 OTUs were found per site and a total of 837 OTUs for all 

60 sites. The OTUs were classified taxonomically against the UNITE database [74]. The 

OTU and taxonomy tables were filtered to exclude OTUs classified as non-fungal.

Statistical analyses

Alpha diversity indices such as OTU richness, Sheldon evenness and Shannon-Weaver index 

were calculated from the rarefied fungal OTU table using the phyloseq package [75] in R 

v3.4 [76]. The effect of farming systems and wheat varieties on fungal community structure 

was assessed by performing PERMANOVA and canonical analysis of principal coordinates 
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(CAP) with 999 permutations in PRIMER-E (PRIMER-E, Plymouth, UK). Fungal beta 

diversity patterns were only assessed on OTUs that were present in at least two samples. 

Homogeneity of multivariate dispersions was checked with the PERMDISP test using the 

Bray-Curtis similarity matrix in PRIMER. We also identified the indicator taxa for each 

farming system using the ‘multipatt’ function in the indicspecies package in R [77]. 

Fundamentally, this analysis is based on two species traits: exclusivity (exclusively present 

in a habitat) and fidelity (present in all samples of that habitat) [78]. An indicator values is 

calculated based on these traits to assess the extent to which a species is indicator of a 

habitat.

Co-occurrence patterns in fungal communities were assessed by performing network 

analysis using the maximal information coefficient (MIC) scores in MINE statistics [79]. 

MIC is an insightful score that reveals positive, negative and non-linear associations among 

OTUs. Network analysis was performed on the same set of OTUs as testing for the beta-

diversity i.e., only OTUs that were present in at least two samples were included, resulting in 

822 OTUs. The overall meta-network was constructed with 60 samples whereas the three 

farming specific networks were constructed with 20 samples each. The MIC associations 

were corrected for false discovery rate (FDR) [80] and the final networks were constructed 

with relationships that were statistically significant (P<0.05) after FDR correction. The 

networks were then visualized in Cytoscape version 3.4.0 [81]. The NetworkAnalyzer tool 

was used to calculate network topology parameters. Nodes (e.g., the fungal OTUs in this 

study) are the fundamental units of a network while edges represent the connections or links 

between the nodes. Thus, degree represents the number of edges connected to a node. 

Clustering coefficient reflects the higher connectedness among nodes in a particular region 

of a network, whereas the shortest path indicates how quickly information can travel 

between two nodes [82]. Network diameter is the largest distance between two nodes of a 

network. We also evaluated networks against their randomized versions using the Barabasi-

Albert model [83] available in Randomnetworks plugin in Cytoscape v2.6.1. Nodes in a 

random network may have the same number of degrees, resulting in a Poisson distribution. 

On the other hand, non-random networks are scale-free i.e., degree distribution shows a 

power-law tail with some nodes showing higher degrees than the rest [82]. Indeed, the 

structural attributes of root fungal networks such as degree distribution, mean shortest path, 

clustering coefficient were different from random networks with an equal number of nodes 

and edges. The OTUs with the highest degree and highest closeness centrality, and the 

lowest betweenness centrality scores were considered as the keystone taxa [48]. Closeness 

centrality is based on the average shortest paths and thus reflects the central importance of a 

node in disseminating information [84]. On the other hand, betweenness centrality reveals 

the role of a node as a bridge between components of a network. For the overall network, 

OTUs with degree greater than 50, closeness centrality higher than 0.44, and betweenness 

centrality lower than 0.12 were selected as the keystone taxa. For farming specific networks, 

OTUs with degree higher than 10, closeness centrality higher than 0.28, and betweenness 

centrality lower than 0.18 were selected as the keystone taxa. We chose a single set of cut-

off values for consistent comparison across farming specific networks. We also calculated 

the proportional influence of various fungal orders in network structure by dividing the 

number of nodes belonging to a particular order by the number of connections (edges) it 

