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Abstract

Computational formulations for large strain, polyconvex, nearly incompressible elasticity have 

been extensively studied, but research on enhancing solution schemes that offer better tradeoffs 

between accuracy, robustness, and computational efficiency remains to be highly relevant.

In this paper, we present two methods to overcome locking phenomena, one based on a 

displacement-pressure formulation using a stable finite element pairing with bubble functions, and 

another one using a simple pressure-projection stabilized ℙ1 − ℙ1 finite element pair. A key 

advantage is the versatility of the proposed methods: with minor adjustments they are applicable to 

all kinds of finite elements and generalize easily to transient dynamics. The proposed methods are 

compared to and verified with standard benchmarks previously reported in the literature. 

Benchmark results demonstrate that both approaches provide a robust and computationally 

efficient way of simulating nearly and fully incompressible materials.
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1 Introduction

Locking phenomena, caused by ill-conditioned global stiffness matrices in finite element 

analyses, are an often observed and extensively studied issue when modeling nearly 

incompressible, hyperelastic materials [10, 18, 46, 84, 87]. Typically, methods based on 

Lagrange multipliers are applied to enforce incompressibility. A common approach is the 

split of the deformation gradient into a volumetric and an isochoric part [38]. Here, locking 
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commonly arises when unstable standard displacement formulations are used that rely on 

linear shape functions to approximate the displacement field u and piecewise-constant finite 

elements combined with static condensation of the hydrostatic pressure p, e.g., ℙ1 − ℙ0 

elements. It is well known that in such cases solution algorithms may exhibit very low 

convergence rates and that variables of interest such as stresses can be inaccurate [41].

From mathematical theory it is well known that approximation spaces for the primal variable 

u and p have to be well chosen to fulfill the Ladyzhenskaya-Babuŝka–Brezzi (LBB) or inf-
sup condition [9, 19, 26] to guarantee stability. A classical stable approximation pair is the 

Taylor–Hood element [78], however, this requires quadratic ansatz functions for the 

displacement part. For certain types of problems higher order interpolations can improve 

efficiency as higher accuracy is already reached with coarser discretizations [25, 57]. In 

many applications though, where geometries are fitted to, e.g., capture fine structural 

features, this is not beneficial due to a possible increase in degrees of freedom and 

consequently a higher computational burden. Also for coupled problems such as 

electromechanical or fluid-structure-interaction models high-resolution grids for mechanical 

problems are sometimes required when interpolations between grids are not desired [5, 51]. 

As a remedy for these kind of applications quasi Taylor–Hood elements with an order of 3
2

have been considered, see [62], as well as equal order linear pairs of ansatz functions which 

has been a field of intensive research in the last decades, see [7, 48] and references therein. 

Unfortunately, equal order pairings do not fulfill the LBB conditions and hence a 

stabilization of the element is of crucial importance. There is a significant body of literature 

devoted to stabilized finite elements for the Stokes and Navier–Stokes equations. Many of 

those methods were extended to incompressible elasticity, amongst other approaches by 

Hughes, Franca, Balestra, and collaborators [39, 47]. Masud and co-authors followed an idea 

by means of variational multiscale (VMS) methods [58, 59, 60, 85], a technique that was 

recently extended to dynamic problems (D-VMS) [71, 66]. Further stabilizations of equal 

order finite elements include orthogonal sub-scale methods [27, 30, 54, 24] and methods 

based on pressure projections [33, 86]. Different classes of methods to avoid locking for 

nearly incompressible elasticity were conceived by introducing nonconforming finite 

elements such as the Crouzeix–Raviart element [32, 37] and Discontinuous Galerkin 

methods [49, 80]. Enhanced strain formulations [63, 79] have been considered as well as 

formulations based on multi-field variational principles [17, 68, 69].

In this study we introduce a novel variant of the MINI element for accurately solving nearly 

and fully incompressible elasticity problems. The MINI element was originally established 

for computational fluid dynamics problems [3] and pure tetrahedral meshes and previously 

used in the large strain regime, e.g. in [25, 55]. We extend the MINI element definition for 

hexahedral meshes by introducing two bubble functions in the element and provide a novel 

proof of stability and well-posedness in the case of linear elasticity. The support of the 

bubble functions is restricted to the element and can thus be eliminated from the system 

using static condensation. This also allows for a straightforward inclusion in combination 

with existing finite element codes since all required implementations are purely on the 

element level. Additionally, we introduce a pressure-projection stabilization method 

originally published for the Stokes equations [14, 33] and previously used for large strain 
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nearly incompressible elasticity in the field of particle finite element methods and plasticity 

[65, 22]. Due to its simplicity, this type of stabilization is especially attractive from an 

implementation point of view.

Robustness and performance of both the MINI element and the pressure-projection approach 

are verified and compared to standard benchmarks reported previously in literature. A key 

advantage of the proposed methods is their high versatility: first, they are readily applicable 

to nearly and fully incompressible solid mechanics; second, with little adjustments the 

stabilization techniques can be applied to all kinds of finite elements, in this study we 

investigate the performance for hexahedral and tetrahedral meshes; and third, the methods 

generalize easily to transient dynamics.

Real world applications often require highly-resolved meshes and thus efficient and 

massively parallel solution algorithms for the linearized system of equations become an 

important factor to deal with the resulting computational load. We solve the arising saddle-

point systems by using a GMRES method with a block preconditioner based on an algebraic 

multigrid (AMG) approach. Extending our previous implementations [5] we performed the 

numerical simulations with the software Cardiac Arrhythmia Research Package (CARP) 

[82] which relies on the MPI based library PETSc [12] and the incorporated solver suite 

hypre/BoomerAMG [43]. The combination of these advanced solving algorithms with the 

proposed stable elements which only rely on linear shape functions proves to be very 
efficient and renders feasible simulations on grids with high structural detail.

The paper is outlined as follows: Section 2 summarizes in brief the background on the 

methods. In Section 3, we introduce the finite element discretization and discuss stability. 

Subsequently, Section 4 documents benchmark problems where our proposed elements are 

applied and compared to results published in the literature. Finally, Section 5 concludes the 

paper with a discussion of the results and a brief summary.

