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Abstract

Shared parameter models (SPMs) are a useful approach to addressing bias from informative 

dropout in longitudinal studies. In SPMs it is typically assumed that the longitudinal outcome 

process and the dropout time are independent, given random effects and observed covariates. 

However, this conditional independence assumption is unverifiable. Currently, sensitivity analysis 

strategies for this unverifiable assumption of SPMs are underdeveloped. In principle, parameters 

that can and cannot be identified by the observed data should be clearly separated in sensitivity 

analyses, and sensitivity parameters should not influence the model fit to the observed data. For 

SPMs this is difficult because it is not clear how to separate the observed data likelihood from the 

distribution of the missing data given the observed data (i.e., ‘extrapolation distribution’). In this 

article, we propose a new approach for transparent sensitivity analyses for informative dropout that 

separates the observed data likelihood and the extrapolation distribution, using a typical SPM as a 

working model for the complete data generating mechanism. For this model, the default 

extrapolation distribution is a skew-normal distribution (i.e., it is available in a closed form). We 

propose anchoring the sensitivity analysis on the default extrapolation distribution under the 

specified SPM and calibrate the sensitivity parameters using the observed data for subjects who 

drop out. The proposed approach is used to address informative dropout in the HIV Epidemiology 

Research Study.

Keywords

Bayesian inference; joint models; longitudinal data; missing data; random effects

iDORCID
Li Su http://orcid.org/0000-0003-0919-3462

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and 
reproduction in any medium, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).

Correspondence: Li Su, MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SR, U.K., 
li.su@mrc-bsu.cam.ac.uk. 

Europe PMC Funders Group
Author Manuscript
Biometrics. Author manuscript; available in PMC 2019 September 11.

Published in final edited form as:
Biometrics. 2019 January 22; 75(3): 917–926. doi:10.1111/biom.13027.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

http://orcid.org/0000-0003-0919-3462
http://creativecommons.org/licenses/by/4.0/


1 Introduction

1.1 Shared parameter models and sensitivity analysis strategies

Shared parameter models (SPMs) are one of the three main model-based approaches to 

dealing with informative dropout in longitudinal studies, where ‘informative’ means that the 

dropout process depends on the unobserved outcomes even after conditioning on the 

observed data (Tsiatis and Davidian, 2004; Daniels and Hogan, 2008). In SPMs the 

dependence between the longitudinal outcome process and the dropout process is often 

characterized by a set of time-invariant random effects. For example, a popular 

parameterization is to specify simple random intercepts and random time slopes in the 

longitudinal outcome model, while they are also included in the dropout model as covariates. 

Given the random effects and observed covariates, it is typically assumed that the 

longitudinal outcome process (i.e., the complete longitudinal outcome data that are intended 

to be collected) and the dropout time process are independent. This conditional 

independence assumption can be classified as a latent ignorability assumption discussed in 

Harel and Schafer (2009). However, it is unverifiable because it is not possible to assess the 

conditional independence between the unobserved outcomes after dropout and the dropout 

time. Therefore, sensitivity analyses are required for SPMs. In this article we focus on the 

sensitivity of the inference for marginal covariate effects on the longitudinal outcome to the 

unverifiable assumption of SPMs.

Unfortunately, unlike pattern mixture models (PMMs), research for sensitivity analysis 

strategies based on SPMs is very limited. Sensitivity analyses, as defined in Daniels and 

Hogan (2008), have been done for SPMs in a series of articles by Creemers and colleagues 

(Creemers et al., 2010, 2011). Creemers et al. (2010) introduce a generalized class of SPMs 

by incorporating additional random effects (not typically found in the original SPM) as 

sensitivity parameters that connect the conditional distribution of the missing data given the 

observed data (i.e., the extrapolation distribution) and the model for missingness indicators. 

The corresponding sensitivity parameters are not easily interpretable. Creemers et al. (2011) 

also use the generalized class of SPMs with additional random effects, but their approach is 

more similar to what we propose here because identifying restrictions like the missing at 

random (MAR) assumption or the non-future dependence assumption (Kenward et al., 2003) 

are used to define subclasses of the generalized SPM that satisfy these restrictions. However, 

in this article we advocate using the typical SPM with the conditional independence 

assumption and its default extrapolation distribution as the basis of a sensitivity analysis 

(i.e., there are no additional random effects specified to link the the extrapolation distribution 

and the dropout process) and introduce sensitivity parameters that are easily interpretable in 

the context of the typical SPM.