Banerjee et al. Page 6

ISME J. Author manuscript; available in PMC 2019 September 08.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



shared. This was based on the assumption that topological parameters have a direct influence 

on network structure [39]. We assessed the difference between farming specific networks by 

bootstrapping node attributes (degree, between centrality, and closeness centrality) with 

10,000 iterations. We then performed the two-sample Kolmogorov-Smirnov test to compare 

node attributes between farming systems using the ks.test function inbuilt in the stats 
package in R. Kolmogorov-Smirnov test compares the overall shape of the cumulative 

distribution of two variables where the null hypothesis is that the variables have same 

distribution patterns. For each network, node attributes were computed by bootstrapping 

approach with 10,000 iterations. Moreover, to compute node attributes for each farm, we 

used the subgraph function in the igraph package [85].

Finally, we performed random forest analysis to explore the determinants of the identified 

keystone taxa. Random Forest is a powerful machine learning tool that offers high prediction 

accuracy by using an ensemble of decision trees based on bootstrapped samples from a 

dataset [86]. It is a non-parametric and non-linear statistical method that does not have prior 

distributional assumptions. The portion of dataset drawn into a sample is called in-bag data 

whereas the data not drawn is termed as out-of-bag data [87]. Trees are fully grown to 

predict the out-of-bag data and the importance of a specific predictor variable is obtained by 

randomly permuting the values of that variable for the out-of-bag data and calculating 

increase in the mean squared error. Each node of a decision tree is associated with a subset 

of random data points from the original dataset and thus, increase in node purity (which is 

basically decrease in node impurity or misclassification rate) indicates the importance of a 

predictor variable. Random forest analysis was performed with 999 permutations using the 

randomforest and rfPermute packages [88]. The best predictors were identified based on 

their importance using the importance and varImpPlot functions. Increase in node purity and 

mean square error values were used to determine the significance of the predictors using the 

randomForestExplainer package [89]. The factors significant at P<0.01 were selected as the 

predictors of keystone taxa.

Results

Overall structure and co-occurrence

Alpha diversity indices of root fungal communities did not vary significantly between the 

conventional, no-till and organic systems (Figure 1A-C). This was also true for the overall 

taxonomic composition (Figure 1D). However, farming systems significantly influenced the 

root fungal community structure with three distinct clusters for organic, conventional and 

no-tillage fields (Figure 2A). A PERMANOVA test also confirmed the significant effect of 

farming systems (pseudo F = 1.42; P<0.05; explained variation = 4.17%). A non-significant 

PERMDISP test (F = 2.072; P = 0.202) indicated homogenous dispersions of samples across 

systems. Further, a pairwise comparison in PERMDISP revealed that there was no 

significant difference in dispersions between organic and conventional (F = 1.068; P = 

0.372), and organic and no-till (F = 0.870; P = 0.435). We found no impact of wheat 

varieties on community structure and this was reinforced by a non-significant 

PERMANOVA test (Pseudo F = 0.972; P = 0.595) (Figure S4). However, geographical 

locations i.e., northeast and southwest regions had an impact on root fungal community 
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structure (Figure S5). Indicator species analysis was performed to test which taxa are 

characteristic for each of the three farming systems. Root inhabiting Trichoderma, a member 

of Hypocreales, was the only indicator taxon for conventional farming system whereas seven 

fungal taxa (e.g., Cyphellophora, Myrmecridium, Phaeosphaeria, Cadophora, Pyrenochaeta, 
Solicoccozyma, and Conocybe) were the indicator taxa for no-till farming (Table S1). Six 

taxa of Sordariales, Cantharellales, and Agaricales were indicator taxa for organic farming 

with Chaetomium and Psathyrella as the only known genera.

The overall network of root fungal communities in 60 samples revealed distinct co-

occurrence patterns (Figure 2B). The meta-network consisted of 378 nodes and 1602 

significant (P<0.05) edges. This network with strong power-law distribution of degrees had a 

diameter of 8, average number of neighbours of 8.476, and a clustering coefficient of 0.258. 

