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Abstract

Two novel and exciting avenues of neuroscientific research involve the study of task-driven 

dynamic reconfigurations of functional connectivity networks and the study of functional 

connectivity in real-time. While the former is a well-established field within neuroscience and has 

received considerable attention in recent years, the latter remains in its infancy. To date, the vast 

majority of real-time fMRI studies have focused on a single brain region at a time. This is due in 

part to the many challenges faced when estimating dynamic functional connectivity networks in 

real-time. In this work we propose a novel methodology with which to accurately track changes in 

time-varying functional connectivity networks in real-time. The proposed method is shown to 

perform competitively when compared to state-of-the-art offline algorithms using both synthetic as 

well as real-time fMRI data. The proposed method is applied to motor task data from the Human 

Connectome Project as well as to data obtained from a visuospatial attention task. We demonstrate 

that the algorithm is able to accurately estimate task-related changes in network structure in real-

time.

1 Introduction

The notion that the brain is a network consisting of spatially distributed and functionally 

connected regions is well established in neuroimaging (Bullmore and Sporns, 2009). Until 

recently, the vast majority of studies involving functional connectivity assumed the 

underlying networks were static. As a result, a single underlying network was typically 

estimated and assumed to summarize the connectivity structure.While such an approach 

reliably recovers intrinsic functional connectivity networks that exhibit satisfactory intra-

indiviudal stability across scans (Song et al, 2012; Pinter et al, 2016), such a simplified 

assumption has been strongly contested in recent years (Chang and Glover, 2010; Sakoğlu et 
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al., 2010). There is a growing body of evidence to suggest that functional connectivity 

networks are in fact time-varying (see Hutchison et al. (2013) and references therein). The 

study of so called dynamic functional connectivity therefore constitutes a rapidly emerging 

and novel avenue of neuroscience research. Since its inception, the study of dynamic 

connectivity has lead to crucial insights into the functional organization of the human 

connectome both during rest (Allen et al., 2012) as well as during cognitive tasks (Fornito et 

al., 2012; Elton and Gao, 2014; Monti et al., 2015). From a technical perspective, a wide 

range of statistical methodologies have been employed to study dynamic connectivity. These 

range from the use of change point detection (Robinson et al., 2010; Cribben et al., 2012) to 

regularized likelihood methods (Allen et al., 2012; Monti et al., 2014), state-space models 

(Robinson et al., 2015), projection based methods such as principal component analysis 

(Leonardi et al., 2013) and linear discriminant analysis (Monti et al., 2015). However, all of 

the aforementioned methods have focused on studying connectivity in an offline setting; that 

is to say that networks are only estimated once all data has been collected and preprocessed. 

In this work we focus on the related but fundamentally different challenge of accurately 

estimating functional connectivity networks in real-time.

The study of fMRI in real-time is another rapidly expanding avenue of neuroscience 

research. A dominant application of real-time (rt) fMRI has been centered around 

neurofeedback (deCharms, 2008; Weiskopf, 2012) in which participants learn to modulate 

blood-oxygen-level dependent (BOLD) activity within a specified brain region. However, 

such region of interest (ROI) based neurofeedback does no take into consideration the above 

mentioned notion of the brain as functionally connected network (Sporns et al., 2004; 

Bressler and Menon, 2010; Ruiz et al., 2014). Another pertinent application of rt-fMRI is in 

real-time brain decoding (LaConte, 2011). Such methods employ multivariate classification 

techniques to predict brain states ‘on the fly’ based on BOLD measurements across a large 

number of nodes (voxels or regions). To date, techniques such as support vector machines 

(LaConte et al., 2007) and neural nets (Eklund et al., 2009) have been employed. It is 

reasonable to suggest that the performance of these classification algorithms could be further 

boosted by providing them with additional information relating to functional connectivity. It 

therefore follows that the next frontier for rt-fMRI studies involves accurately estimating 

brain connectivity in real-time. So far there have been only a limited number of studies 

focusing on estimating functional connectivity in real-time and their primary focus has been 

on neurofeedback (Ruiz et al, 2014; Zilverstand et al,2014; Koush et al 2013; Koush et al 

2016; Liew el al, 2015). A limitation of those studies however is that it only provides real-

time neurofeedback based on changes in connectivity between a very small number of ROIs. 

Methods that would allow instanteous neurofeedback based on entire networks could 

drastically boost the relevance of such an approach by providing a far richer description of 

the brain state as can be achieved with state-of-the-art offline methods.

Developing novel methdologies to estimate functional connectivity between many ROIs in 

real-time though presents considerable theoretical and practical challenges. Firstly, due to 

the nature of neurofeedback the resulting time series are expected to vary signficantly over 

time. The accurate estimation of dynamic functional connectivity networks in an offline 

setting is a difficult problem in its own right and has recently received considerable attention 

(Allen et al., 2012; Monti et al., 2014; Monti et al., 2016; Davison et al., 2015). In this work 
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we look to address this issue by extending recently proposed methods from the offline 

domain to the real-time domain. Second, due to potentially rapid changes that may occur in 

a subjects’ functional connectivity the proposed method must be both computationally 

efficient as well as highly adaptive to change. In order to satisfy the latter, the proposed 

method must be capable of accurately estimating functional connectivity networks using 

only a reduced (and adequately re-weighted) subset of current and past observations.

To address these challenges, we first propose the use of exponentially weighted moving 

average (EWMA) models (Lindquist et al., 2014) as well as more general adaptive forgetting 

techniques. This decision is motivated by the superior statistical properties of such 

approaches as well as the need to ensure that the proposed methods are as adaptive as 

possible. Through several simulations, we provide exhaustive evidence to suggest such 

methods should be preferred to sliding windows. We then extend the recently proposed 

Smooth Incremental Graphical Lasso Estimation (SINGLE) algorithm (Monti et al., 2014) to 

the real-time scenario. Here functional relationships between pairs of nodes are estimated 

using partial correlations (as opposed to Pearson’s correlation) as they have been shown to 

be better suited to detecting changes in network structure (Smith et al., 2011; Marrelec et al., 

2009). The rt-SINGLE algorithm encourages two desirable properties in estimated 

functional connectivity networks: sparsity and temporal homogenity. We are able to re-cast 

the estimation of a new functional connectivity network as a convex optimization problem 

which can be quickly and efficiently solved in real-time. In addition to an extensive set of 

simuations, we also apply the proposed method to two different fMRI data sets: motor task 

data from the Human Connectome Projects as well as data obtained from a visuospatial 

attention task. We demonstrate that the algorithm is able to accurately estimate task-related 

changes in network structure in real-time and discuss important applications. To our 

knowledge, this is the first work to propose and validate estimating functional connectivity 

networks consisting of a high number of ROIs in real-time.

2 Methods

In this section we introduce and describe the proposed method. We begin by defining 

notation in Section 2.1, then a high-level overview of the proposed method is provided in 

Section 2.2 followed by a detailed description of the proposed method in Sections 2.3 and 

2.4. Finally, the selection of relevant parameters is discussed in Section 2.5.

2.1 Notation

We assume we have access to a stream of multivariate fMRI measurements across p nodes 

where each node represents a region of interest (ROI). We write Xt ∈ ℝ1 ×p to denote the 

BOLD measurements at the tth time point across p ROIs; thus Xt,i corresponds to the BOLD 

measurement of the ith node at time t. In this work we are interested in sequentially using all 

observations up to and including Xt to recursively learn the underlying functional 

connectivity networks. At time t+1 it is assumed we receive a new observation Xt+1, which 

we use to update our network estimates accordingly. Throughout the remainder of this 

manuscript it is assumed that each Xt follows a multivariate Gaussian distribution, Xt~N(μt, 

Σt), where both the mean and covariance structure are assumed to vary over time.

Monti et al. Page 3

Hum Brain Mapp. Author manuscript; available in PMC 2019 July 18.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



The functional connectivity network at time t can be estimated by learning the 

corresponding precision (inverse covariance) matrix, ∑t
−1 = Kt . Such approaches have been 

employed extensively in neuroimaging applications (Varoquaux et al., 2010; Smith et al., 

2011; Ryali et al., 2012) and have also recently been proposed to estimate time-varying 

estimates of functional connectivity networks (Allen et al., 2012; Cribben et al., 2012; Monti 

et al., 2014). Here Kt encodes the partial correlations as well as the conditional 

independence structure at time t. We then encode Kt as a graph, Gt, where the presence of an 

edge implies a non-zero entry in the corresponding entry of the precision matrix (Lauritzen, 

1996).