2 Continuum mechanics

2.1 Nearly incompressible nonlinear elasticity

Let Ω0 ⊂ ℝ3 denote the reference configuration and let Ωt ⊂ ℝ3 denote the current 

configuration of the domain of interest. Assume that the boundary of Ω0 is decomposed into 

∂Ω0 = ΓD,0 ∪ ΓN,0 with |ΓD,0| > 0. Here, ΓD,0 describes the Dirichlet part of the boundary 

and ΓN,0 describes the Neumann part of the boundary, respectively. Further, let n0 be the unit 

outward normal on ∂Ω0. The nonlinear mapping ϕ : X ∈ Ω0 → x ∈ Ωt, defined by ϕ ≔ X + 

u(X, t), with displacement u, maps points in the reference configuration to points in the 

current configuration. Following standard notation we introduce the deformation gradient F 
and the Jacobian J as

F: = Grad ϕ = I + Grad u, J : = det(F),

and the left Cauchy-Green tensor as C ≔ F⊤F. Here, Grad(•) denotes the gradient with 

respect to the reference coordinates X ∈ Ω0. The displacement field u is sought as infimizer 

of the functional
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Πtot(u): = Π(u) + Πext(u),

Π(u): = ∫
Ω0

Ψ (F(u)) dX,

Πext(u): = − ρ0∫
Ω0

f(x) ⋅ u dX − ∫
ΓN, 0

h(x) ⋅ u dsX,

(1)

over all admissible fields u with u = gD on ΓD,0, where, Ψ denotes the strain energy 

function; ρ0 denotes the material density in reference configuration; f denotes a volumetric 

body force; gD denotes a given boundary displacement; and h denotes a given surface 

traction. For ease of presentation it is assumed that ρ0 is constant and f, gD, and h do not 

depend on u. Existence of infimizers is, under suitable assumptions, guaranteed by the 

pioneering works of Ball, see [13].

In this study we consider nearly incompressible materials, meaning that J ≈ 1. A possibility 

to model this behavior was originally proposed by Flory [38] using a split of the deformation 

gradient F such that

F = FvolF . (2)

Here, Fvol describes the volumetric change while F describes the isochoric change. By 

setting Fvol: = J
1
3 I and F: = J

− 1
3F we get det(F) = 1 and det(Fvol) = J. Analogously, by 

setting Cvol: = J
2
3 I and C: = J

− 2
3C, we have C = CvolC . Assuming a hyperelastic material, 

the Flory split also postulates an additive decomposition of the strain energy function

Ψ = Ψ (C) = Ψ (C) + κU(J), (3)

where κ is the bulk modulus. The function U(J) acts as a penalization of incompressibility 

and we require that it is strictly convex and twice continuously differentiable. Additionally, a 

constitutive model for U(J) should fulfill that (i) it vanishes in the reference configuration 

and that (ii) an infinite amount of energy is required to shrink the body to a point or to 

expand it indefinitely, i.e.,

(i) U(1) = 0, (ii) lim
J 0 +

U(J) = ∞, lim
J ∞

U(J) = ∞ .

For the remainder of this work we will focus on functions U(J) that can be written as

U(J): = 1
2(Θ(J))2 .

In the literature many different choices for the function Θ(J) are proposed, see, e.g., [34, 42, 

66] for examples and related discussion.
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As we also want to study the case of full incompressibility, meaning κ → ∞, we need a 

reformulation of the system. In this work we will use a perturbed Lagrange-multiplier 

functional, see [77, 4, 21] for details, and we introduce

ΠPL(u, q): = ∫
Ω0

Ψ (C(u)) + qΘ(J(u)) − 1
2κ q2 dX .

We will now seek infimizers (u, p) ∈ VgD × Q of the modified functional

Πtot(u, q): = ΠPL(u, q) + Πext(u) . (4)

To guarantee that the discretization of (4) is well defined, we assume that

VgD
= {v ∈ [H1(Ω0)]3:v |ΓD, 0

= gD},

with H1(Ω0) being the standard Sobolev space consisting of all square integrable functions 

with square integrable gradient, and Q = L2(Ω0). Existence of infimizers in VgD cannot be 

guaranteed in general. However, assuming suitable growth conditions on the strain energy 

function Ψ, and assuming that the initial data keeps the material in the hyperelastic range, 

one can conclude that the space V for the infimizer u contains VgD as a subset, see [13] for 

details.

To solve for the infimizers of (4) we require to compute the variations of (4) with respect to 

Δu and Δp

DΔvΠPL(u, p) = ∫
Ω0

(Sisc + pSvol): Σ (u, Δv) dX − ρ0∫
Ω0

f ⋅ Δv dX

− ∫
ΓN, 0

h ⋅ Δv dsX,
(5)

DΔqΠPL(u, p) = ∫
Ω0

Θ(J) − 1
κ p Δq dX,

(6)

with abbreviations as, e.g., in [45]

Sisc: = J
− 2

3Dev(S), where S: = ∂Ψ (C)
∂C

(7)

Svol: = π(J)C−1, with π(J): = JΘ′(J), (8)
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Σ (u, v): = sym(F⊤(u) Grad v) . (9)

Next, with notations

aisc(u; Δv): = ∫
Ω0

Sisc(u): Σ (u, Δv) dX,
(10)

avol(u, p; Δv): = ∫
Ω0

pSvol(u): Σ (u, Δv) dX,
(11)

bvol(u; Δq): = ∫
Ω0

Θ(J(u))Δq dX,
(12)

c(p, Δq): = 1
κ∫

Ω0

pΔq dX,
(13)

lbody(Δv): = ρ0∫
Ω0

f ⋅ Δv dX,
(14)

lsurface(Δv): = ∫
ΓN, 0

h ⋅ Δv dsX,
(15)

Rupper(u, p; Δv): = aisc(u; Δv) + avol(u, p; Δv) − lbody(Δv) − lsurface(Δv), (16)