For the overall network, eight of keystone taxa belonged to arbuscular mycorrhizal orders 

Glomerales, Paraglomerales, and Diversisporales, and the remaining five belonged to 

Tremellales, Malasseziales, and Cantharellales (Table S2). Indeed, the majority of the 

associations were from these four orders with Glomerales forming the largest guild with the 

maximum number of nodes and associations in the network. Overall, farming systems 

significantly affected fungal community structure with mycorrhizal orders playing a major 

role in the network complexity as measured by the number of edges, the average number of 

neighbors, and the clustering coefficient.

Farming specific co-occurrence networks

Owing to the significant difference in fungal community structure across three farming 

systems, we further evaluated root fungal networks for each farming system separately. The 

networks displayed remarkable differences in their structure and topology (Figure 3). The 

network of conventional farming consisted of 261 nodes (e.g., taxa) and 315 edges 

(associations between taxa) while the no-till network consisted of 267 nodes and 341 edges. 

In stark contrast, the organic farming network consisted of 301 nodes and 643 edges. The 

average number of neighbours and the clustering coefficient of the organic farming network 

were also considerably higher than for the other two networks (Figure 3). The higher 

complexity and connectivity in the organic farming network were supported by the 

abundance of keystone taxa. The organic farming network harboured 27 of such keystone 

taxa compared to two in the no-till network and none in the conventional one (Figure 3; 

Table S3). The majority of these keystone taxa belonged to the orders Glomerales, 

Tremellales and Diversisporales with a noticeable presence of taxa from the orders 

Paraglomerales, Sebacinales and Hypocreales. To explore the importance of keystone taxa 

for the higher network complexity in organic farming, we constructed the organic network 

without including keystone OTUs. The organic network devoid of any keystone taxa was 

much simpler and was similar to the conventional and no-till networks (Figure S6).

Higher connectivity in the organic farming network was visible in the distribution of 

degrees, which indicates the number of associations shared by each node in a network 

(Figure 4). The organic farming network had a much stronger power-law distribution than 

the conventional and no-till ones, despite the similar node distribution across root fungal 

orders (Figure S7). We calculated the proportional influence of various orders in the 
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microbiota by dividing the number of nodes belonging to a particular order by the number of 

connections (edges) it shared. It revealed the orders that exhibited maximum connections 

across three farming systems and thereby influence the network structure. Various orders 

exhibited considerable differences in their proportional influence in the complexity of root 

microbiota. Orders such as Sordariales and Agaricales showed a major influence in the 

conventional network structure, and Sordariales, Cantharellales and Mortierellales in the no-

till network. In addition to Tremellales and Hypocreales, three mycorrhizal orders 

Glomerales, Paraglomerales and Diversisporales showed a major influence on network 

complexity under organic farming. Overall, the organic farming network formed a much 

more complex network and harboured more keystone taxa than the other two farming 

networks.

Drivers of keystone taxa

Agricultural intensity was significantly (P<0.05) different across three farming practices 

with conventional being the most intensive and organic the least intensive system (Figure 

5A). This trend was opposite for network connectivity as represented by the node degree 

across three farming practices (Figure 5B). Network bootstrapping revealed that the network 

connectivity in organic fields was significantly (P<0.05) higher than the conventional and 

no-till ones. Kolmogorov-Smirnov test showed that node degree, betweenness centrality, and 

closeness centrality were significantly (P<0.01) different between the three framing systems 

(Table S4). Moreover, network connectivity was inversely proportional to agricultural 

intensity index (R2=0.366; P<0.0001; Figure S9). The number of keystone taxa was also 

higher (27) in the organic farming network than the no-till (2) conventional (0) networks. 