Therefore, our aim is to estimate an increasing sequence of functional connectivity 

networks, {G} = {G1, … , Gt,…} where each Gt captures the functional connectivity 

structure at the tth observation.

2.2 Overview of proposed method

The objective of this work is to obtain estimates of functional connectivity networks which 

display the following properties:

1. Real-time: first and foremost, the primary objective of this work is to estimate 

functional connectivity networks in real-time. It follows that in any rt-fMRI 

application it is crucial that estimated functional connectivity networks are 

available in a timely manner.

2. Adaptivity: we are particularly interested in the changes caused by the direct 

interaction with subjects while they are in the scanner. As such, it is crucial to be 

able to rapidly quantify changes in functional connectivity structure once these 

have occurred. The need for highly adaptive estimation methodologies is further 

exacerbated by the lagged nature of the hemodynamic response function, where 

changes in functional measurements typically occur six seconds after performing 

a task (LaConte et al., 2007).

3. Accuracy: we also wish to accurately estimate network structure over time. This 

involves both the accurate estimation of network connectivity at each time point 

as well as the temporal evolution of pairwise relationships between nodes over 

time. That is to say, estimated networks should provide accurate representations 

of the true underlying functional connectivity structure at any point in time as 

well as accurately describing how networks evolve over time.

The task of estimating Kt in real time can be broken into two independent steps. First, an 

updated estimate of the sample covariance, St, is calculated. We propose two methods with 

which an adaptive and accurate estimate of St can be obtained: EWMA models and adaptive 

forgetting (discussed in Section 2.3). In a second step, the corresponding precision matrix, 

Kt, is estimated given the sample covariance. This is achieved by extending the recently 

proposed Smooth Incremental Graphical Lasso Estimation (SINGLE) algorithm (Monti et 

al., 2014) from the offline to the real-time domain (discussed in Section 2.4).
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2.3 First step: Real-time, adaptive covariance estimation

The estimation of functional connectivity networks is fundamentally a statistical challenge 

which is often studied by quantifying the pairwise correlations across various ROIs (Friston, 

1994). Such approaches correspond directly to estimating and studying the covariance 

structure. When the functional time series is assumed to be stationary, this coincides with 

studying the sample covariance matrix for the entire dataset. However, in the case of rt-fMRI 

studies we are faced with data that is inherently non-stationary. Moreover, we have the 

additional constraint that data arrives sequentially over time, implying that information from 

new observations must be efficiently incorporated to update network estimates.

In this section we describe how adaptive estimates of the sample covariance can be obtained 

in real-time via the use of EWMA models or adaptive forgetting techniques.

2.3.1 Sliding windows and EWMA models—Arguably the dominant approach used 

to obtain adaptive functional connectivity estimates involves the use of sliding windows 

(Hutchison et al., 2013) and this also holds true in the rt-fMRI setting (Gembris et al., 2000; 

Esposito et al., 2003; Ruiz et al., 2014; Zilverstand et al., 2014). Such methods are able to 

obtain adaptive functional connectivity estimates in real-time by only considering a fixed 

number of past observations, defined as the window. Using only the observations within the 

predefined window, a local (i.e., adaptive) estimate of functional connectivity is obtained. A 

sliding window may be used to obtain a local estimate of the sample covariance, St, at time t 
as follows:

St = 1
h ∑i = 0

h − 1 Xt − i − xt
T

Xt − i − xt (1)

where xt is the mean of all observations falling within the sliding window and parameter h is 

the length of the sliding window.

A natural extension of sliding windows is the use of an exponentially weighted moving 

averages (EWMA), first introduced by Roberts (1959). Here observations are re-weighted 

according to their chronological proximity. The rate at which past information is discarded is 

determined by a fixed forgetting factor, r ∈ (0,1]. In this way, EWMA models are able to 

give greater importance to more recent observations thus increasing the adaptivity of the 

resulting algorithm. Moreover, as described in Lindquist et al. (2014), these methods enjoy 

superior statistical properties when compared to sliding window algorithms. EWMA models 

thereby provide a conceptually simple and robust method with which to handle a wide range 

of non-stationary processes. They are also particularly well suited to the real-time setting as 

we discuss below.

For a given forgetting factor, r ∈ (0,1], the estimated mean at time t can be recursively 

defined as:
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xt = 1 − 1
ωt

xt − 1 + 1
ωt

Xt (2)

where ωt is a normalizing constant which is calculated as:

ωt = ∑i = 1
t rt − i = r ωt − 1 + 1. (3)

The sample covariance at time t is subsequently defined as1:

∏t = 1 − 1
ωt

∏t − 1+ 1
ωt

XtXt
T (4)

St = ∏t −xt xt
T (5)

From equations (2) and (4) we note that past observations gradually receive less importance. 

This is a contrast to sliding windows, where all observations within the window receive 

equal weighting. It follows that the choice of parameter r determines the rate at which 

information from previous observations is discarded and is directly related to the adaptivity 

of the proposed method. This can be seen by considering the extreme cases where r=1. Here 

we have that ωt = t and consequently that xt and St correspond to the sample mean and 

covariance estimated in an offline setting (using all observations up to time t). As a result 

equal importance is given to all observations, leading to reduced adaptivity to changes. As 

the value of r is reduced, greater importance is given to more recent observations resulting in 

an increasingly adaptive estimate. Of course, as the value of r decreases the estimated mean 

and covariance become increasingly susceptible to outliers and noise. The choice of r 
therefore constitutes a trade-off between adaptivity and stability. Much like the length of the 

sliding window, h, the choice of r essentially determines the effective sample size used to 

estimate both xt and St. Therefore the same logic applies when choosing both r and h: the 

value must be sufficiently large so as to allow robust estimation of the sample covariance 

without becoming too large (Sakoglu et al., 2010).

2.3.2 Adaptive forgetting models—It is important to note that for any non-stationary 

data the optimal choice of both r and h may depend on the location within the dataset. By 

this we mean that in the proximity to a change-point it would clearly be desirable to have 

1We note that equations (4) and (5) are equivalent to estimating the sample covariance in the more intuitive manner 

St = 1 − 1
ωt

St − 1 + 1
ωt

Xt − xt Xt − xt
T, however we choose to follow this parameterization in order to simplify future 

discussion.
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smaller choice of h and r; thereby reducing the influence of old, irrelevant observations. 

Whereas within a locally stationary region we wish to have a larger choices of h and r in 

order to effectively learn from a wide range of pertinent observations. This concept is 

demonstrated pictorially in the top panel of Figure [1]. In the case of real-time fMRI we 

inherently expect the statistical properties of a subject’s functional connectivity networks to 

vary depending on a wide range of factors (e.g., varying task demands). Therefore, the 

choice of a fixed window length, h, or forgetting factor, r, may be inappropriate.

In order to address this issue we propose the use of an adaptive forgetting methodology 

(Haykin, 2008). This corresponds to a selection of methods where the magnitude of the 

forgetting factor is adjusted directly from the data in real-time. This is achieved by 

approximating the derivative of the likelihood for every new observation with respect to the 

forgetting factor. We are therefore able to update the forgetting factor in a stochastic gradient 

descent framework (Bottou, 2004). As a result, the value of the forgetting factor has a direct 

dependence on the time index, t. To make this relationship explicit we write rt to denote the 

adaptive forgetting factor at time t. The bottom panel of Figure [1] provides an illustration of 

desirable behavior for an adaptive forgetting factor. We note that immediately after a change 

occurs the forgetting factor drops. This helps discard past information which is no longer 

relevant and gives additional weighting to new observations. Moreover, it is also important 

to note that in the presence of piece-wise stationary data the value of the adaptive forgetting 

factor increases, allowing for a larger number of observations to be leveraged and yielding 

more accurate and stable estimates.