Rlower(u, p; Δq): = bvol(u; Δq) − c(p, Δq), (17)

we formulate the mixed boundary value problem of nearly incompressible nonlinear 

elasticity via a nonlinear system of equations. This yields a nonlinear saddle-point problem, 

find (u, p) ∈ VgD × Q such that

Rupper(u, p; Δv) = 0, (18)

Rlower(u, p; Δq) = 0, (19)

for all (Δv, Δq) ∈ V0 × Q.
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2.2 Consistent linearization

To solve the nonlinear variational equations (18)–(19), with a finite element approach we 

first apply a Newton–Raphson scheme, for details we refer to [31]. Given a nonlinear and 

continuously differentiable operator F : X → Y a solution to F(x) = 0 can be approximated 

by

xk + 1 = xk + Δx,

∂F
∂x x = xkΔx = − F(xk),

which is looped until convergence. In our case, we have X = VgD ×Q, Y = ℝ2, Δx = (Δu, 

Δp)⊤, xk = (uk, pk)⊤, and F = (Rupper, Rlower)⊤. We obtain the following linear saddle-point 

problem for each (uk, pk) ∈ VgD × Q, find (Δu, Δp) ∈ V0 × Q such that

ak(Δu, Δv) + bk(Δp, Δv) = − Rupper(uk, pk; Δv), (20)

bk(Δq, Δu) − c(Δp, Δq) = − Rlower(uk, pk; Δq), (21)

where

ak(Δu, Δv) : = ∫
Ω0

Grad Δv Stot, k : Grad Δu dX

+∫
Ω0

Σ (uk, Δv) : ℂtot, k : Σ (uk, Δu) dX,

bk(Δp, Δv) : = ∫
Ω0

Δpπ(Jk)Fk
−⊤ : Grad Δv dX,

with abbreviations

Fk: = F(uk),
Jk: = det(Fk),

Stot, k: = Sisc u = uk
+ pk Svol u = uk

,
(22)

ℂtot, k : = ℂisc u = uk
+ pk ℂvol u = uk

,

ℂvol : = k(J)C−1 ⊗ C−1 − 2π(J)C−1 ⊙ C−1,

k(J): = J2Θ″(J) + JΘ′(J),

(23)
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where ℂisc is given in (57). The derivation of the consistent linearization is lengthy but 

standard, we refer to [45, Chapter 8] for details. The definition of the higher order tensor and 

other abbreviations are given in the Appendix.

2.3 Review on solvability of the linearized problem

Since (20)–(21) is a linear saddle-point problem for each given (uk, pk) we can rely on the 

well-established Babuška–Brezzi theory, see [15, 36, 67, 70]. The crucial properties to 

guarantee that the problem (20)–(21) is well-posed are continuity of all involved bilinear 

forms and the following three conditions:

(i) The inf-sup condition: there exists c1 > 0 such that

inf
q ∈ Q

sup
v ∈ V0

bk(q, v)

v V0
q

Q

≥ c1 .
(24)

(ii) The coercivity on the kernel condition: there exists c2 > 0 such that

ak(v, v) ≥ c2 v V0
2 for all v ∈ ker B, (25)

where

ker B : = v ∈ V0 : bk(q, v) = 0 for all q ∈ Q .

(iii) Positivity of c: it holds

c(q, q) ≥ 0 for all q ∈ Q . (26)

Upon observing that F−⊤ : Grad v = div v, see [45], we rewrite the bilinear form bk(q, v) as

bk(q, v) = ∫
Ω0

qπ(Jk)Fk
− ⊤ : Grad v dX

= ∫
Ω0

qπ(Jk) div v dX

= ∫
Ωt

qΘ′(Jk) div v dx

(27)

Assuming that Θ′(J) ≥ 1, we can conclude the inf-sup condition from standard arguments, 

see [83, Section 5.2]. The positivity of the bilinear form c is always fulfilled. However, it is 

not possible to show the coercivity condition (25) for a general hyperelastic material or load 

configuration. Nevertheless, for some special cases it is possible to establish a result. We 

refer to [83, 8, 6] for a more detailed discussion. Henceforth, we will assume that our given 
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input data is such that we stay in the range of stability of the problem. Examples for cases in 

which bilinear form ak lacks coercivity can be found in [83, Chapter 9] and [6, Section 4].

3 Finite element approximation and stabilization

Let h be a finite element partitioning of Ω into sub-domains, in our case either tetrahedral 

or convex hexahedral elements. The partitioning is assumed to fulfill standard regularity 

conditions, see [29]. Let K be the reference element, and for K ∈ h denote by FK the 

affine, or trilinear mapping from K onto K. We assume that FK is a bijection. For a 

tetrahedral element K this can be assured whenever K is non-degenerate, however, for 

hexahedral elements this may not necessary be the case, see [53] for details. Further, let 𝕍
and 𝕐  denote two polynomial spaces defined over K . We denote by

Vh, 0: = v ∈ H0
1(Ω0):v = v ∘ FK

−1, v ∈ [𝕍]3, ∀K ∈ 𝒯h , (28)

Qh: = q ∈ L2(Ω0): p = p ∘ FK
−1, p ∈ 𝕐 , ∀K ∈ 𝒯h , (29)

Vh, gD
: = HgD

1 (Ω0) ∩ Vh, 0, (30)

the spaces needed for further analysis in the following sections.

3.1 Nearly incompressible linear elasticity [16, 72, 73]

As a model problem we study the well-known equations for nearly incompressible linear 

elasticity. In this case it is assumed that Ω ≔ Ω0 ≈ Ωt. Then, the linear elasticity problem 

reads: find (u, p) ∈ VgD × Q such that

2μ∫
Ω

ε(u):ε(v) dx + ∫
Ω

p div v dx = ∫
Ω

f⋅v dx (31)

∫
Ω

div uq dx − 1
λ∫

Ω

pq dx = 0 (32)

for all (v, q) ∈ V0 × Q. Here, μ > 0 and λ denote the Lamé parameters, and ε(v) ≔ sym(grad 

v).