Following the principle of a transparent sensitivity analysis advocated by Daniels and Hogan 

(2008), we propose a new sensitivity analysis approach for informative dropout based on a 

typical SPM with the conditional independence assumption, where the likelihood for 

observed data and the sensitivity parameter are clearly separated. Within the Bayesian 

framework, we first fit the SPM proposed by Barrett et al. (2015) to the observed 

longitudinal outcome data and the dropout time. Specifically, a linear mixed model is 
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assumed for the complete longitudinal outcomes, while the dropout time distribution follows 

a probit model for the discrete hazard of dropout. The two models are linked by correlated 

normal random effects. Given these random effects and observed covariates, the longitudinal 

outcome process and the dropout process are assumed to be independent. We show that 

under this SPM, the default extrapolation distribution for missing data after dropout is a 

skew-normal distribution depending on model parameters, covariates and observed 

longitudinal outcome data. The proposed sensitivity analysis is then anchored at this 

‘default’ extrapolation distribution and a piece-wise linear model for individual longitudinal 

profiles is specified to determine the extrapolation distribution at a fixed value of a global 

sensitivity parameter. The global sensitivity parameter can be interpreted as the parameter 

that controls the overall deviation of the individual longitudinal profiles after dropout from 

the default extrapolations under the SPM. Given a specific set of values for the covariates, 

posterior samples of the model parameters and an informative prior for the global sensitivity 

parameter based on the substantive context, we use G-computation (Robins, 1986; 

Scharfstein et al., 2014) to obtain the inferences for the marginal (population-averaged) 

covariate effects on the longitudinal outcome under both the default extrapolation 

distribution of the SPM and the extrapolation distribution specified in the sensitivity 

analysis. The G-computation and the Markov Chain Monte Carlo (MCMC) for fitting the 

SPM are separate; therefore our sensitivity analysis approach does not impact the fit of the 

model to the observed data.

1.2 Motivating example

This work is motivated by data from the HIV Epidemiology Research Study (HERS). The 

HERS was a longitudinal study of 1310 women with, or at high risk for, HIV infection from 

1993 to 2000 (Smith et al., 2003). During the study 12 visits were scheduled, where a variety 

of clinical, behavioral and sociological outcomes were recorded approximately every 6 

months. We will focus on the 850 women who were HIV-positive and had CD4 count 

measurements at enrollment.

Like many other long-term follow-up studies, attrition by dropout in the HERS is 

substantial, with more than half of the women not completing the study. Moreover, as 

suggested by previous analyses of these data (Hogan et al., 2004; Daniels and Hogan, 2008), 

dropout was likely informative and related to the disease progression characterized by CD4 

counts. In other words, the unobserved CD4 counts among those who dropped out could be 

systematically lower than those who continued follow-up, even after adjusting for covariates 

and observed CD4 counts. Hogan et al. (2004) adopted the pattern mixture modeling 

approach to dealing with this informative dropout problem when estimating the marginal 

effects of baseline covariates (HIV viral load, HIV symptom severity, antiretroviral 

treatment status) on the longitudinal CD4 count for the HERS data. In this article, we choose 

the shared parameter modeling approach for the HERS data and implement the proposed 

sensitivity analysis strategy tailored to SPMs. Because HIV disease progression, represented 

by changes in CD4 count, is believed to be strongly associated with the dropout, we use 

random effects in the model for CD4 counts to characterize the HIV disease progression. 

These random effects also govern the relationship between HIV disease progression and 

dropout.
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The rest of the article is organized as follows. In Section 2, we describe the proposed 

sensitivity analysis strategy, show its implementation using the specified SPM and derive the 

default extrapolation distribution for the missing outcome under this SPM. In Section 3, the 

HERS data are analyzed to illustrate the proposed methods. We conclude with a discussion 

in Section 4.

2 Methods

2.1 Sensitivity analysis strategy

In this section, we propose a general sensitivity analysis strategy for informative dropout 

using SPMs. Because random effects are often used to characterize the individual 

longitudinal profile, we can interpret the default extrapolation under a SPM as trying to use 

the same random effect distribution given observed data before dropout for characterizing 

the individual longitudinal profile after dropout. However, this might not be true if this 

individual longitudinal profile beyond dropout varies from what the SPM predicts under the 

conditional independence assumption. For example, in the HERS example, it is plausible 

that the unobserved CD4 counts after patients’ dropout were decreasing more rapidly than 

the SPM predicts. Therefore the individual longitudinal profile after dropout might not be 

able to be described by the conditional distribution of the random effects given all observed 

data. This discrepancy cannot be identified from the observed data, and can be the basis for a 

sensitivity analysis. Figure 1 provides a graphical illustration for the default extrapolation 

under a SPM and the possible extrapolation under our proposed sensitivity analysis strategy.

We propose to anchor the sensitivity analysis at the default extrapolation distribution of the 

SPM. In the next sections, we describe a typical SPM in our approach and the details of the 

sensitivity analysis strategy for it.