Moreover, the use of adaptive forgetting also provides an additional monitoring mechanism. 

By considering the estimated value of the forgetting factor rt at any given point in time we 

can gain an understanding as to the current degree of non-stationarity in the data 

(Anagnostopoulos et al., 2012). This follows from the fact that the estimated forgetting 

factor quantifies the influence of recent observations on the sample mean and covariance. 

Therefore, large values of rt are indicative of piece-wise stationarity whereas small values of 

rt provide evidence for changes in the network structure.

In order to effectively learn the forgetting factor in real-time we require a data-driven 

approach. One popular solution is to empirically measure performance of current estimates 

by calculating the likelihood of incoming observations. In this way we are able to measure 

the performance of an estimated mean, xt, and sample covariance, St , when provided with 

unseen data. This provides the basis on which to update our choice of forgetting factor. 

Under the assumption that all observations follow a multivariate Gaussian distribution, this 

likelihood of a new observation Xt+1 is given by:

ℒt + 1 = ℒ Xt; xt, St = − 1
2log detSt − 1

2 Xt + 1 − xt
TSt

−1 Xt + 1 − xt . (6)

While it would be possible to maximize ℒt+1 using a cross-validation framework in an 

offline setting, such an approach is challenging in a real-time setting. Cross-validation 

approaches typically consider general performance over many subsets of past observations; 
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therefore incurring a high computational cost. Moreover due to the highly autocorrelated 

nature of fMRI time series, splitting past observations into subsets is itself non-trivial. Here 

we build on the work of Anagnostopoulos et al. (2012) and employ adaptive forgetting 

methods to maximize this quantity in a computationally efficient manner. This is achieved 

by approximating the derivative of ℒt+1 with respect to rt. This derivative can subsequently 

be used to update rt in a stochastic gradient ascent framework (Bottou, 2004).

From equations (2), (4) and (5) we can see the direct dependence of estimates xt and St on a 

fixed forgetting factor r. This suggests that the likelihood is itself a function of the forgetting 

factor, allowing us to calculate its derivative with respect to r as follows:

ℒt + 1′ =
∂ℒt + 1

∂r = 1
2(Xt + 1 − xt)

T 2St
−1xt′ − St

−1St′ St
−1 Xt + 1 − xt − 1

2 trace (St
−1St′) (7)

where have written A' to denote the derivative of A with respect to r (i.e., ∂A
∂r ). Full details 

are provided in the Supplementary material A.

Given the derivative, ℒt + 1′ , we can subsequently update our choice of forgetting factor 

using gradient ascent:

rt + 1 = rt + ηℒt + 1′ , (8)

where η is a small step-size parameter. Equation (8) serves to highlight the strengths of 

adaptive forgetting; by calculating ℒt + 1′  we are able to learn the direction along rt which 

maximizes the log-likelihood of unseen observations. It follows that if ℒt + 1′  is positive, rt 

should be increased, while the converse is true if ℒt + 1′  is negative. Moreover, in calculating 

ℒt + 1′  we also learn a magnitude. This implies that all updates in equation (8) will be of a 

different order of magnitude. This is fundamental as it allows for rapid adjustments in the 

presence of abrupt changes together with small adjustments in the presence of gradual drifts.

Finally, once rt+1 has been calculated, we are able to learn estimates xt and St using the same 

recursive equations (2) - (5) with the minor amendment that the effective sample size, ωt is 

calculated as:

ωt = rt − 1ωt − 1 + 1. (9)

2.4 Second step: Real-time network estimation

In order to ensure estimated networks provide an accurate representation of true functional 

connectivity networks we encourage two properties in estimated functional connectivity 

networks: sparsity and temporal homogenity.
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2.4.1 Sparsity and temporal homogenity—While functional connectivity networks 

are theorized to have evolved to achieve high efficiency of information transfer at a low 

connection cost (Bullmore and Sporns, 2009), the main motivation behind the introduction 

of sparsity here is based on statistical considerations. Formally, the introduction of sparsity 

ensures the estimation problem remains feasible when the number of relevant observations 

falls below the number of parameters to estimate (Michel et al., 2011; Ryali et al., 2012). In 

the presence of rapid changes the number of relevant observations falls drastically. In such a 

scenario, sparse methods are able to guarantee the accurate estimation of functional 

connectivity networks without compromising the adaptivity of the proposed method.

The second property we wish to encourage is temporal homogeneity; from a neuroscientific 

perspective we expect changes in functional connectivity structure to occur predominantly 

when paradigm changes occur (e.g., a subject begins performing a different task). Thus we 

expect network structure to remain constant within a neighbourhood of any observation but 

to vary over a longer period of time. We therefore encourage sparse innovations in network 

structure over time, ensuring that a change in connectivity is only reported when strongly 

substantiated by evidence in the data. Finally, real-time performance is achieved by casting 

the estimation Gt as a convex optimization problem which can be efficiently solved.

2.4.2 Algorithmic details of real-time SINGLE—In this section, we describe how we 

can extend the SINGLE algorithm (Monti et al. 2014) in such a manner that we can obtain 

an estimated precision matrix that is both sparse and temporally homogeneous in real time.

Given a sequence of estimated sample covariance matrices {St} = {S1 , … , ST}, the 

SINGLE algorithm is able to estimate corresponding precision matrices, {Kt} = {K1 , … , 

KT}, by solving the following convex optimization problem:

Kt = argmin
Kt

∑i = 1
T −log detKi + trace SiKi + λ1∑i = 1

T |Ki| 1

+ λ2∑i = 2
T |Ki − Ki − 1| 1 .

(10)

The first sum in equation (10) corresponds to a likelihood term while the remaining terms, 

parameterized by λ1 and λ2 respectively, enforce sparsity and temporal homogeneity 

constraints. Estimated precision matrices, {Kt}, therefore balance a trade-off between 

adequately describing observed data and satisfying sparsity and temporal homogeneity 

constraints.

However, in the real-time setting, a new St is constantly obtained implying that the 

dimension of the solution to equation (10) grows over time. It follows that iteratively re-

solving equation (10) is both wasteful and computationally expensive. In particular, valuable 

computational resources will be spent estimating past networks which are no longer of 

interest. In order to address this issue the following objective function is proposed to 

estimate the functional connectivity network at time t:
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f K = − log detK + trace StK + λ1 |K| 1 + λ2 |K − Kt − 1| 1 (11)

where Kt−1 corresponds to the estimate of the precision matrix at time t−1 and is assumed to 

be fixed. The proposed real-time SINGLE (rt-SINGLE) algorithm is thus able to accurately 

estimate Kt by minimizing equation (11) — in doing so the proposed method must find a 

balance between goodness-of-fit and satisfying the regularization constraints. The former is 

captured by the likelihood term:

ℓ K = − log detK + trace StK , (12)

and provides a measure of how precisely Kt describes the current estimate of the sample 

covariance, St. The latter two terms of the objective correspond to regularization penalty 

terms:

gλ1, λ2
K = λ1 |K| 1 + λ2 |K − Kt − 1| 1 (13)

The first of these, parameterized by λ1, encourages sparsity while the second, parameterized 

by λ2, determines the extent of temporal homogeneity. By penalizing changes in functional 

connectivity networks, the second penalty encourages sparse innovations in edge structure 

over time. As a result, network changes are only reported when heavily substantiated by 

evidence in the data. Moreover, the addition of regularization of this form serves to vastly 

reduce the number of parameters. Such an approach is often advocated in neuroimaging 

studies (Varoquaux et al., 2013, Ryali et al., 2012). Further details of the proposed 

optimization algorithm are discussed in Supplementary material B.

2.5 Parameter tuning

Parameter estimation is challenging in the real-time setting. Approaches such as cross-

validation, which are inherently difficult to implement due to the non-stationarity of the data, 

are further hampered by the limited computational resources. As an alternative, information 

theoretic approaches such as minimizing the AIC or BIC may be taken but these too may 

incur a high computational burden. In this section we discuss the three parameters required 

in the proposed method and provide a clear interpretation as well as a general overview on 

how each should be set.