Random forest analysis revealed that soil phosphorus content, bulk density, pH, and 

mycorrhizal colonization best explained (P<0.01) the occurrence of keystone taxa (Figure 

5C). Most of these parameters were also significantly (P<0.05) correlated with the alpha-

diversity indices, indicating their importance for the overall root fungal communities (Table 

S5). The majority of keystone taxa belonged to mycorrhizal orders, and mycorrhizal 

colonization of wheat roots was significantly (P<0.01) higher in the organic fields than in the 

conventional and no-till fields (Figure S8). Consistent with this, the abundance of 

mycorrhizal PLFA in soil were also significantly (P<0.01) higher in the organic compared to 

the conventional fields. Agricultural intensity had a significantly negative impact on 

mycorrhizal colonization in roots and the abundance in soils (Figure 5D). Taken together, 

the root fungal network complexity, abundance of keystone taxa and mycorrhizal abundance 

showed an opposite trend to that of agricultural intensification across farming systems.

Discussion

It is now well established that root-associated microbiota plays an important role in plant 

diversity, community composition and performance [24, 35, 57, 90]. Consequently, it is 

important to understand how microbial communities harboured inside crop roots are affected 

by agricultural practices and how key microbial players can be targeted for ecological 

intensification of agroecosystems [5]. However, with much of the previous work only 

focusing on the soil microbiota, our understanding of the effects of farming systems on root-

associated microbiota is still rudimentary. Moreover, previous studies mostly focused on 

Banerjee et al. Page 9

ISME J. Author manuscript; available in PMC 2019 September 08.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



microbial alpha- and beta diversity patterns, and the impact of different farming systems on 

microbial network structure is poorly understood. Here we show that wheat roots under 

different farming systems harbour distinct fungal communities and with varying network 

complexity. Fungal network complexity of organically managed fields was almost twice as 

high under conventional and no-till farming practices. Moreover, network connectivity was 

negatively associated with agricultural intensification.

Our finding that the overall structure of root microbiota influenced by farming systems is in 

agreement with studies on the soil microbiome where a large number of reports showed a 

significant impact of farming systems [6, 20–22, 91, 92]. It should be noted that most of 

these studies investigated microbial communities in agronomical context and were 

performed in field-trials [20–22, 32]. While a major strength of field-trials is that farming 

treatments are imposed under homogenous management and at one location with a specific 

soil type, management effects on microbial patterns may be different in actual farmlands and 

thus, the results obtained at one location may not be generalized. We report the impact of 

farming practices on root microbial community characteristics in on-farm research and 

across many fields at a regional scale.

Microorganisms do not thrive in isolation and rather form complex association networks. 

Such networks hold special importance for gaining insight into microbiome structure and its 

response to environmental factors [25, 42, 43, 47, 51]. Our study highlights how farming 

practices impact the network structure of root microbiota and uncovers that organic farming 

harbours a significantly more complex network with many highly connected taxa (nodes) 

than the conventional and no-till farming. It has been shown that complex networks with 

greater connectivity are more robust to environmental perturbations than simple networks 

with lower connectivity [93]. In this sense, the higher complexity of organic networks may 

indicate that the root microbiota under organic management is more resilient to 

environmental stresses as different taxa can complement each other. However, further studies 

are necessary to corroborate this observation.

Keystone taxa are the highly connected taxa that play important roles in the microbiome and 

their removal can cause significant changes in microbiome composition and functioning [48, 

50]. Although previous studies have reported keystone taxa in various environments [34, 45, 

94], reports on keystone taxa in the root endophytic microbiota are very limited. The organic 

farming network exhibited by far the highest connectivity and comprised most of the 

keystone taxa. It should be noted that fungal richness did not vary significantly between the 

farming systems nor did the number of nodes across farming specific networks, and yet we 

observed a clear difference in the network structure and number of keystone OTUs. 