2.2 Model

Suppose that N independent patients are followed up over time. For the i-th (i = 1, … , N) 

patient, longitudinal measurements Yi = (Yi1, … , YiM)T are scheduled to be taken at time 

points ti1, … , tiM in [0, T], where T is the total length of scheduled follow-up in the study. 

However, patient can withdraw from the study during the follow-up, which terminates the 

observation of the longitudinal outcome Yi. Let Si denote the ‘dropout time’ for the i-th 

patient. Information about exact time of dropout is often not available in practice. Therefore, 

we define Si to be the number of the last follow-up visit, and hence it is discrete. When Si = j 
−1 < M (j = 2, … , M), the outcome vector (Yij, … , YiM)T are unobserved. If the patient has 

complete data, then Si is treated as administratively censored at visit M. We let 

Yi
o = (Y i1, …, Y i, j − 1)T denote the vector of the observed outcomes and assume that Yi1 is 

always observed (baseline outcome).

In this article, we adopt the SPM in Barrett et al. (2015) that is well suited to the HERS data. 

First, the complete outcome Yij (j = 1, … , M) at visit j is assumed to follow

Y i j = xi j
T β + zi j

Tbi + ϵi j , (1)
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where β is a p × 1 vector of regression coefficients associated with exogenous covariates xij 

(fixed effects), bi is a q ×1 vector of random effects that are associated with covariates zij, ϵij 

is the measurement error that is independent of covariates xij and zij, and 

( ϵi1 , …, ϵiM)T ∼ N(0, σϵ
2IM × M) . The covariate vectors xij and zij are assumed to be 

completely observed. In the HERS application, we assume xij includes (1, tij)T and baseline 

covariates; and zij = (1, tij)T, so bi corresponds to a random intercept and a random slope. 

The random effects bi follow a multivariate normal distribution N (0, Σb).

Let λi,j−1 = P(Si = j − 1 | Si ≥ j − 1, bi, xS,i,j−1, Wi,j−1) be the discrete hazard of dropout at 

visit j − 1 (j = 2, … , M). We assume a probit model,

λi, j − 1 = 1 − Φ xS, i, j − 1
T α + Wi, j − 1bi

Tγ j − 1 , (2)

where Φ(⋅) is the standard normal cumulative distribution function, xS,i,j−1 is a pS × 1 vector 

of covariates (possibly time-varying) with regression coefficients α. Wi,j−1 is a matrix for 

constructing a qS × 1 vector of linear combinations of bi. In the HERS application, we have 

Wi,j−1 = I2×2 and qS = 2. Other examples of Wi,j−1 include (1, ti,j−1)T; see discussion on 

these parameterizations in Chapter 7 of Rizopoulos (2012). γj−1 is an association parameter 

vector that relates the longitudinal outcome and the dropout time via the random effects bi. 

Note that if γj−1 = 0 then the dropout is ignorable. Given bi and the covariates, the complete 
longitudinal outcome Yi and the dropout time Si are assumed to be independent.

2.3 Estimation and inference

We use a Bayesian approach for estimation and inference of the SPM. For simplicity of 

presentation we suppress the conditioning on xij, zij, xS,i,j−1 and Wi,j−1. The observed data 

are Yi
o, Si = j − 1  (i = 1, … , N), and the observed data likelihood contribution from the i-th 

patient given the random effects is

ℒi θ Yi
o, Si = j − 1, bi = f Yi

o bi; θ

f Si = j − 1 bi; θ f bi; θ ,
(3)

where θ denotes all unknown parameters in the SPM that include regression coefficients β, 

α, γj−1 and covariance parameters in Σb. Let Xi = (xi1, … , xiSi)
T and Zi = (zi1, … , ziSi)

T. 

The likelihood from the observed longitudinal outcome given the random effects is

f Yi
o bi; θ = exp −log 2π Si/2

−log Vi /2 − Yi
o − μi

TVi
−1 Yi

o − μi /2 ,

where μi = Xiβ + Zibi and Vi = σϵ
2ISi × Si

. The observed data likelihood contribution from the 

dropout time given the random effects is
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f Si = j − 1 bi; θ

=

λi1 when j − 1 = 1

λi, j − 1∏l = 1
j − 2 1 − λil when 1 < j − 1 < M

∏l = 1
j − 2 1 − λil when j − 1 = M

(4)

Recall the density f (bi; θ) is N (0, Σb). We follow Daniels and Zhao (2003) and use the 

modified Cholesky decomposition to parameterize Σb such that positive definiteness is 

guaranteed for Σb. In the HERS analysis in Section 3, we assume bi = (bi1, bi2)T, where bi1 

is a random intercept and bi2 is a random slope. Then bi can be written in two parts: bi1 = 

ei1, bi2 = δbi1 + ei2. The first equation corresponds to the marginal distribution of the random 

intercept, and the second equation describes the conditional distribution of the random slope 

given the random intercept. Let σ1
2 and σ2

2 be the variances of ei1 and ei2, respectively. Then 

the covariance matrix Σb can be written as

Σb =
σ1

2 δσ1
2

δσ1
2 δ2σ1

2 + σ2
2 .