In this work we advocate the use adaptive forgetting factors which provide a more elegant 

and flexible solution when compared to sliding window approaches or EMWA with fixed 

forgetting. These methods designate the choice of rt to the data. As a result, only the stepsize 

parameter, η, must be specified. The choice of η in this context can be interpreted as a step-

size parameter for tuning the forgetting factor in a stochastic gradient descent paradigm 

(Bottou, 2004). As a result, the effect of parameter η can be intuitively understood. Selecting 

η to be too large will result in estimates of rt which are volatile and potentially dominated by 
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noise. Conversely, selecting small η may lead to slow convergence. In practice, we find that 

selecting η between 0.001 and 0.05 is adequate.

Parameters λ1 and λ2 enforce sparsity and temporal homogeneity respectively. The choice 

of these parameters affects the degrees of freedom of estimated networks, suggesting the use 

of information theoretic approaches such as AIC. However, in a real-time setting, choosing 

λ1 and λ2 in such a manner presents a computational burden. As a result, we propose two 

heuristics for choosing appropriate values of λ1 and λ2 respectively. One potential approach 

involves studying a previous scan of the subject in question. If this is available then the 

regularization parameters may be chosen by minimizing AIC over this scan. Alternatively, 

the burn-in phase may be used to choose adequate parameters. Such an approach would 

involve choosing λ1 and λ2 which minimized AIC over the burn in period. Moreover, it is 

worth noting that tuning λ1 and λ2 adaptively in a similar manner to the forgetting factor 

presents theoretical and computational challenges due to the non-differentiable nature of the 

regularization penalties.

3 Simulation study

In this section we evaluate the performance of the rt-SINGLE algorithm through a series of 

simulation studies. The purpose of our simulation is two-fold. First, we look to demonstrate 

the properties of adaptive forgetting methods. As such, throughout this section we compare 

results for the rt-SINGLE algorithm for which either sliding windows, fixed forgetting 

factors (corresponding to an EWMA model) or adaptive forgetting techniques are employed. 

Second, we also look to quantify the ability of the rt-SINGLE algorithm to accurately 

estimate time-varying networks in real-time. For this purpose, we consider the performance 

of the offline SINGLE algorithm as a benchmark. Naturally we expect the rt-SINGLE 

algorithms to generally perform below its offline counterpart, however, the difference in 

performance will be indicative of how well the proposed methods work. We provide 

extensive details of the exact simulation settings as well as performance measures in 

Supplementary material C.

In Simulation 1 we study the quality of estimated covariance matrices over time. This 

simulation serves as a clear example of the advantages obtained via the use of adaptive 

filtering methods. In Simulations 2 and 3 we consider the overall performance of the 

proposed method by generating connectivity structures according to scale-free and small-

world networks respectively. Finally, in Simulation 4 we look to quantify the computational 

cost of the proposed method as the number of nodes, p, increases; a crucial aspect to study 

given the objectives of this work.

3.1 Simulation 1 — Covariance tracking

In this simulation we look to assess how accurately we are able to track changes in 

covariance structure via the use of sliding windows, fixed (i.e., EWMA models) and 

adaptive forgetting factors.

Datasets were simulated as follows: each dataset consisted of five segments each of length 

100 (i.e., overall duration of 500). The network structure within each segment was simulated 
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according to either the Barabási and Albert (1999) preferential attachment model or using 

the Watts and Strogatz (1998) model. The use of each of these models was motivated by the 

fact that they are able to generate scale-free and small-world networks respectively; two 

classes of networks which are frequently encountered in the analysis of fMRI data (Eguiluz 

et al., 2005; Bassett and Bullmore, 2006; Sporns et al., 2004).In this simulation the 

estimated sample covariances from the proposed methods were compared to the results 

when using a symmetric Gaussian kernel, as in the offline SINGLE algorithm.

Figure [2] shows results when scale-free (top) and small-world (bottom) network structures 

are simulated over 500 independent simulations. We note that the quality of the estimated 

covariances drops in the proximity of a change-point for all three real-time algorithms. In 

the case of the offline SINGLE algorithm this drop is symmetric due to the symmetric nature 

of the Gaussian kernel employed. However, in the case of the real-time algorithms the drop 

is highly asymmetric and occurs directly after the change-point, as is to be expected. Due to 

the sudden change in covariance structure, these methods suffer immediately after abrupt 

changes in covariance structure, but are able to quickly recover. It is important to note the 

difference in behaviour of each of the algorithms directly after a change-point occurs. The 

use of fixed and adaptive forgetting factors results in rapid improvement compared to sliding 

windows. This is to be expected as sliding windows do not down-weight past observations. 

Studying changes in covariance structure directly after a change occurs is of fundamental 

importance in neuroscientific research. In this context, the use of fixed and adaptive 

forgetting yields significant advantages. This is especially true for adaptive forgetting 

methods as highlighted in Figure [2].

For both scale-free and small-world networks, adaptive forgetting outperforms both fixed 

forgetting factors and sliding windows. These results therefore serve to clearly advocate the 

use of adaptive forgetting methods. Moreover, from Figure [2] we note that the covariance 

tracking capabilities of the proposed methods are not adversely affected by the choice of 

underlying network structure.

3.2 Simulation 2 — Scale-free networks

In this simulation we look to empirically quantify the capability of the proposed method to 

recover sparse covariance structure. As a benchmark, we compare the results of the rt-

SINGLE algorithm with the offline algorithm.

Datasets were simulated as described in Simulation 1, using the Barabási and Albert (1999) 

preferential attachment model. This generated scale-free networks, implying that the degree 

distribution follows a power law. This implies the presence of a reduced number of hub 
nodes which have access to many other regions, while the remaining majority of nodes have 

a small number of edges (Eguiluz et al., 2005). In this simulation the entire dataset was 

simulated a priori. In the case of the rt-SINGLE algorithms, one observation was provided at 

time, thereby treating the dataset as if it was a stream arriving in real-time. The offline 

SINGLE algorithm was provided with the entire dataset and this was treated as an offline 

task.
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In the left panel of Figure [3] we see the average Ft scores for each of the real-time 

algorithms as well as the offline algorithm over 500 simulations. We note that all algorithms 

experience a drop in F-score in the proximity of change-points. The offline SINGLE 

algorithm is based on a symmetric Gaussian kernel, as a result, we note that there it has a 

symmetric drop in performance in the vicinity of a change-point before quickly recovering. 

Alternatively, the drop in performance of the rt-SINGLE algorithms is asymmetric. This is 

due to the real-time nature of these algorithms. In line with the results provided in 

Simulation 1, we note that when either the adaptive and fixed forgetting factor is employed 

the performance of the algorithm after a change point increases rapidly. In contrast, when a 

sliding window is employed a larger number of observations are required before an accurate 

estimate of the sample covariance can be obtained, resulting in poor recovery of the 

covariance structure.

Furthermore, we note that while the rt-SINGLE algorithm performs worse than its offline 

counterpart directly after change-points, it is able to quickly recover to the level of the 

offline SINGLE algorithm. Specifically, in the case where adaptive forgetting is used, the 

real-time algorithm is able to outperform its offline counterpart in sections where the data 

remains piece-wise stationary for long periods of time. This is because it is able to increase 

the value of the adaptive forgetting factor accordingly. This allows the algorithm to exploit a 

larger pool of relevant information compared to its offline counterpart. This is demonstrated 

on the right panel of Figure [3] where the mean value of the adaptive forgetting factor is 

plotted. We see there is a drop directly after changes occur; this allows the algorithm to 

quickly forget past information which is no longer relevant. We also note that the estimated 

value of the forgetting factor increases quickly after changes occur.

3.3 Simulation 3 — Small-world networks

While in Simulation 2 scale-free networks were studied, it has been reported that brain 

networks follow a small-world topology (Bassett and Bullmore, 2006). Such networks are 

characterized by their high clustering coefficients which has been reported in both 

anatomical as well as functional brain networks (Sporns et al., 2004).

Datasets were simulated as described in Simulations 1 and 2, with the difference that 

individual networks were generated according to the Watts and Strogatz (1998) model. The 

Watts and Strogatz (1998) model works as follows: starting with a regular lattice, the model 

is parameterized by β ∈ [0,1] which quantifies the probability of randomly rewiring an edge. 