Moreover, the abundance of keystone OTUs did not vary between the three farming systems 

but these OTUs shared considerably more associations in organic farming (Figure S10). The 

organic network without the keystone OTUs was similar to the conventional and no-till 

networks, highlighting the importance of these members for network complexity. Our 

observations indicate that microbiome complexity is not necessarily determined by the 

number of taxa in the community, but rather the number of associations that those taxa share 

amongst them.
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The majority of these keystone taxa were AMF belonging to the orders Diversisporales, 
Glomerales, and Paraglomerales. The symbiotic association of AMF that started more than 

400 million years ago is formed by ~80% of terrestrial plants [36, 95]. The observation that 

AMF can enhance plant productivity [96] make them a crucial player in agroecosystems. 

The importance of AMF for the root-associated microbiota, particularly under organic 

farming, is congruent with the higher abundance of AMF in roots and soils observed in the 

organic farmlands in this study (Figure S8). While previous studies also found significantly 

higher AMF abundance and diversity in organic farmlands than in the conventional ones [97, 

98], the important role of AMF for the root fungal network structure is reported here. One of 

the non-mycorrhizal keystone taxa in organic farming belonged to the order Sebacinales. 

Members of this order are highly diverse root endophytes and are thought to form neutral 

and beneficial interactions with plants [99]. Our observation of Sebacinales as keystone taxa 

is consistent with a previous report that found a consistently higher abundance of 

Sebacinales in organic farmlands [31]. Since keystone taxa are linked to network 

complexity, beneficial endophytic keystone taxa such as AMF and Sebacinales may enhance 

the network complexity and thereby the complexity of the root microbiome. Several other 

keystone taxa in the overall and organic networks belonged to the order Tremellales. This 

widespread group of Basidiomycetes contains many yeast species and have been reported in 

plant roots in temperate regions [100]. Members of this fungal order were also recently 

found as keystone taxa in the root microbiome across eight forest ecosystems in Japanese 

Archipelago [53]. Interestingly, we found that two of the keystone taxa (OTU_10, OTU_11) 

were members of the Dioszegia genus, which was also found as keystone by Agler et al. 
(2016). It was shown that the effect of abiotic factors on microbiome was mediated via 

Dioszegia in Arabidopsis thaliana. The consistent identification of Dioszegia as a keystone 

taxon across studies suggests its importance and highlights a potential that it can be 

harnessed for manipulation of the plant microbiome. Future studies are now needed to 

specifically manipulate this group to test how it influences microbiome composition and 

functioning. There were no common fungal groups between indicator taxa and keystone 

taxa. It should be noted that indicator taxa are identified based on their exclusive abundance 

(exclusivity) in all samples (fidelity) under a particular habitat [78], whereas keystone taxa 

are identified using a network algorithm that focuses on the number of associations an OTU 

shares and its position in the microbiome [48]. Thus, indicator taxa and keystone taxa reflect 

two different microbial indices that target different members in the community.

An important question is how do farming practices and land use intensity affect the structure 

and network complexity of the root endophytic fungi? We speculate that there might be two 

underlying mechanisms: the assembly of fungal members in the soil, and their recruitment 

and colonization of the plant root. It is well-known that farming practices affect the quality 

and quantity of important soil nutrients such as carbon, nitrogen, and phosphorus [6, 8, 101, 

102]. Reduced or no-tillage can also alter the bulk density in the topsoil with subsequent 

impact on the root architecture and elongation [28]. These factors can modulate the 

assembly and evolution of microbes in the soil [29, 103, 104, 116], thereby affecting 

microbial recruitment into the root. Indeed, we found soil phosphorus levels, bulk density 

and also pH to be the determinants of keystone taxa, which are linked to network 

complexity. The majority of keystone taxa were mycorrhizal in nature, and phosphorus is 
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well-acknowledged for its importance for mycorrhizal associations [105]. Similarly, soil pH 

is a known driver of fungal communities in soil, especially, mycorrhizal fungi [106, 107]. 

Thus, the identification of soil characteristic as the determinants of keystone taxa indicates 

the importance of recruitment as a driver of network complexity of the root endophytic 

microbiota.