We provide details of the prior specification and posterior inference in the context of the 

HERS analysis in Section 3.

2.4 Default extrapolation distribution under the SPM

To derive the default extrapolation distribution of the missing outcome Yik (k = j, … , M) 

after dropout at visit j − 1, we first need to derive the conditional distribution of the random 

effects bi, given the observed data Yi1, … , Yi,j−1, Si = j − 1, and Hi,j−1. Here Hi,j−1 is the 

collection of the history of the corresponding covariates xi, j − 1, zi, j − 1, xS, i, j − 1, Wi, j − 1 up 

to visit j −1 (an overbar represents the history of a process). The conditional density of bi 

given the observed data is

f bi Y i1, …, Y i, j − 1, Si = j − 1, Hi, j − 1

∝ f bi; θ f Y i1, …, Y i, j − 1 Hi, j − 1, bi; θ λi, j − 1 ∏
l = 1

j − 2
1 − λil .

(5)

This conditional density is a member of the class of multivariate skew-normal distribution 

described in González-Farías et al. (2004) and Arnold (2009). Details of the proof for this 

distribution can be found in supporting information.

Recall that the missing outcome Yik (k = j, … , M) after dropping out at visit j −1 is assumed 

to follow the regression model of the form Y ik = xik
T β + zik

T bi + ϵik in (1) with the error term 
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assumed to be independent of the random effects and covariates. Given the additive property 

of the multivariate skew-normal distribution (González-Farías et al., 2004), the conditional 

distribution of Yik given the observed data, Yi1, … , Yi,j−1, Si, Hik, xik and zik, can also be 

shown to follow a skew-normal distribution; see details in supporting information. This 

conditional distribution for Yik is the default extrapolation distribution under the specified 

SPM. Given the model parameters and covariates, sampling from this extrapolation 

distribution can proceed by separately drawing from the conditional distribution of bi given 

the observed data and from the distribution of ϵik and then computing xik
T β + zik

T bi + ϵik .

2.5 Sensitivity analysis for the SPM

Without loss of generality, we let zik = (1, tik)T and then bi = (bi1, bi2)T represents the 

random intercept and random slope. In the sensitivity analysis, the model for Yik (k = j, … , 

M) after dropout at visit j − 1 is assumed to follow a piece-wise linear model

Y ik = xik
T β + bi1 + bi2tik + Δi tik − ti, j − 1 + + ϵik, (6)

where (x)+ = x if x > 0 and 0 otherwise. Note that (bi1, bi2)T in (6) follows the distribution in 

(5). Δi is the change of the slope for the i-th patient after dropout at visit j −1 (i.e., deviation 

from the random slope bi2; see Figure 1), which can depend on the observed data of the i-th 

patient; when Δi = 0 for all i we obtain the default extrapolation distribution. For example, 

let

Δi = a M − Si / M − 1 σbi2
, (7)

where a is the sensitivity parameter and σbi2 = {Var(bi2 | Yi1, … , Yi,j−1, Si = j − 1, 

Hi,j−1)}1/2 is the standard deviation of the random slope given the observed data of the i-th 

patient. When Si = M, the patient has complete data, therefore no adjustment for the slope 

bi2 is made and Δi = 0. Δi is proportional to (M − Si)/(M − 1), which allows more adjustment 

of the random slope made for earlier dropout because these patients might have more severe 

disease progression than what is characterized by the random effects. In particular, when Si 

= 1 and the patient drops out right after baseline, the adjustment is the largest with Δi = 

aσbi2, i.e., a times standard deviation of the random slope given the observed data of the i-th 

patient. If Si = M −1 and the patient almost completes the study except for the last scheduled 

visit, the adjustment is only a/(M − 1) times standard deviation of the random slope given 

the observed data. We specify Δi to be proportional to σbi2 to allow for the adjustment 

calibrated to the observed outcome variation given the individual characteristics of a specific 

patient. Note that Δi implicitly depends on the covariates because σbi2 is the posterior 

standard deviation of the random slope conditional on all observed data (including the 

covariates). Therefore, implicitly the approach allows interactions between Δi and the 

covariates. Finally, a is a single sensitivity parameter that controls the overall deviation of 

the individual longitudinal profiles after dropout from the default extrapolations under the 

SPM for the study sub-population with dropout.
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Within the Bayesian framework, we can specify a prior for a. For example, in the HERS 

example in Section 3, we believe that patients can have more rapidly decreasing CD4 count 

profiles after dropout, therefore a is assumed to follow a triangular distribution with the 

range [−2, 0] and the mode at −1. Thus we expect at most a two-standard-deviation 

downward change for the slope for the earliest dropouts and overall the change is centered at 

one standard deviation. When possible, the prior for the global sensitivity parameter a should 

be elicited from expert opinion (or historical information).