It follows that setting β=0 results in a regular lattice, while setting β = 1 results in an Erdős-

Rényi (i.e., completely random) network structure. Throughout this simulation we set β = 3
4

as this yielded networks with sufficient variability but which still displayed the desired 

small-world properties.

In the left panel of Figure [4] we see the average Ft scores for each of the real-time 

algorithms as well as the offline SINGLE algorithm over 500 simulations. Due to the 

increased complexity of small-world networks, we note that the performance drops 

compared to scale-free networks considered in Simulation 2. We further note that the rate at 

which the real-time networks recover after a change-point is reduced. As with Simulation 2, 
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we note that the real-time algorithms are able to reach the same level of performance as their 

offline counterpart if given sufficient time (that is, if covariance structure is piecewise 

constant for sufficiently long periods of time). Moreover, in the case where adaptive 

forgetting is employed we once again find that the performance of the real-time algorithm 

exceeds that of the offline algorithm when the data remains piece-wise stationary for a 

sufficiently long period of time. In the right panel of Figure [4] we see the estimated 

adaptive forgetting factor over each of the 500 simulations. Again, we see the drop in the 

value of the forgetting factor directly after change-points; allowing past information to be 

efficiently discarded.

3.4 Simulation 4 — Computational cost

A fundamental aspect of real-time algorithms is that they must be computationally efficient 

in order to be able to update parameter estimates in the limited time provided. The main 

computational cost of the rt-SINGLE algorithm is related to the eigendecomposition of the 

K update, which has a complexity of O(p3) (Monti et al., 2014).

In this simulation we look to empirically study the computational cost. In this manner, we 

are able to provide a rough guide as to the number of ROIs which can be employed in a real-

time neurofeedback study while still reporting network estimates at every point in time. This 

was achieved by measuring the mean running time of each update iteration of the rt-

SINGLE algorithm for various numbers of ROIs, p.

Here each dataset was simulated as in Simulation 2; that is the underlying correlation was 

randomly generated according to a scale-free network. However, here we choose to only 

simulate three segments, each of length 50, resulting in a dataset consisting of 150 

observations. For increasing values of p, the time taken to estimate a new precision matrix 

was calculated. Figure [5] shows the mean running time for the rt-SINGLE algorithm where 

either a sliding window, a fixed forgetting factor (i.e., an EWMA model) or adaptive 

forgetting was used. We note that the difference in computational cost between each of the 

algorithms is virtually indistinguishable.

Finally, we note that when the number of nodes is below 20 it is possible to estimate 

functional connectivity networks in under two seconds, making the proposed method 

practically feasible in real-time studies. This simulation was run on a computer with an 

INTEL CORE I5 CPU at 2.8 GHz.

4 Application

In this section we present two applications of the proposed method. First, the proposed 

method is applied to motor-task data taken from the Human Connectome Project (HCP). 

Here subjects were asked to perform a range of motor tasks. While this data was not 

acquired and analyzed in real-time, it may be treated as such by only considering a single 

observation at a time. In this manner, we are able to compare the performance of the rt-

SINGLE algorithm to its offline counterpart using fMRI data as opposed to simulated 

examples, as was the case in Section 3. The second application presented consits of a real-

time experiment where subjects were asked to perform a visuospatial search task. While the 

Monti et al. Page 14

Hum Brain Mapp. Author manuscript; available in PMC 2019 July 18.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



quality of the HCP data is arguable state-of-the-art, the data generated in this experiment is 

of reduced quality. It therefore serves to demonstrate the capabilities of the rt-SINGLE 

algorithm on a dataset that is more representative of typical fMRI data used in practice.

4.1 HCP motor-task

Twenty of the 500 available task-based fMRI datasets provided by the Human Connectome 

Project were selected at random. Here subjects were asked to perform a simple motor task 

adapted from those developed by Buckner et al. (2011) and Yeo et al. (2011). This involved 

the presentation of visual cues asking subjects to either tap their fingers (left or right), 

squeeze their toes (left or right) or move their tongue. Each movement type was blocked, 

lasting 12 seconds, and was preceded by a three second visual cue. Each task was performed 

twice together with an additional three fixation blocks (each of length 15 seconds). This 

resulted in a total of 13 blocks per run2.

While this data is not intrinsically real-time — in that the preprocessing was conducted after 

data acquisition — it is included as a proof-of-concept study. The data was preprocessed 

offline as the focus lies on the comparison between the real-time and offline network 

estimation approaches rather than different preprocessing pipelines. Preprocessing involved 

regression of Friston’s 24 motion parameters and high-pass filtering using a cut-off 

frequency of 1
130Hz .

Eleven bilateral cortical ROIs were defined based on the Desikan-Killiany atlas (Desikan et 

al., 2006) covering occipital, parietal and temporal lobe (see Supplementary Table 1 and 

Supplementary Figure 1). These regions were selected based on the hypothesis that changes 

would occur in the sensory-motor and higher-level visual areas. The extracted time courses 

from these regions were subsequently used for the analysis. By treating the extracted time 

course data as if it was arriving in real-time (i.e., considering one observation at a time) we 

can compare the results of the proposed real-time method to offline algorithms while using 

the same underlying preprocessed data.

4.1.1 Results—Both the SINGLE as well as the rt-SINGLE algorithms where applied to 

the motor-task fMRI dataset. Our primary interest here is to report task-driven changes in 

functional connectivity. In this way, we are able to examine if the rt-SINGLE algorithm is 

capable of reporting the changes functional connectivity induced by the motor task.

The functional relationships that were modulated by the motor task were studied; this 

corresponds to studying the edges in the estimated networks which are significantly 

correlated with task onset. This was achieved by first estimating time-varying functional 

connectivity networks using both the offline SINGLE algorithm as well as the proposed real-

time algorithm. In the case of the SINGLE algorithm, parameters where chosen as described 

in Monti et al. (2014). This involved estimating the width of the Gaussian kernel via leave-

one-out cross validation and estimating regularization parameters via minimizing AIC. In 

the case of the real-time algorithm, adaptive forgetting was employed with η=0.005. The 

2for further details please see http://www.humanconnectome.org/documentation/Q1/task-fMRI-protocol-details.html
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sparsity and temporal homogeneity parameters where set to the same values as the offline 

SINGLE algorithm as the focus here was to study differences induced by estimating 

networks in real-time as opposed to differences resulting from different parameterizations.

In order to determine which edges where modulated by task a non-parametric statistical test 

was performed. Formally, Spearman’s rank correlation coefficient was estimated between 

the time-varying estimated partial correlation values for each edge and the task-evoked HRF 

function. It follows that edges which are modulated by the task will display strong 

correlations with the task HRF, thus allowing us to network of edges which are modulated 

by the motor task. Each estimated correlation coefficient was subsequently tested to 

determine if the correlation was statistically significant. The resulting p-values (one for each 

edge) were then corrected for multiple comparisons via the Holm-Bonferroni method 

(Holm, 1979). This allowed us to obtain an activation network, summarizing which edges 

are statistically activated by the motor task for each algorithm.

Figure [6] shows task activation networks for both the SINGLE and rt-SINGLE algorithms. 

Edges are only present if they were reported as being significantly correlated with task-

evoked HRF function. Red edges indicated the strength of the edge increase during task 

while blue edges indicate the strength of the edge decrease during task (i.e., a negative 

correlation). Further, edge thickness is indicative of the magnitude of the correlation. Figure 

[6] shows clear similarities across each of the algorithms, with 84% of edges reported by 

both the rt-SINGLE and SINGLE algorithms. This would suggest that the rt-SINGLE 

algorithm is accurately detecting task-modulated changes in functional connectivity. In 

particular, we observe increased functional coupling between the motor-sensory and visual 

regions in the occipital cortex as well as inferior and middle temporal heteromodal regions. 

These results are plausible with regard to the task that involved high-level visual and 

heteromodal processing of the preceding visual cues and the execution of the actual 

movement and have been previously reported (Hein and Knight, 2008; Zilverstand et al., 

2014).