Once recruited inside the plant body, microbial adaptation and survival will depend on the 

host physiological patterns [26, 57, 108]. Farming practices may also influence crop 

physiological responses via water and nutrient availability, and pesticide application [102, 

109, 110], which can affect the maintenance of endophytic microbes inside the plant body. 

For example, it is known that crops are able to reduce carbon allocation to mycorrhizal fungi 

when grown under high nutrient availability due to agricultural intensification [29]. Host 

genotypes may also affect plant physiological responses and endophytic microbiota, 

although in this study, we did not find a clear link between wheat varieties and root fungi. 

However, our field sites had different wheat varieties growing, and whether or not host 

genotypes influence root fungal community structure would require a site-specific 

experiment with multiple varieties growing under one field condition, which was beyond the 

scope of this study. Previous studies also found that soil conditions had a stronger effect on 

root fungal communities than host species, while the opposite was true for bacterial 

communities [111, 112]. Such mixed results highlight the complex nature of plant-microbe 

interactions [113] and the need for further research targeting the factors influencing crop 

endophytic microbial communities under different farming practices. Moreover, soil and 

plant sampling in this study were only conducted for one year and thus, repeated sampling 

would be the next step to assess the temporal consistency and predictability of these 

findings.

While the exact drivers of network complexity of root endophytes remain unknown, it is 

possible that nutritional status, tillage, manure application, and the absence of pesticides 

might have created unique environments in each of the three farming practices, potentially 

influencing the assembly of fungi in the soil and their recruitment into the plant root. Large 

amounts of chemical fertilizers in the conventional farming system may foster fast-growing 

(r-strategists) microbes without strong selection pressure for any particular taxa and thus, 

creating a more random assemblage. In contrast, the application of organic amendments with 

lower immediate resource availability may act as a selective force on the assembly of fungal 

communities, promoting slow-growing (K-strategists) microbes [114]. It is possible that 

microbial communities under organic farming may be dominated by the K-strategists that 

establish themselves slower and have a higher chance to coevolve. For such microbial 

communities occurring under resource-limited conditions, microbial cooperation may be 

more important for survival. Cooperation requires a high degree of connectivity, leading to 

networks with higher complexity. Microbial communities with higher network complexity 

may thus be more common under extensive management where inputs are low and resources 

are limited, which accords with a recent study on grasslands [47]. The number of keystone 

taxa was indeed the highest under organic farming where agricultural intensity was the 

lowest, and we also found a significantly strong negative association between agricultural 

intensification and network connectivity. Nonetheless, it should be noted that microbial taxa 

associating in a co-occurrence network may not be due to their actual interaction [41, 115]. 
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Furthermore, we only considered root fungi in this study, and a microbiome comprises 

bacteria, archaea, and other members, the inclusion of which is necessary for gaining insight 

into root microbial network structure. It is also important to mention that identification of 

keystone taxa are based on the analysis of correlations (associations) among taxa, and 

further research is necessary to show the causality, in terms of the impact of keystone taxa 

on microbiome structure and functioning.

Conclusions

The structure and composition of root microbiota play an important role in agroecosystems 

and yet there is a significant dearth of knowledge about the effect of agricultural 

intensification on the root microbiota. van der Heijden and Hartmann [116] highlighted the 

importance of network structure for the functioning of plant microbiomes while Banerjee et 
al. [49] recently summarized keystone taxa from various environments to emphasize their 

importance for microbiome structure and functioning. The present study builds on and 

extends this conceptual framework to demonstrate that the agricultural intensification has a 

negative influence on root fungal network structure and the abundance of keystone taxa. Our 

study shows that the network connectivity and the abundance of keystone taxa were the 

highest under organic farming where agricultural intensity was the lowest. The higher co-

occurrence of members of microbial communities under organic farming may be indicative 

of greater ecological balance and complexity of the microbiome, which might be more 

resilient to environmental stresses. A key strength of this study is that the samples were 