Sampling from the extrapolation distribution in the sensitivity analysis requires calculation 

of σbi2. In supporting information, we show that this standard deviation is a function of the 

model parameters and observed data. We then calculate Δi in (7), given the sensitivity 

parameter, and use the model in (6) to sample from the extrapolation distribution.

To assess the impact of the sensitivity parameter on the final inference, we use Monte Carlo 

integration (i.e., G-computation) to calculate the predicted means of the longitudinal 

outcome and summarize the marginal covariate effects on these predicted means for both the 

fitted SPM and sensitivity analysis. Specifically, the steps are:

1. Draw a sample from the prior for the sensitivity parameter a.

2. Draw a sample of (Yi, Si) based on the specified SPM, a specific set of covariate 

values, and a single set of posterior samples of the model parameters.

3. Yi is truncated at Si to obtain the replicated observed longitudinal data vector Yi
o.

4. If Si < M, then sample the missing outcomes from the default extrapolation 

distribution under the SPM and from the extrapolation distribution based on the 

model (6) and the current sample of a.

5. Repeat Steps 2–4 for 100N times. Note that the size of the Monte Carlo samples 

needs to be large relative to the sample size N. Here we follow Linero and 

Daniels (2018) and use 100 times the sample size.

6. Calculate summaries of all longitudinal outcome samples, e.g., average changes 

of longitudinal outcomes from baseline to specific follow-up visits.

7. Repeat Steps 2–6 for other sets of covariate values and calculate baseline 

covariate effects on the longitudinal data summaries in Step 6 using contrasts 

between covariate groups.

8. Repeat Steps 1–7 for the entire set of posterior samples of model parameters, and 

summarize the posterior distribution of the baseline covariate effects obtained in 

Step 7.

3 Application to the HERS Data

In this section, we implement the proposed approach to the HERS data. Of the 850 women 

who were HIV-positive and had CD4 count data at baseline, we exclude 23 women from the 

analysis because their baseline covariate data were missing. The dropout time is treated as 

discrete and set as the number of the last follow-up visit. For those women who finished 12 
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scheduled visits, their dropout times are treated as administratively censored at visit 12. 

During the follow-up, 566 (7.6%) CD4 count measurements were intermittently missing 

before the patients’ dropout or the end of study. We assume that this intermittent 

missingness is latent ignorable (Harel and Schafer, 2009). That is, given the observed 

outcomes, random effects, dropout time, and covariates, the intermittent missingness is 

ignorable.

3.1 Fitted model

Following the previous analysis of the HERS data (Hogan et al., 2004), we assume a linear 

mixed model for the complete longitudinal measurements of CD4 count as follows,

Y i j = xi j
T β + bi1 + bi2 j * + ϵi j , (8)

where Yij is the square root of CD4 count at visit j after standardization by taking (y − 18)/7 

and xij is the covariate vector, including the visit j* = (j − 1)/11, indicator variables for HIV 

viral load group (0, 500], (500, 5000], (5000, 30, 000] (copies/ml) at baseline, indicator of 

antiretroviral therapy (ART) at baseline, HIV symptomatology (presence of HIV-related 

symptoms on a scale from 0 to 5) at baseline and the interactions between time (visit) and 

these baseline covariates. bi1 and bi2 are random intercept and slope, respectively, and they 

follow the multivariate normal distribution with mean zero and covariance Σb, as 

parameterized by the modified Cholesky decomposition. The error term follows 

ϵi j ∼i . i . d . N 0, σϵ
2 , which is independent of the random effects.

Based on some preliminary data exploration, we specify the following probit model for the 

discrete hazard for the dropout time,

λi, j − 1 = P Si = j − 1 Si ≥ j − 1, xS, i, j − 1, bi1, bi2

= 1 − Φ xS, i, j − 1
T α + γ1bi1 + γ2bi2 ,

(9)

where j − 1 = 1, … , M − 1, the covariate vector xS,i,j−1 includes indicators of baseline HIV 

viral load groups, HIV symptomatology at baseline, indicator of ART at baseline, (j − 1)* = 

(j − 2)/11 and {(j − 1)*}2 (to account for the change in the discrete-time hazards over time), 

and the interaction between ART and time (j − 1)*. The specification of the functional forms 

of the random effects in (9) is based on the belief that patients who had higher CD4 count 

levels at baseline (i.e., intercept) and/or who showed lower decreasing rates in their 

longitudinal CD4 count profiles (i.e., time slopes) are less likely to drop out.