While Figure [6] serves to visually demonstrate that the rt-SINGLE algorithm is accurately 

detecting task-modulated changes in connectivity, we also studied graph theoretic properties 

to quantify if there are significant differences in the graph structure of networks estiamted 

using offline SINGLE and rt-SINGLE algorithms. While there are many candidate graph 

statistics which can be studied, in this work we look to study the three key properties; the 

mean degree centrality across nodes3, the mean betweenness centrality over edges in the 

network4 and the transitivity of the network5. Furthermore, the changes in network statistics 

where studied in the context of task positive and task negative modulation, thereby allowing 

us to study in detail if significant differences occurred in the estimated network structure. As 

such, graph statistics were calculated for the network of positively and negatively task-

modulated edges respectively (that is the networks corresponding to the red and blue edges 

3The degree centrality of a node is defined as the sum of its weighted edges.
4Betweenness centrality of an edge is a measure of the importance of the edge. Briefly, it measures the proportion of shortest paths 
between any two nodes which include the edge.
5The transitivity of a network is a measure of the clustering of the network which studies how likely it is that nodes in the network will 
cluster together.
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in Figure [6] respectively). The results of this supporting analysis are provided in 

Supplementary Table 2. We note we found no significant differences between each of the 

two algorithms in each of the selected graph statistics. These results serve as evidence that 

the proposed method can perform comparably with offline methods despite facing the 

additional challenge of estimating networks ’on-the-fly’.

Moreover, in a rt-fMRI study it is also crucial to be able to accurately estimate functional 

connectivity networks for individual subjects. While the true underlying functional 

connectivity networks are unknown (and may vary for each subject), we are able to quantify 

how closely the networks estimated in real-time recreate the results of an offline analysis. As 

a result, the correlation was studied between the estimated edges using both the rt-SINGLE 

and the offline SINGLE algorithms. This was performed on a subject-by-subject basis. For 

each edge the correlation between the estimated edge values using each of the two 

algorithms was quantified using Spearman’s rank correlation coefficient and the 

corresponding p-values were corrected for multiple comparisons. Figure [7] shows the 

subject-specific networks containing only edges that were significantly correlated across 

both algorithms. As before, red edges indicate a positive correlation with task while blue 

edges are indicative of negative correlations and the thickness of the edges is proportional to 

the strength of the correlation. We note the resulting networks are dense across all subjects 

and the vast majority of edges indicate positive correlations. In particular, an average of 74% 

of edges were positively correlated across all subjects6.

As noted previously, it is also important to study graph theoretic properties of the estimated 

networks to quantitatively study wethere there are signficant differences in the network 

structure across subjects. As a result, we computed the three aforementioned graph statistics 

over the subject-specific estimated networks shown in Figure [7]. Furthermore, as discussed 

previously, the graph statistics were considered for the task positive and task negative 

networks (that is the networks corresponding to the red and blue edges in Figure [7] 

respectively). In this manner, we were able to study if significant differences occured across 

subjects in a detailed fashion. The results, provided in Supplementary Table 3, show that the 

estimated graph statistics are stable and consistent across the cohort of subjects. This serves 

as an indication that graph statistics such as the betweenness centrality are robust across a 

cohort of subjects and therefore suitable candidates for neurofeedback applications.

4.2 Real-time visuospatial attention task

While the HCP dataset introduced in Section 4.1 serves to demonstrate the reliability of the 

real-time network estimates, our proposed method was also tested using data that was 

processed and studied alongside data acquisition. The data employed here corresponds to 

fMRI data acquired over 20 subjects during the visuospatial attention task described in 

Braga et al. (2013). Briefly, the task corresponded to a visual attention task explicitly 

designed to engage subjects with continuous top-down visual monitoring of stimuli. Subjects 

where shown complex and naturalistic moving scenes and where required to detect a 1 

6Under the null hypothesis that the edges of dynamic networks estimated using the rt-SINGLE and SINGLE algorithms respectively 
are uncorrelated we would expect zero edges to be present (i.e., an empty graph) with 95% probability. This is because by 
implementing the Holm-Bonferroni method we have controlled the family wise error rate at the α = 5% level.
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second change in color of the target stimuli (from red to green) (Braga et al., 2013). The 

target consisted of a red rectangle which appeared in two possible locations of the screen 

(top-left or bottom-right). The task therefore consisted of a pre-target phase where subjects 

were attentively viewing the color video footage as well as a post-target phase, where 

subjects had reported the target change and were no longer required to attentively watch the 

video. A total of twenty trials were performed for each subject, however in selected trials no 

target stimuli was presented. Note that the stimuli that subjects perceived in the two 

conditions (pre- and post-target) were exactly identical; the only difference consisted in the 

attentional state of the subject.

In terms of data quality, the HCP dataset employed in Section 4.1 was acquired using state-

of-the-art parallel imaging which resulted in higher temporal resolution (TR=0.72 seconds) 

and increased signal-to-noise ratio (Elam and Van Essen, 2014). In contrast, the data used 

here is of far lower quality; having a TR of three seconds. Furthermore, unlike the HCP 

dataset, preprocessing was not performed offline here, posing further limitations on the 

quality of the data.

While the entire dataset was collected and studied in Braga et al. (2013), in this work it was 

treated in a real-time fashion. The rt-fMRI pipeline employed is described in Section 4.2.1 

below. Given that we are trying to capture differences in hidden attentional states (in contrast 

to overt motor movements as in the case of the HCP data), this data corresponds to a far 

more complicated cognitive task. This therefore serves to validate the capabilities of the 

proposed method with a dataset that is representative of data typically used in rt-fMRI 

studies.

As we look to corroborate previous results relating to the top-down visuospatial attention 

networks, we created spheres of 10 mm radius positioned at the center of gravity of 11 

activation clusters derived from a spatially constrained independent component analysis 

(ICA) on the data (as reported in Braga et al. (2013)) in addition to three subregions of the 

dorsal attention network (DAN) obtained from Capotosto et al. (2009) and Dosenbach et al. 

(2007) (also reported in Braga et al. (2013)). The regions, summarized in Supplementary 

Table 4, showed significant differences between pre- and post-target phase in the original 

study and where therefore used to study the reliability of the proposed rt-SINGLE algorithm.

4.2.1 Simulated real-time fMRI pipeline—Whole-brain coverage images were 

acquired by a Philips Intera 3.0 T MRI system with an 8-element phased array head coil and 

sensitivity encoding using an echoplanar imaging (EPI) sequence (T2*: FOV=220×143×190 

mm, time repetition (TR) / time echo (TE): 3000 / 45 ms, 44 axial slices with slice thickness 

of 3.5 mm). A total of 335 EPI images were acquired for each subject. In addition, a high-

resolution (1 mm × 1 mm × 1 mm) T1-weighted whole-brain structural image (reference 

anatomical image, RAI) was obtained for each participant. Prior to the simulated online 

preprocessing of the data, the first EPI volume (reference functional image, RFI) was used 

for spatial co-registration. The first step comprised the brain extraction of the RAI and RFI 

using BET (Smith, 2002), followed by an affine co-registration of the RFI to RAI and 

subsequent nonlinear registration to a standard brain atlas (MNI) using FNIRT (Andersson et 

al., 2007). The resulting transformation matrix was used to register the 14 ROIs (as 
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described in Section 4.2 and Supplementary Table 4) from MNI to the functional space of 

the respective subject. For simulated online processing, incoming raw EPI images were 

motion corrected in simulated real-time using MCFLIRT (Jenkinson et al., 2002) with the 

previously obtained RFI acting as reference. In addition, images were spatially smoothed 

using a 5 mm FWHM Gaussian kernel. ROI means for each TR were simultaneously 

extracted using a general linear model (GLM) approach and written into a text file that was 

accessed by the rt-SINGLE algorithm. Based on these timecourses, rt-SINGLE estimated 

time-varying functional connectivity networks for each TR. In total, the full processing of 

the data in simulated real-time took under one second per observation, leaving considerable 

time for the optimization required of the rt-SINGLE algorithm.

4.2.2 Results—The rt-SINGLE algorithm was applied to fMRI data corresponding to the 

visuospatial task. As in Section 4.1, our primary interest here was to demonstrate that the 

proposed real-time algorithm was able to accurately report changes in functional 

connectivity.