The regularity of (31)–(32) is a classical result [75] and follows with the same arguments as 

for the Stokes equations. The discretized analogue of (31)–(32) is: find (uh, ph) ∈ Vh, gD × 

Qh such that

2μ∫
Ω

ε(uh):ε(vh) dx +∫
Ω

ph div vh dx = ∫
Ω

f ⋅ vh dx (33)
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∫
Ω

div uh qh dx − 1
λ∫

Ω

ph qh dx = 0 (34)

for all (vh, qh) ∈ Vh,0 × Qh. Coercivity on the kernel condition (25) is a standard result for 

the case of nearly incompressible linear elasticity posed in the form (31)-(32) and (33)-(34). 

In the nonlinear case this is not true in general and will be adressed in Section 3.4. The 

crucial point for checking well-posedness of the discrete equations (33)–(34) is the 

fulfillment of the discrete inf-sup condition, reading

inf
qh ∈ Qh

sup
vh ∈ Vh, 0

∫
Ω

qh div vh dx

∥ vh ∥V0
∥ qh ∥ Q > 0. (35)

The discrete inf-sup condition puts constraints on the choice of the spaces Vh,0 and Qh. A 

finite element pairing fulfilling (35) is called a stable pair. A classic example for tetrahedral 

meshes would be the Taylor–Hood element. In this paper, we will focus on two different 

finite element pairings, the MINI element and a stabilized equal order element. The 

stabilized equal order pairing has been used in this context for pure tetrahedral meshes, see 

[22, 65]. To the best of the authors knowledge those elements have not been used in the 

present context for general tesselations.

3.2 The pressure-projection stabilized equal order pair

In the following, we present a stabilized lowest equal order finite element pairing, adapted to 

nonlinear elasticity from the pairing originally introduced by Dohrmann and Bochev [33] 

and Bochev et al. [14] for the Stokes equations.

We choose 𝕍  and 𝕐  in (28)–(29) as the space of linear (or trilinear) functions over K . This 

choice of spaces is a textbook example of an unstable element, however, following [33], we 

can introduce a stabilized formulation of (33)–(34) by: find (uh, ph) ∈ Vh,gD × Qh such that

μ∫
Ω

ε(uh):ε(vh) dx + ∫
Ω

ph div vh dx = ∫
Ω

f ⋅ vh dx, (36)

∫
Ω

div uhqh dx − 1
λ∫

Ω

phqh dx − 1
μ *sh(ph, qh) = 0, (37)

for all (vh, qh) ∈ Vh,0 × Qh, where

sh(ph, qh): = ∫
Ω

(ph − Πh ph)(qh − Πh qh) dx (38)
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and μ* > 0 a suitable parameter. We note that the integral in (38) has to be understood as 

sum over integrals of elements of the tessellation. The projection operator Πh is defined 

element-wise for each K ∈ h

Πhph K : = 1
K ∫

K
ph dx .

We can state the following results for this discrete problem:

Theorem 1 There exists a unique bounded solution to the discrete problem (36).

Theorem 2 Assume that u ∈ [HgD
1 (Ω)]3 ∩ [H2(Ω)]3 and p ∈ L2(Ω) ∩ H1(Ω) solve the problem 

(31)–(32). Further, assume that (uh, ph) are the solutions to the stabilized problem (36). Then 
there exists a constant c3 independent of the mesh size h and it holds:

∥ u − uh ∥V + ∥ p − ph ∥Q ≤ c3h( ∥ u ∥
H2(Ω)

+ ∥ p ∥
H1(Ω)

) (39)

Proof Due to the similarity of the linear elasticity and the Stokes problem the proof follows 

from [14, Theorem 4.1, Theorem 5.1 and Corollary 5.2].

3.3 Discretization with MINI-elements

3.3.1 Tetrahedral elements—One of the earliest strategies in constructing a stable 

finite element pairing for discrete saddle-point problems arising from Stokes Equations is 

the MINI-Element, dating back to the works of Brezzi et al, see for example [3, 20]. In the 

case of Stokes the velocity ansatz space is enriched by suitable polynomial bubble functions. 

More precisely, if we denote by ℙ1 the space of polynomials with degree ≤ 1 over the 

reference tetrahedron K, we will choose

𝕍 = ℙ1 ⊕ ψB ,

𝕐 = ℙ1,

ψB: = 256ξ0ξ1ξ2 1 − ξ0 − ξ1 − ξ2 ,

where ξ0, ξ1, ξ2 ∈ K, see also [15]. Classical results [15] guarantee the stability of the MINI-

Element for tetrahedral meshes. Due to compact support of the bubble functions, static 

condensation can be applied to remove the interior degrees of freedom during assembly. A 

short review on the static condensation process is given in the Appendix. Hence, these 

degrees of freedom are not needed to be considered in the full global stiffness matrix 

assembly which is a key advantage of the MINI element.

3.3.2 Hexahedral meshes—In the literature mostly two dimensional quadrilateral 

tessellations, see for example [15, 11, 56], were considered for MINI element 

discretizations. In this case, the proof of stability relies on the so-called macro-element 
technique proposed by Stenberg [76].
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To motivate our novel ansatz for hexahedral bubble functions, we will first give an overview 

of Stenbergs main results. A macro-element M is a connected set of elements in h. 

Moreover, two macro-elements M1 and M2 are said to be equivalent if and only if they can 

be mapped continuously onto each other. Additionally, for a macro element M we define the 

spaces

V0, M: = v ∈ H0
1 M 3:v = v ∘ FK

−1, v ∈ 𝕍 3, K ⊂ M ,

PM: = p ∈ L2 M : p = p ∘ FK
−1, p ∈ 𝕐 , K ⊂ M ,

NM: = p ∈ PM:∫
M

p div v dx = 0, ∀v ∈ V0, M .

(40)

Denote by Γh the set of all edges in h interior to Ω. The macro-element partition ℳh of Ω 
then consists of a (not necessarily disjoint) partitioning into macro-elements Mi i = 1

M  with 

Ω = ∪i = 1
M Mi . The macro element technique is then described by the following theorem, see 

[76].