collected from 60 farmlands and the reported effects can be generalized because samples 

were taken from an extensive range of fields at different locations with different 

management regimes. The recent concept of smart farming (sensu Wolfert et al., 2017) 

emphasizes thinking outside the box. The potential for harnessing plant microbiome for 

sustainable agriculture was also highlighted recently [118]. Mycorrhizal fungi are well-

regarded for their effects on plant productivity and thus, mycorrhizal keystone taxa may be 

targeted as a tool for smart farming.
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Figure 1. 
Alpha diversity indices and community composition of root fungal communities across 

conventional (Conv), no-till (NT) and organic (Org) farming systems. OTU richness (A), 

Sheldon evenness (B), and Shannon-Weaver index (C) were calculated from the rarefied 

fungal OTU table. Same lowercase letter indicate no statistically significant (P<0.05) 

difference between farming systems. D) Stacked bar chart showing the relative abundance of 

various orders of wheat root fungal communities.
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Figure 2. 
A) Canonical analysis of principal coordinates (CAP) revealing a significant impact of 

farming systems on fungal community structure. B) The overall network of root fungal 

communities across three farming systems. The overall network is arranged according to 

orders. White, red and wavy lines represent positive, negative and non-linear relationships, 

respectively. Large diamond nodes indicate the keystone taxa in the network. Top ten nodes 

with the highest degree, highest closeness centrality, and lowest betweenness centrality were 

selected as the keystone taxa. Out of the ten keystone taxa in the overall network, seven 

belonged to mycorrhizal orders, Glomerales, Paraglomerales, and Diversisporales.
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Figure 3. 
Farming system specific root fungal networks. Each network was generated with root 

samples collected from 20 farmlands belonging to that farming system. The number of 

nodes, number of edges, average number of neighbors, and clustering coefficient is given 

below the specific networks. Large diamond nodes indicate the keystone taxa whereas 

circular nodes indicate other taxa in the network. White, red and wavy lines represent 

positive, negative and non-linear relationships, respectively. Despite having similar number 

of nodes, the organic network displayed twice more edges and many highly connected nodes 

than no-till and conventional networks that were dominated by less connected peripheral 

nodes.
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Figure 4. 
Proportional influence of various fungal orders in affecting the complexity of root 

microbiota (left panel). The influence was calculated by diving the number of nodes 

belonging to a particular fungal order by the number of connections (edges) it shared. It 

illustrates the orders that exhibit maximum connections across farming systems and thus 

influences network structure most. Distribution of degrees in three farming systems (right 

panel with three plots). Degree indicates the number of associations shared by each node in a 

network. In conventional, farming, the number of degrees was limited to a maximum of 12 

compared to the no-till network that had a maximum of 22 degrees. On the other hand, 

organic farming had many nodes with over 20 degrees.
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Figure 5. 
A) Agricultural intensity index across conventional (Conv), no-till (NT) and organic (Org) 

farming systems. Agricultural intensity index was estimated using information on three 

anthropogenic input factors: fertilizer use, pesticide use and the consumption of fuel for 

agricultural machineries. Different lowercase letters indicate statistically significant 

(P<0.05) difference between farming systems. B) Network connectivity as represented by 

node degrees for individual farms calculated by subsetting the networks of three farming 

systems. Different lowercase letters indicate statistically significant (P<0.05) difference. C) 
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Results of random forest analysis showing the relative contribution of various factors in 

determining the abundance of keystone taxa. The mean squared error (MSE) indicates the 

prediction accuracy of each factor. The top (P<0.01) five drivers were total phosphorus, 

plant available phosphorus (Olsen P), AMF root colonization, pH and bulk density. D) 

Relationship between agricultural intensification and mycorrhizal root colonization. 

Agricultural intensification had a significantly (P<0.01) negative impact on the root 

colonization of AMF. Agricultural intensity was the highest under conventional farming and 

the lowest under organic farming, which was opposite for the AMF colonization.
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