The real-time pipeline described in Section 4.2.1 was employed to estimate time-varying 

functional connectivity networks for each subject independently. A burn-in period of 10 

observations was employed. This allowed the sparsity and temporal homogeneity parameters 

to be selected by minimizing AIC over this burn-in period. Finally, adaptive filtering was 

employed to estimate subject covariance matrices with tuning parameter η=0.005.

In order to report the functional networks (i.e., edges) modulated by the task we report the 

edges which are significantly correlated with task HRF function. For each edge, the 

correlation between the mean estimated partial correlation across subjects and the HRF was 

computed using Spearman’s rank correlation coefficient. As with the HCP task, resulting p-

values where corrected for multiple comparisons, resulting in a network containing only 

statistically significant edges.

Figure [8] shows the task activation network as estimated by the rt-SINGLE algorithm. 

Edges are only present if they were reported as being statistically correlated with the task 

HRF function. The edge color is indicative of the behavior of a particular edge: red edges are 

up-regulated during the pre-attention phase (attentive visual search) while blue edges are up-

regulated during the post-attention phase (passive viewing).

We note there is stronger coupling for the visual top-down attention condition between the 

right superior parietal lobe (SPL) and the right frontal eye fields (FEF), the right occipital 

fusiform as well as the right middle temporal gyrus (MTG). In addition, for the same 

condition we observe stronger coupling between the right occipital fusiform and the right 

FEF as well as the left SPL. Further, functional connectivity between the right inferior 

temporal gyrus (IFG) and right middle frontal gyrus (MFG) is increased for the top-down 

attention. These results are in line with a previous, non real-time analysis of this data (Braga 

et al., 2013), as well as accounts of visual top-down attention regulation in the literature. 

Typically, during visual top-down attention the visual cortices become functionally 

connected with higher-order frontoparietal regions the SPL and FEF, making up what is 

known as the DAN (Corbetta and Shulman, 2002; Corbetta et al., 2008).
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Finally, we also study functional connectivity networks estimated on a subject-by-subject 

basis. As in Section 4.1, we study some of the graph theoretic properties obtained across 

subjects in order to verify if the estimated networks are robust across subjects. Subject-

specfic functional connectivity networks were estimated as described above and three 

measures of graph structure where collected; the mean degree centrality across nodes, the 

mean betweenness centrality across edges and the transitivity (i.e., clustering coefficient) of 

the network. Moreover, as discussed in Section 4.1, the graph statistics were estimated for 

the network of up-regulated edges associated with attentive visual search (red edges in 

Figure [8]) as well as the network of up-regulated edges associated with passive viewing 

(blue edges in Figure [8]). The results, provided in Supplementary Table 5, indicate that 

networks estimated across subjects show robust and reproducible properties for both the 

attentive visual search and the passive viewing network. Thes results are reassuring in the 

context of real-time fMRI neurofeedback as they validate the potential use of graph 

statistics.

5 Discussion

In this work we introduce a novel methodology with which to estimate dynamic functional 

connectivity networks in real-time. The contributions of the proposed method can be 

summarized as follows. First, we propose the use of adaptive forgetting methods in order to 

obtain highly adaptive estimates of the sample covariance over time. Such methods 

designate that choice of the forgetting factor to the data, making them highly adaptive as 

well as flexible. The latter point is of particular importance in the rt-fMRI setting; since 

changes in functional connectivity may occur abruptly and at varying intervals the 

assumptions behind the use of fixed forgetting factors or sliding windows do not necessarily 

hold true. Second, by extending the recently proposed SINGLE algorithm we are able to 

accurately estimate functional connectivity networks based on precision matrices in real-

time.

The proposed method enforces constraints on both the sparsity as well as the temporal 

homogeneity of estimated functional connectivity networks. The former is required in order 

to ensure the estimation problem remains well-posed when the number of relevant 

observations drops, as is bound to occur when adaptive forgetting is employed. On the other 

hand, the temporal homogeneity constraint ensures changes in functional connectivity are 

only reported when heavily substantiated by evidence in the data. As we demonstrate 

through a series of simulation studies, the rt-SINGLE algorithm is able to both obtain 

accurate estimates of functional connectivity networks at each point in time as well as 

accurately describe the evolution of networks over time.

The rt-SINGLE algorithm is closely related to sliding window methods which have been 

employed extensively in the real-time setting (Gembris et al., 2000; Esposito et al., 2003; 

Ruiz et al., 2014; Zilverstand et al., 2014). Extensions of sliding window methods, such as 

EWMA models, have been successfully applied to offline fMRI studies (Lindquist et al., 

2007) and have been shown to be better suited to estimating dynamic functional connectivity 

(Lindquist et al., 2014). In this work we considered both sliding windows and EWMA 

models alongside adaptive forgetting. We presented an extensive simulation study 
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comparing these three methods which demonstrates the advantages of adaptive filtering 

methods. However, the proposed method is flexible and can be implemented using either 

sliding windows, fixed forgetting factors (corresponding to an EWMA model) or adaptive 

forgetting.

The proposed method requires the input of three parameters. The first of these parameters, 

stepsize η, governs the rate at which an adaptive forgetting factor, rt, varies and can be 

interpreted as the stepsize in a stochastic gradient descent scheme (Bottou, 2004). The final 

two parameters enforce sparsity and temporal homogeneity respectively. These parameters 

remain fixed throughout in a similar manner to the fixed forgetting factor and two heuristic 

approaches are proposed to tune these parameters. A future improvement for the proposed 

algorithm would involve adaptive regularization penalties. However, such approaches are 

computationally and theoretically challenging due to the non-differentiable nature of the 

penalty terms.

Two applications of the proposed method were provided. The first involved motor-task data 

from the HCP. The results demonstrate that the rt-SINGLE algorithm was able to accurately 

detect functional networks which are modulated by motor task. The second application 

corresponds to a more complex visuospatial attention task. While the quality of the HCP 

data employed is arguably state-of-the-art, this dataset was used to demonstrate the 

capabilities of the rt-SINGLE algorithm using fMRI data as opposed to simulated examples. 

In contrast the quality of the second dataset studied is of similar quality than would be 

expected in a typical rt-fMRI study; as it corresponds to a low temporal resolution (three 

seconds) and a complex cognitive task. Both datasets were analyzed in real-time and provide 

compelling evidence that the proposed method is able to accurately track functional 

connectivity ’on-the-fly’. Moreover, throughout these two applications networks were 

estimated every TR. However, depending on the nature of the experiment, it would be 

possible to only obtain an updated estimate of the functional connectivity networks every 

several TRs.

It is well known in the neuroimaging field that the choice of pre-processing strategy has a 

significant effect on connectivity estimates (Gavrilescu et al., 2008 and Weissenbacher et al., 

2009). This aspect receives even more importance for dynamic FC methods as time-varying 

connectivity estimates are based on relatively few TRs (Hutchison et al., 2013). Therefore, 

when conducting dynamic FC analysis, it is suggested to perform typical pre-processing 

steps applied to resting-state fMRI data (such as motion correction, spatial filtering, nuisance 

regression and high-pass filtering) in addition to recording respiration and cardiac events for 

further de-noising of the data (Hutchison et al., 2013). However, these recommendations 

have been worked out for dynamic FC analysis on resting-state data. When looking at task-

induced changes in FC, standard pre-processing strategies have predominantly been 

employed in the field (Monti et al., 2014) and high reproducibility of results has been 

reported when comparing minimally pre-processed with highly pre-processed ROI time-

courses (Allen et al., 2012). So, in case equally distributed noise can be expected for blocks 

of task and blocks of no task performance, dynamic FC methods will be able to capture the 

task-induced difference in FC. As reported above, the HCP data can be considered as an 

extensively and (offline) pre-processed dataset while the other dataset more closely matches 
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the description of a minimally pre-processed dataset. For both datasets we obtained results 

that are highly consistent with previous findings. Importantly though, more exhaustive pre-

processing could hypothetically be performed in real-time (such as nuisance regression, de-

spiking etc.), thus not precluding the use of rt-SINGLE for resting-state data.

Besides the impact of different pre-processing strategies on time-varying FC results, the ad 

hoc ROI selection is crucial for the success of the method and interpretation of the findings. 