Theorem 3 Suppose that there is a fixed set of equivalence classes ℰj, j = 1, . . . , q, of 
macro-elements, a positive integer L, and a macro-element partition ℳh such that

(M1) for each Mi ∈ ℰj, j = 1, . . . , q, the space NM is one-dimensional consisting of 
functions that are constant on M;

(M2) each M ∈ ℳh belongs to one of the classes ℰi, i = 1, 2, . . . , q;

(M3) each K ∈ h is contained in at least one and not more than L macro-elements of 
ℳh;

(M4) each E ∈ Γh is contained in the interior of at least one and not more than L 
macro-elements of ℳh.

Then the discrete inf-sup-condition (35) holds.

Conditions (M2)–(M4) are valid for a quasi-uniform tessellation of Ω into hexahedral 

elements and, thus, it remains to show (M1). To this end, we consider a macro-element Mi ∈ 
ℳh consisting of eight hexahedrons that share a common vertex xi ∈ Ω, see Figure 1. A 

macro-element partitioning of this type fulfills conditions (M1)–(M3) from Theorem 3. We 

will next show, that Assumption (M1) depends on the choice of the bubble functions inside 

every K ∈ Mi. For ease of presentation and with no loss of generality we will assume that Mi 

is a parallelepiped. This means that the mapping FMi from K onto Mi is affine, so there exists 

an invertible matrix Ji ∈ ℝ3×3 such that

x = FMi
ξ = Ji ξ + x0,

where ξ ∈ K = [ − 1, 1]3 and x0 is a given node of Mi. The case of Mi not being the image of 

an affine mapping of K can be handled analogously, however, there are constraints on the 
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invertibility of FMi, see [53]. Let ψ j j = 1
8

 denote the standard trilinear basis functions on the 

unit hexahedron. These functions will serve as a basis for PMi. For the space V0,Mi we will 

chose one piecewise continuous trilinear ansatz function defined in xi and for each sub-

hexahedron we will add two bubble functions as degrees of freedom. The distribution of the 

degrees of freedom is depicted in Figure 2. On K we will define the following two bubble 

functions

ϕB
1 : = 1 − ξ0

2 1 − ξ1
2 1 − ξ2

2ψα, (41)

ϕB
1 : = 1 − ξ0

2 1 − ξ1
2 1 − ξ2

2ψ β, (42)

where the indices α, β are chosen such that ψα and ψ β are two ansatz functions belonging to 

two diagonally opposite nodes. Having this, we will form a basis for V0,Mi by gluing 

together the images of the basis functions of each sub-hexahedron. So we can write a basis 

for V0,Mi as

V0, Mi
: = span ψxi

, ϕB, 1
1 , ϕB, 2

1 , …, ϕB, 1
8 , ϕB, 2

8 ,

V0, Mi
: = V0, Mi

3
.

(43)

Here, ψxi corresponds to a piecewise trilinear ansatz function that has unit value in xi and 

zero in all other nodes of Mi. Thus, we can calculate that dim(PMi) = 27 and dim(V0,Mi) = 

51. For ease of presentation we will rename the elements of (43) as ϕi i = 1
17 . Now, for qh ∈ 

PMi and vh ∈ V0,Mi we can write

∫
Mi

qhdiv vh dx = ∑
k = 1

17
∑

l = 1

27
∑

j = 1

3
vk

jql∫
Mi

gradx ϕk j ψl dx .

Next, we use the chain rule to get gradxϕk = Ji
− ⊤gradξ and a change of variables to obtain

∑
k = 1

17
∑

l = 1

27
∑

j = 1

3
vk

j ql∫
Mi

gradx ϕk j ψl dx,

= ∑
k = 1

17
∑

l = 1

27
∑

j = 1

3
vk

j ql∫
K

Ji
− ⊤gradξϕk j ψ j det Ji d ξ .

This means we can find a matrix D ∈ ℝ27 × 51 such that
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∫
Mi

qh div vh dx = q⊤Dv,

where q and v encode the nodal values of qh and vh. The following ordering will be 

employed for v

v = v1
1, v1

2, v1
3, … , v17

1 , v17
2 , v17

3 ⊤ .

To proof (M1) we need to show that the rank of the matrix D is 26. Due to the invertibility of 

Ji the rank of the matrix D will remain unchanged by replacing Mi by K . Thus, it suffices to 

compute the rank of the matrix D whose jth row is defined by

∫
K

∂ξ1
ϕ1ψ1d ξ ,∫

K

∂ξ2
ϕ1ψ1d ξ ,∫

K

∂ξ3
ϕ1ψ1d ξ ,

, … ,

∫
K

∂ξ1
ϕ17ψ jd ξ ,∫

K

∂ξ2
ϕ17ψ jd ξ ,∫

K

∂ξ3
ϕ17ψ jd ξ .

By this formula the matrix D can be explicitly calculated, e.g., by using software packages 

like Mathematica™ and further analyzed. We can conclude that the rank of D is 26 and thus 

(M1) holds and we can apply Theorem 3. A Mathematica™ notebook containing 

computations discussed in this section is available upon request.

Remark 1 Contrary to the two-dimensional case studied in [11, 56] it is not sufficient to 

enrich the standard isoparametric finite element space for hexahedrons with only one bubble 

function. In this case both the spaces V0,Mi and PMi have a dimension of 27, however, matrix 

D has only rank 24.

Remark 2 Although not mentioned explicity, the stability of the MINI element holds also for 

mixed discretizations.

3.4 Changes and limitations in the nonlinear case

One of the main differences between the linear and nonlinear case stems from the definition 

of the pressure p as remarked in [16]. Consider, as an example, the strain energy function for 

a nearly incompressible neo-Hookean material where

Ψ C : = μ
2 tr C − 3 ,

with μ > 0 a material parameter. Then, Stot and ℂtot, evaluated at (uk, pk) = (0, 0), are given 

by
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Stot = 0, ℂtot = 2μI ⊙ I − 2μ
3 I ⊗ I,

independent of the choice of Θ(J). Assuming that Ω ≔ Ω0 ≈ Ωt we obtain from Eqs. (20)–

(21) the following linear system

2μ∫
Ω

εd u :εd v dx + ∫
Ω

p div v dx = ∫
Ω

f · v dx, (44)

∫
Ω

div uq dx − 1
κ∫

Ω

pq dx = 0, (45)

where εd u : = ε u − 1
3div u I . While the pressure in formulation (31)–(32) is usually 

denoted as Herrmann pressure [44], above formulation (44)–(45) uses the so-called 

hydrostatic pressure.