3.2 Priors and posterior inference

Independent normal priors N (0, 100) are assigned to β and the parameter δ in Σb. For 

parameters in (9), we assign weakly informative N (0, 4) priors to α, γ1 and γ2. For variance 

component parameters, we assign the prior σϵ
2 ∼ Inverse-Gamma(0.001, 0.001) and σk ~ 
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Uniform(0, 5) (k = 1, 2) for Σb. We run three MCMC chains with diverse initial values using 

the WinBUGS package (Spiegelhalter et al., 2003) and assess convergence within a 5000-

iteration burn-in period using trace plots and Gelman and Rubin convergence statistics. The 

computation time is about 3.5 h on a Windows server with 2.60 GHz CPU (4 processors) 

and 128 GB memory when parallelizing the chains, which can be reduced if using 

MultiBUGS (Goudie et al., 2017), the newly released parallelized version of WinBUGS. 

After convergence, pooled posterior samples of size 9000 (after thinning by 5) are used for 

model inference.

3.3 Model assessment

To assess the fit of the SPM to the observed data, we use posterior predictive checks, 

specifically the χ2 discrepancy statistics described in Gelman et al. (1996) with replicated 

observed data, as recommended in Daniels et al. (2012) and Xu et al. (2016). Detailed steps 

can be found in supporting information. The posterior probability that the χ2 statistic is 

larger than the observed χ2 statistic is 0.212, which does not indicate lack of fit of our SPM 

to the observed HERS data.

3.4 Posterior inference

The posterior summaries for the parameters in the SPM are presented in Table 1. For 

comparison, we also fit a linear mixed model (LMM) that has the same form as in (8) but 

assumes ignorability of the dropout time and a PMM that was described in Hogan et al. 

(2004). Details for the PMM can be found in supporting information.

The estimated main effect of time (posterior mean) from the SPM is −1.21 (95% credible 

interval (CI) =[−1.59, −0.84]), which is larger in magnitude than the estimate from the LMM 

under the ignorability assumption. The primary difference between the LMM and SPM 

analyses is that the LMM assumes that those who dropped out from the study had similar 

longitudinal CD4 profiles (intercept and time slopes) as those that did not, given past 

observed longitudinal data and covariates. However, from Table 1 it is clear that patients 

who dropped out early tended to have larger declines in CD4 count over time (γ2 = 0.28 

(95% CI =[0.22, 0.35])). As a result, the time slope under ignorability may be 

underestimated (with less steep decline). Similarly, the SPM estimates show larger 

differences in the slope of CD4 count within baseline viral load groups, while results for the 

dropout model in Table 1 indicate that the hazard of dropout is higher for those with higher 

baseline HIV viral load. Nevertheless, due to the unverifiable assumption on the 

extrapolation distribution in the SPM, it is essential to conduct sensitivity analysis to check 

the impact on the final inference for the covariate effects in the HERS population.

3.5 Sensitivity analysis

For sensitivity analysis, we use the specification for Δi as in (7) and assume that the 

sensitivity parameter a follows a triangular distribution with the range [−2, 0] and the mode 

at −1. Because we standardized the visit number j in (8), the missing outcome Yik (k = j, … , 

12) after dropout at visit j − 1 has the following form, 

Y ik = xik
T β + bi1 + bi2k * + Δi k * − ( j − 1) * + + ϵik, where * stands for standardization by 
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taking (x − 1)/11. Sampling from this distribution then follows the procedure as described in 

Section 2.5.

To summarize the covariate effects, we use the G-computation procedure described in 

Section 2.5. For presentation purpose, we fix the value of baseline HIV symptoms at zero 

and focus on the effects of baseline HIV viral load and ART treatment groups.

Sampling from the extrapolation distribution in the sensitivity analysis involves evaluating 

the posterior standard deviation of the random slope given the observed data, σbi2, for each 

G-computation sample. In supporting information, it can be seen that these evaluations 

require numerous calculations of multivariate normal probabilities, which slow down the 

overall G-computation when the dimension of the multivariate normal is high (up to 11 in 

the HERS example). To speed up the G-computation for the HERS analysis, we approximate 

σbi2 using the average estimated posterior standard deviations of the random slopes for all 

HERS patients within each of the 8 covariate groups defined by the baseline viral load level, 

ART status and HIV symptoms. More details about the approximation of σbi2 can be found 

in supporting information. We use n = 82, 700 Monte Carlo samples for each covariate 

group given a set of posterior samples of model parameters. The G-computation is 

parallelized for 320 sets of posterior samples of the model parameters using the ‘parallel’ 

package in R on high performance clusters. It takes less than 2 h to finish the G-computation 

for a set of posterior samples. This can be further reduced if the Monte Carlo samples for 

each posterior sample are divided into blocks for parallelization.