Contrary to offline analyses, in which the ROI selection itself can be an explorative process 

(although this might not be considered as conservative scientific approach), the real-time 

nature of our proposed method requires an adequate consideration of the most suitable ROIs 

a priori to the experiment. For our work presented here, we have selected the respective 

nodes in a strictly hypothesis-driven manner. While for the motor task, we have included 

nodes within sensory-motor and higher-level visual areas, for the visuospatial attention task 

we based on our node selection on activation clusters derived from a previous analysis of the 

same dataset that consisted of core regions of the top-down visuospatial attention network. 

We therefore strongly hypothesized these nodes to be modulated by the respective tasks. 

Besides such a hypothesis-driven ROI-based approach, another popular and more data-

driven strategy is to parcellate the brain into large-scale functional brain network (Smith et 

al., 2009) and compute time-varying connectivity estimates based on the extracted network 

time-courses (Calhoun et al., 2014 and Allen et al., 2012). Although the most common 

approach is to measure dynamic FC by looking at changes in correlation over time whilst 

assuming fixed ROIs or networks (Calhoun et al., 2014), recent approaches also take the 

spatio-temporal nature of fMRI data into account by studying how the spatial patterns of 

regions/network changes over time (Ma et al., 2011 and Karahanoglu and Van de Ville, 2015 

and Scott et al., 2015). However to date, none of these approached would be suitable for a 

real-time application.

In conclusion, the rt-SINGLE algorithm provides a novel method for estimating functional 

connectivity networks in real-time. We present two applications demonstrating that the rt-

SINGLE algorithm is capable of reporting changes in motor execution as well as internal 

attentional state of subjects. In future, the proposed method could be incorporated into rt-

fMRI studies, potentially providing neurofeedback based on functional connectivity. De 

Bettencourt et al. (2015) convincingly demonstrated that closed-loop neurofeedback can be 

used to improve sustained attention abilities and reduce the frequency of lapses in attention. 

The authors used multivariate pattern analysis and found that behavioral improvement was 

the largest when feedback carried information from a frontoparietal attention network. 

Especially with regard to our second example we demonstrate that rt-SINGLE is able to 

capture moment-to-moment fluctuations in the attentional state of subjects and could 

potentially be used to boost brain state decoding accuracy by providing additional 

information relating to functional connectivity. Finally, there is great potential to integrate 

this work with the recently proposed Automatic Neuroscientist framework of Lorenz et al. 

(2016). Lorenz et al. (2016) combined real-time fMRI with machine learning techniques to 

optimize experimental conditions to maximize a given target brain state (Lorenz et al., 2015, 

2016). While the target brain state in their proof-of-principle study was simply based on 

BOLD differences, our proposed method can be utilized to extend the Automatic 
Neuroscientist to target entire functional connectivity networks. This could be of paramount 
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importance for the framework to be pulled through the translational pathway as various 

neurological and psychiatric disorders are characterized by disruption of functional networks 

such as attention deficit disorder (Stins et al, 2005), traumatic brain injury (Whyte et al, 

1995), or bipolar disorder (Clark et al, 2002).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Top: Measurements of a non-stationarity univariate random variable, Xt, are shown in grey 

together with the true mean in blue. This figure serves to highlight how the optimal choice of 

a forgetting factor or window length may depend on location within a dataset. It follows that 

in the proximity of the change-point we wish r to be small in order for it to adapt to change 

quickly. However, when the data is itself piece-wise stationary, we wish for r to be large in 

order to be able to fully exploit all relevant data.

Bottom: An illustration of how an ideal adaptive forgetting factor would behave; decreasing 

directly after a change occurs and quickly recovering thereafter.
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Figure 2. 
In this simulation we study the capability of the proposed algorithm to accurately track 

changes to covariance structure over time. In order to quantify this we consider the distance 

defined by the trace inner product, given in equation (17). We note that the symmetric 

Gaussian kernel employed for the offline SINGLE algorithm outperforms the online 

algorithms as expected. However, when the covariance structure remains piece-stationary for 

extended periods of time the online algorithms are able to outperform their offline 

counterparts. Moreover, the results demonstrate that adaptive filtering methods outperform 

both fixed forgetting factors as well as sliding windows.

Top: Covariance tracking results when underlying network structure is simulated according 

to the scale-free preferential attachment model of (Barabási and Albert, 1999). A change 

occurred every 100 observations.

Bottom: Covariance tracking results when the underlying network structure was simulated 

using small-world random networks according to the model of Watts and Strogatz (1998).
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Figure 3. 
Left: Mean F scores for the offline SINGLE algorithm and the real-time algorithms 

employing either a sliding window (rt-SW), a fixed forgetting factor (rt-FF) or adaptive 

forgetting respectively (rt-AF). Here the underlying network structure was simulated using 

scale-free random networks according to the preferential attachment model of Barabási and 

Albert (1999). A change occurred every 100 time points. We note that all three algorithms 

experience a drop in performance in the vicinity of these change-points, however in the case 

of the real-time algorithms the drop is asymmetric. Moreover, we further note that when 

adaptive forgetting is employed the real-time algorithm is able to outperform its offline 

counterpart in sections where the data remains piece-wise stationary for long periods of 

time.

Right: mean values for the estimated adaptive forgetting factor, rt, over time. We note there 

is a sudden drop directly after changes occurs allowing the algorithm to adequately discard 

irrelevant information.
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Figure 4. 
Left: Mean F scores for the offline SINGLE algorithm and the real-time algorithms 

employing either a sliding window (rt-SW), fixed forgetting factor (rt-FF) or adaptive 

forgetting respectively (rt-AF). Here the underlying network structure was simulated using 

small-world random networks according to the model of Watts and Strogatz (1998). A 

change occurred every 100 time points. We note that all three algorithms experience a drop 

in performance in the vicinity of these change-points, however in the case of the rt-SINGLE 

algorithms the drop is asymmetric. Moreover, we further note that when adaptive forgetting 

is employed the real-time algorithm is able to outperform its offline counterpart in sections 

where the data remains piece-wise stationary for long periods of time.

Right: mean values for the estimated adaptive forgetting factor, rt, over time. We note there 

is a sudden drop directly after changes occurs allowing the algorithm to adequately discard 

irrelevant information.
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Figure 5. 
Mean running time (seconds) per update iteration of the rt-SINGLE algorithm when either a 

sliding window (rt-SW), a fixed forgetting factor (rt-FF) or adaptive forgetting (rt-AF) was 

employed.
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Figure 6. 
Task activation networks for rt-SINGLE (top) and SINGLE (bottom) algorithms 

respectively. Present edges had statistically significant correlations with task HRF after 

correction for multiple comparisons. Red edges indicate edge strength increased during task 

while blue edges indicate edge strength decreased during task. Eleven bilateral regions 

where used as described in Table [1]. In order to facilitate interpretation of the plot only the 

right-hemispheric coordinates are shown here. We note there is consistent activation pattern 

across both algorithms, particularly across nodes nodes corresponding to the motorsensory 

areas. Associated summary graph statistics of the task positive and task negative networks 

estimated with rt-SINGLE and SINGLE are provided in Supplementary Table 2.
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Figure 7. 
Subject specific networks visualizing edges that were significantly correlated across both the 

rt-SINGLE algorithm and its offline counterpart. Red edges indicate positive correlations 

while blue edges indicate negative correlations. We note that networks are dense across all 

subjects, indicating that the rt-SINGLE algorithm is able to accurately recover network 

structures similar to an offline study. Associated summary graph statistics of the task 

positive and task negative networks across all subjects are provided in Supplementary Table 

3.
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Figure 8. 
Task activation networks for rt-SINGLE algorithm shown on the left panel. Present edges 

had statistically significant correlations with task HRF after correction for multiple 

comparisons. Red edges were up-regulated during attentive visual searching while blue 

edges were up-regulated during the passive viewing phase. For clarity, edges corresponding 

to attentive visual search and passive viewing are plotted separately in the middle and right 

panels. Associated summary graph statistics of the networks associated with attentive visual 

search as well as passive viewing are provided in Supplementary Table 5.
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