The arguments to prove the inf-suf condition for this linear problem remains the same as for 

(31)–(32). For the extension of the inf-suf condition to the nonlinear case we already stated 

earlier in Eq. (27) that

bk qh, vh = ∫
Ωt, h

qhΘ′ Jh div vh dx .

Here, Ωt,h is the approximation of the real current configuration Ωt. Our conjecture is that 

stability of the chosen elements is given provided sufficient fine discretizations and 

volumetric functions Θ(J) fulfilling Θ′(J) ≥ 1. However, we can not offer a rigorous proof of 

this, and rely on our numerical results which showed no sign of numerical instabilities.

Concerning well-posedness of (44)–(45), it was noted in [16], that the coercivity on the 

kernel condition (25) does not hold in general, which makes the formulation with hydrostatic 

pressure not well-posed in general. However, it remains well-posed for strictly divergence-

free finite elements or pure Dirichlet boundary conditions. This has also been observed by 

other authors, see [52, 81]. Even if the coercivity on the kernel condition can be shown for 

the hydrostatic, nearly incompressible linear elastic case this result may not transfer to the 

nonlinear case. Here, this condition is highly dependent on the chosen nonlinear material 

law and for the presented benchmark examples (Section 4) we did not observe any 

numerical instabilities.

For an in-depth discussion we refer the interested reader to [6, 8]. A detailed discussion on 

Herrmann-type pressure in the nonlinear case is presented in [72, 73].
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To show well-posedness for the special case of the presented MINI element discretizations 

we rely on results given in [16, Section 4]. There it is shown, that discrete coercivity on the 

kernel holds, provided that a rigid body mode is the only function that renders

a uh, vh : = ∫
Ωh

εd uh :εd vh dx

from (44)–(45) zero. We could obtain this result following the same procedure outlined in 

[16] for both hexahedral and tetrahedral MINI elements. A Mathematica™ notebook 

containing the computations discussed is available upon request.

In the case of the pressure-projection stabilization we will modify Equation (17) using the 

stabilization term (38)

Rlower uh, ph; Δqh : = bvol uh; Δqh − c ph, Δqh − 1
μ*sh ph, qh .

Here, the stabilization parameter μ* > 0 is supposed to be large enough and will be 

specifically defined for each nonlinear material considered. Note, that by modifying the 

definition of the lower residual, we introduced a mesh dependent perturbation of the original 

residual. An estimate of the consistency error caused by this is not readily available and will 

be the topic of future research. However, results and comparisons to benchmarks in Section 

4 suggest that this error is negligible for the considered problems as long as μ* is well-

chosen. If not specified otherwise we chose

– μ* = μ for neo-Hookean materials and

– μ* = c1 for Mooney–Rivlin materials

in the results section. For the pressure-projection stabilized equal order pair we can not 

transfer the results from the linear elastic case to the non-linear case, as the proof of well-

posedness relies on the coercivity of ak(u, v) which can not be concluded for this 

formulation. However, no convergence issues occured in the numerical examples given in 

Section 4.

The considerable advantage of the MINI element is that there are no modifications needed 

and that no additional stabilization parameters are introduced into the system.

3.5 Changes and limitations in the transient case

The equations presented in Section 2 are not yet suitable for transient simulations. To 

include this feature we modify the nonlinear variational problem (18) in the following way:

Rupper
trans u, p; Δv : = ρ0∫

Ω0

ü ⋅ Δvdx + Rupper u, p; Δυ ,
(46)

Karabelas et al. Page 16

Comput Mech. Author manuscript; available in PMC 2020 January 23.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Rlower
trans u, p; Δq : = Rlower u, p; Δq . (47)

For time discretization we considered a generalized-α method, see [28] and also the 

Appendix for a short summary. Due to the selected formulation, the resulting ODE system 

turns out to be of degenerate hyperbolic type. Hence, we implemented a variant of the 

generalized-α method as proposed in [50] and using that we did not observe any numerical 

issues in our simulations. Note, that other groups have proposed a different treatment of the 

incompressibility constraints in the case of transient problems, see [66, 71] for details.

4 Numerical examples

While benchmark cases presented in this section are fairly simple, mechanical applications 

often require highly resolved meshes. Thus, efficient and massively parallel solution 

algorithms for the linearized system of equations become an important factor to deal with 

the resulting computational load. After discretization, at each Newton–Raphson step a block 

system of the form

Kh Bh
⊤

Bh Ch

Δu
Δp =

−Rupper
−Rlower

has to be solved. In that regard, we used a generalized minimal residual method (GMRES) 

and efficient preconditioning based on the PCFIELDSPLIT1 package from the library PETSc 
[12] and the incorporated solver suite hypre/BoomerAMG [43]. By extending our previous 

work [5] we implemented the methods in the finite element code Cardiac Arrhythmia 
Research Package (CARP) [82].

4.1 Analytic solution

To verify our implementation we consider a very simple uniaxial tension test, see also [83, 

Sec. 10.1]. The computational domain is described by one eighth part of a cylinder with 

length L = 2 mm, and radius R = 1 mm

Ωcyl, 0: = x ∈ 0, L × 0, R 2: y2 + z2 ≤ R ,

see Figure 3. This cylinder is stretched to a length of L + ΔL, with ΔL = 2 mm.

We chose a neo-Hookean material

Ψ C = μ
2 tr C − 3 + κ

2ln J 2,

with μ = 7.14 MPa and impose full incompressiblity, i.e., 1/κ = 0. For this special case, an 

analytic solution can be computed by

1https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCFIELDSPLIT.html
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u = tx, ΔR t y, ΔR t z ,

p t = μ
3 1 + tΔL

L
2

− 1 + tΔL
L

−1
,

ΔR t = 1 + tΔL
L

− 1
2 − 1,

where t ∈ [0, 1] corresponds to the load increment. Two meshes consisting of 5420 points 

and 4617 hexahedral or 27 702 tetrahedral elements were used. We performed 20 

incremental load steps with respect to ΔL. In Figure 4 it is shown that the results of the 

numerical simulations render identical results for all the chosen setups and are in perfect 

agreement with the exact solution plotted in blue.