Note that the marginal covariate effects in the sensitivity analysis no longer follow a linear 

form as in the fitted SPM, i.e., there are interactions between covariates. Therefore we 

provide the effects of baseline viral load level given the ART status, and also the effects of 

ART status given the baseline viral load level, on the changes of mean CD4 counts from 

baseline to visits 6 and 12 in Figure 2. The top of Figure 2 shows the differences of the mean 

CD4 count changes between three baseline viral load groups and the reference group 

(>30,000), given the ART status. The estimated viral load effects in the sensitivity analysis 

are all larger than those in the SPM. This is because the mean CD4 counts are adjusted 

downwards in the sensitivity analysis compared with the SPM estimates, and the adjustment 

is biggest for the group with highest viral load (reference group) which was more likely to 

drop out. As a result, conclusions about the viral load effects differ in the two analyses. For 

example, in both analyses the viral load (5000, 30, 000] group is associated with smaller 

decreases in mean CD4 counts from baseline to visits 6 and 12, compared with the highest 

viral load group. But in the sensitivity analysis, the 95% CIs for these effects no longer cover 

zero, unlike in the SPM. Similarly, conclusions about the effects of the ART status also 

differ between the two analyses. For example, the effects of the ART status (the bottom of 

Figure 2) have been reduced in the sensitivity analysis, in particular, the 95% CIs for the 

ART effects in the higher viral load groups ((5000, 30, 000], >30,000), now cover zero.

Overall, despite these differences, it appears that the conclusions of the covariate effects 

from the SPM are not overly sensitive to the deviations considered here. For example, given 

other baseline covariates, patients with higher baseline viral load had larger decreases of 

Su et al. Page 11

Biometrics. Author manuscript; available in PMC 2019 September 11.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



mean CD4 counts compared with patients with lower baseline viral load. This is also 

consistent with the findings from the PMM; see details in supporting information.

4 Conclusion and Discussion

In this article we proposed a new sensitivity analysis approach for informative dropout using 

SPMs. The distinctive feature of our approach is that the inference for observed data is not 

influenced by the global sensitivity parameter, which follows the principle as proposed by 

Daniels and Hogan (2008) in a full probability model based setting. We showed that the 

default extrapolation distribution under the SPM specified here is available in a closed form. 

Therefore it is convenient to anchor our sensitivity analysis at this default extrapolation 

distribution. In addition, using the HERS data, we demonstrated that the deviation of the 

extrapolation distribution specified in the sensitivity analysis from the default can be 

calibrated using the observed data for each patient who dropped out.

Sensitivity analysis approaches for informative dropout based on selection models and 

PMMs have also been proposed in the literature. In selection models, the sensitivity 

parameter is specified in the selection function (e.g., the regression coefficients in the 

dropout model). However, with parametric models for the longitudinal outcome and the 

selection function, altering the sensitivity parameter in the selection function will also affect 

the model fit to the observed data, which is not consistent with the principle of sensitivity 

analyses (Daniels and Hogan, 2008). Since SPMs are also parametric, we anchor our 

sensitivity analysis at the extrapolation distribution of the missing outcomes, not at the 

selection function, similarly to the sensitivity analysis approach based on PMMs. We 

provide a more detailed discussion on sensitivity analysis based on PMMs in supporting 

information.

Because we specified a piece-wise linear model for the individual longitudinal profile and 

the random intercept bi1 reflects the CD4 count level at baseline of the HERS where data are 

complete, we did not connect bi1 to the sensitivity parameter. However, if we follow the 

approach in Linero and Daniels (2015), we can specify the sensitivity parameter to represent 

a location shift from bi1 + bi2t, where t is a time point after dropout. This location-shift 

model can also be used in a SPM with informative intermittent missing data, where the 

series of missing data indicators are modeled using a probit model. It is straightforward to 

show that the default extrapolation distribution under this SPM is also skew-normal that 

depends on all observed outcome data (not only the observed outcome data up to the current 

visit with the intermittent missing data), covariates, and model parameters. The sensitivity 

analysis can again be anchored at this default extrapolation distribution and we then specify 

a location shift model for the deviation from the default extrapolation distribution that is 

again controlled by a global sensitivity parameter. The final inference under the SPM and 

sensitivity analysis can be provided through G-computation.