4.2 Block under compression

The computational domain, studied by multiple authors, see, e.g., [23, 58, 64], consists of a 

cube loaded by an applied pressure in the center of the top face; see Figure 5. A quarter of 

the cube is modeled, where symmetric Dirichlet boundary conditions are applied to the 

vertical faces and the top face is fixed in the horizontal plane.

The same neo-Hookean material model as in [58] is used:

Ψ C = 1
2 μ tr C − 3 − μ ln J + λ

2 ln J 2,

with material parameters λ = 400 889.806 MPa, μ = 80.194 MPa. To test mesh convergence 

the simulations were computed on a series of uniformly refined tetrahedral and hexahedral 

meshes, see Table 1. Figure 7 shows the deformed meshes for the level ℓ = 2 with loads p0 = 

320 MPa and p0 = 640 MPa, respectively. In all cases discussed in this section we used 10 

loading steps to arrive at the target pressure p0. As a measure of the compression level the 

vertical displacement of the node at the center of the top surface, i.e. the edge point A of the 

quarter of the cube, is plotted in Figure 6. Small discrepancies can be attributed to 

differences in the meshes for tetrahedral and hexahedral grids, however, the different 

stabilization techniques yield almost the same results for finer grids. Note, that the 

displacements at the edge point A obtained using the simple ℚ1 – ℙ0 hexahedral and ℙ1 – 

ℙ0 tetrahedral elements seem to be in a similar range compared to the other approaches. The 

overall displacement field, however, was totally inaccurate rendering ℚ1 –ℙ0 and ℙ1 – ℙ0 

elements an inadequate choice for this benchmark problem. The solution for Taylor–Hood 

(ℙ2 – ℙ1) tetrahedral elements was obtained using the FEniCS project [2]. Here, as a linear 

solver, we used a GMRES solver with preconditioning similar to the MINI and projection-

based approach, see first paragraph of Section 4. The PCFIELDSPLIT and hypre/
BoomerAMG settings were slightly adapted to optimize computational performance for 

quadratic ansatz functions. We comparing simulations with about the same number of 

degrees of freedom, not accuracy as, e.g., in [25]. For coarser grids computational times 

were in the same time range for all approaches; see, e.g., the cases with approximately 106 

degrees of freedom and target pressure of p0 = 320 mmHg in Table 2(a). For the simulations 
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with the finest grids with approximately 107 degrees of freedom, however, we could not find 

a setting for the Taylor–Hood elements that was competitive to MINI and pressure-

projection stabilizations. The computational times to arrive at the target pressure of p0 = 320 

mmHg using 192 cores on ARCHER, UK were about 10 times higher for Taylor–Hood 

elements using FEniCS, see Table 2(b). We attribute that to a higher communication load 

and higher memory requirements of the Taylor–Hood elements: memory to store the block 

stiffness matrices was approximately 2.5 times higher for Taylor–Hood elements compared 

to MINI and projection-stabilization approaches (measured using the MatGetInfo2 

function provided by PETSc). Note, that although we used the same linear solvers, the time 

comparisons are not totally just as results were obtained using two different finite element 

solvers, CARP and FEniCS. Note also, that timings are usually very problem dependent and 

for this block under compression benchmark high accuracy was already achieved with 

coarse grids for hexahedral and Taylor–Hood discretizations.

For a further analysis regarding computational costs of the MINI element and the pressure-

projection stabilization, see Section 4.4.

In Figure 8 the hydrostatic pressure is plotted for the MINI element and the projection-based 

stabilization. These results are very smooth in all cases and agree well with those published 

in [23, 35, 58, 64].

4.3 Cook-type cantilever problem

In this section, we analyze the same Cook-type cantilever beam problem presented in [17, 

69], see also Figure 9. Displacements at the plane x = 0 mm are fixed. At the plane x = 48 

mm a parabolic load, which takes its maximum at t0 = 300 kPa, is applied. Note, that this in-

plane shear force in y-direction is considered as a dead load in the deformation process. To 

compare to results in [69] the same isotropic strain energy function was chosen

Ψ iso C = c1 tr C 2 + c2( tr C 2 − tr C2 )2 − γ ln J ,

with material properties c1 = 21 kPa, c2 = 42 kPa, and γ = 12c1 + 24c2 to satisfy the 

condition of a stress-free reference geometry.

We chose a fully incompressible material, hence,

Ψvol C = κ
2 J − 1 2,

with 1/κ = 0. First, mesh convergence with respect to resulting displacements is analyzed for 

the tetrahedral and hexahedral meshes with discretization details given in Table 3.

Displacements ux, uy, and uz at point C are shown in Figure 10. The proposed stabilization 

techniques give comparable displacements in all three directions and also match results 

2https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/MatGetInfo.html
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published in [17, 69]. Mesh convergence can also be observed for the stresses σxx at point A 
and B and σyy at point B, see Figure 11. Again, results match well those presented in [17, 

69]. Small discrepancies can be attributed to the fully incompressible formulation used in 

our work and differences in grid construction.

In Figure 12 and Figure 13(a) the distribution of J = det(F) is shown to provide an estimate 

of how accurately the incompressibility constraint is fulfilled by the proposed stabilization 

techniques. For most parts of the computational domains the values of J are close to 1, 

however, hexahedral meshes and here in particular the MINI element maintain the condition 

of J ≈ 1 more accurately on the element level. Note, that for all discretizations the overall 

volume of the cantilever remained unchanged at 14 400 mm3, rendering the material fully 

incompressible on the domain level.

Figure 13 gives a comparison of several computed values in the deformed configuration of 

Cook’s cantilever for the finest grids (ℓ = 4). Slight pressure oscillations in Figure 13(b) on 

the domain boundary for the MINI element are to be expected, see [74]; this also affects the 

distribution of J in Figure 13(a). A similar checkerboard pattern is present for the projection 

based stabilization.