Using a probit model for the discrete hazard of dropout, the SPM used in our approach 

benefits from a closed form of the default extrapolation distribution. The probit link used in 

the dropout model not only facilitates sensitivity analysis, but also naturally reflects the 

assumption that the discrete hazard of dropout depends on the normally distributed random 

Su et al. Page 12

Biometrics. Author manuscript; available in PMC 2019 September 11.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



effects that characterize underlying individual longitudinal profiles. Other models, e.g., 

logistic models, can also be used in a SPM. However, in such models, the default 

extrapolation distributions are not available in closed forms. To approximate them, we can 

first sample the posterior distribution of the random effects using the Metropolis–Hastings 

algorithm and then sample the missing outcomes using the longitudinal model specified in 

the SPM and the samples of random effects and other model parameters. This is similar to 

the algorithm used for dynamic predictions based on SPMs described in Rizopoulos (2011).

The general approach for sensitivity analysis proposed here is similar in spirit to the 

framework proposed by Linero and Daniels (2015) and Linero (2017), where a flexible 

‘working model’ for the joint distribution of the complete longitudinal outcomes and the 

dropout time is specified and identifying restrictions are then applied when performing 

sensitivity analyses with the extrapolation distribution. The typical SPM can be thought of as 

the ‘working model’ described in these articles. Here, however, we recommend performing 

sensitivity analysis grounded off the extrapolation distribution from the ‘working model’, 

unlike anchoring at the MAR restrictions as done in Linero and Daniels (2015) and Linero 

(2017).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Graphical illustration of the default extrapolation under a typical SPM and the possible 

extrapolation under the proposed sensitivity analysis.
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Figure 2. 
Results (posterior means and 95% credible intervals) for marginal covariate effects on 

changes of mean square root CD4 counts from baseline to visits 6 and 12 in the HERS 

analysis. Top: baseline viral load effects on mean CD4 count changes, given baseline ART 

status. Bottom: baseline ART status effects on mean CD4 count changes, given baseline 

viral load levels. Solid lines (—–): 95% credible intervals under the default extrapolation 

distribution of the SPM; dashed lines (- - - - -): 95% credible intervals under the 

extrapolation distribution in the sensitivity analysis. The estimated effects with 95% credible 

intervals covering zero and not covering zero are in gray and black, respectively.
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Table 1
Posterior mean and 95% credible intervals of the model parameters in the SPM and the 
LMM fitted to the HERS data.

  SPM   LMM

  Longitudinal   Dropout   Longitudinal

Mean 2.5% 97.5% Mean 2.5% 97.5% Mean 2.5% 97.5%

Intercept −0.55 −0.75 −0.36 1.11 0.91 1.32 −0.57 −0.75 −0.38

Baseline HIV viral load

    0–500 1.52 1.32 1.74 0.75 0.54 0.97 1.54 1.33 1.74

    500–5k 1.02 0.82 1.22 0.63 0.44 0.83 1.03 0.83 1.21

    5k–30k 0.47 0.26 0.70 0.26 0.05 0.47 0.48 0.26 0.69

    30k+ (reference)

Baseline HIV symptoms −0.02 −0.07 0.03 −0.01 −0.06 0.05 −0.03 −0.08 0.03

ART at baseline −0.65 −0.77 −0.53 −0.22 −0.40 −0.04 −0.66 −0.77 −0.55

(j − 1)* – – – 1.67 1.09 2.28 – – –

{(j − 1)*}2 – – – −2.79 −3.41 −2.16 – – –

(j − 1)**ART at baseline – – – 0.37 0.04 0.70 – – –

Time (visit) −1.21 −1.59 −0.84 – – – −0.91 −1.29 −0.54

Time*baseline viral load

   0–500 0.59 0.21 1.00 – – – 0.37 −0.03 0.78

   500–5k 0.53 0.15 0.91 – – – 0.35 −0.03 0.74

   5k–30k 0.37 −0.06 0.79 – – – 0.25 −0.16 0.67

   30k+ (reference) – – –

Time*baseline HIV symptoms −0.06 −0.15 0.04 – – – −0.04 −0.14 0.05

Time*ART at baseline 0.21 0.01 0.40 – – – 0.25 0.06 0.43

corr(bi1, bi2) −0.20 −0.29 −0.13 – – – −0.23 −0.31 −0.14

var(bi1) 0.56 0.50 0.62 – – – 0.56 0.50 0.62

var(bi2) 1.24 1.07 1.44 – – – 1.12 0.97 1.29

σϵ
2

0.15 0.14 0.16 – – – 0.15 0.14 0.16

γ1 – – – 0.23 0.15 0.30 – – –

γ2 – – – 0.28 0.22 0.35 – – –
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