In the third row of Figure 13 we compare the stresses σxx for the different stabilization 

techniques. We can observe slight oscillations for the the projection-based approach, 

whereas the MINI element gives a smoother solution. Compared to results in [69, Figure 10] 

the σxx stresses have a similar contour but are slightly higher. As before, we attribute that to 

the fully incompressible formulation in our paper compared to the quasi-incompressible 

formulation in [69].

4.4 Twisting column test

Finally, we show the applicability of our stabilization techniques for the transient problem of 

a twisting column [1, 40, 71]. The initial configuration of the geometry is depicted in Figure 

14. There is no load prescribed and the column is restrained against motion at its base. A 

twisting motion is applied to the domain by means of the following initial condition on the 

velocity

v x, 0 = v x, y, z, 0 = 100sin πy
12 z, 0, − x ⊤m/s,

for y ∈ [0, 6] m. To avoid symmetries in the problem the column is rotated about the z-axes 

by an angle of θ = 5.2°.

We chose the neo-Hookean strain-energy

Ψ C = μ
2 tr C − 3 + κ

2 J − 1 2,

with parameters μ = 5704.7 kPa and κ = 283 333 kPa for the nearly incompressible and 1/κ 
= 0 for the truly incompressible case. For the results presented, we considered hexahedral 

and tetrahedral meshes with five levels of refinement, respectively; for discretization details 
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of the column meshes see Table 4. In Figure 15, mesh convergence with respect to tip 

displacement (ux, uy, uz) at point D is analyzed. While differences at lower levels of 

refinement ℓ = 1, 2 are severe, the displacements converge for higher levels of refinement ℓ = 

3, 4, 5. For finer grids the curves for tetrahedral and hexahedral elements are almost 

indistinguishable, see also Figure 16, and the results are in good agreement with those 

presented in [71]. While this figure was produced using MINI elements we also observed a 

similar behavior of mesh convergence for the projection-based stabilization. In fact, for the 

finest grid, all the proposed stabilization techniques and elements gave virtually identical 

results, see Figure 16. Further, as already observed by Scovazzi et al. [71], the fully and 

nearly incompressible formulations gave almost identical deformations, see Figure 17.

In Figure 18 stress σyy and pressure p contours are plotted on the deformed configuration for 

the incompressible case at time instant t = 0.3 s. Minor pressure oscillations can be observed 

for tetrahedral elements. Again, results match well those presented in [71, Figure 22].

Finally, in Figure 19, we compare the magnitude of velocity and acceleration at time instant 

t = 0.3 s. Results for these variables are very smooth and hardly distinguishable for all the 

different approaches.

The computational costs for this nonlinear elasticity problem were significant due to the 

required solution of a saddle-point problem in each Newton step and a large number of time 

steps. However, this challenge can be addressed by using a massively parallel iterative 

solving method and exploiting potential of modern HPC hardware. The most expensive 

simulations were the fully incompressible cases for the finest grids with a total of 840 708 

degrees of freedom and 400 time steps. These computations were executed at the national 

HPC computing facility ARCHER in the United Kingdom using 96 cores. Computational 

times were as follows: 239 min for tetrahedral meshes and projection-based stabilization; 

283 min for tetrahedral meshes and MINI elements; 449 min for hexahedral meshes and 

projection-based stabilization; and 752.5 min for hexahedral meshes and MINI elements. 

Simulation times for nearly incompressible problems were lower, ranging from 177 to 492 

min. This is due to the additional matrix on the lower-right side of the block stiffness matrix 

which led to a smaller number of linear iterations. Simulations with hexahedral meshes 

were, in general, computationally more expensive compared to simulations with tetrahedral 

grids; the reason beeing mainly a higher number of linear iterations. Computational burden 

for MINI elements was larger due to higher matrix assembly times. However, this assembly 

time is highly scalable as there is almost no communication cost involved in this process.

5 Conclusion

In this study we described methodology for modeling nearly and fully incompressible solid 

mechanics for a large variety of different scenarios. A stable MINI element was presented 

which can serve as an excellent choice for applied problems where the use of higher order 

element types is not desired, e.g., due to fitting accuracy of the problem domain. We also 

proposed an easily implementable and computationally cheap technique based on a local 

pressure projection. Both approaches can be applied to stationary as well as transient 

problems without modifications and perform excellent with both hexahedral and tetrahedral 
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grids. Both approaches allow a straightforward inclusion in combination with existing finite 

element codes since all required implementations are purely on the element level and are 

well-suited for simple single-core simulations as well as HPC computing. Numerical results 

demonstrate the robustness of the formulations, exhibiting a great accuracy for selected 

benchmark problems from the literature.

While the proposed projection method works well for relatively stiff materials as considered 

in this paper, the setting of the parameter μ* has to be adjusted for soft materials such as 

biological tissues. A further limitation is that both formulations render the need of solving a 

block system, which is computationally more demanding and suitable preconditioning is not 

trivial. However, the MINI element approach can be used without further tweaking of 

artificial stabilization coefficients and preliminary results suggested robustness, even for 

very soft materials. Consistent linearization as presented ensures that quadratic convergence 

of the Newton–Raphson algorithm was achieved for all the problems considered. Note that 

all computations for forming the tangent matrices and also the right hand side residual 

vectors are kept local to each element. This benefits scaling properties of parallel codes and 

also enables seamless implementation in standard finite element software.

The excellent performance of the methods along with their high versatility ensure that this 

framework serves as a solid platform for simulating nearly and fully incompressible 

phenomena in stationary and transient solid mechanics. In future studies, we plan to extend 

the formulation to anisotropic materials with stiff fibers as they appear for example in the 

simulation of cardiac tissue and arterial walls.
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Fig. 1. 
Macro-element definition for a mesh point xi.
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Fig. 2. 
Macro-element distribution of degrees of freedom for vh ∈ V0,M and qh ∈ PM. Small filled 

dots correspond to PM and bigger opaque circles correspond to V0,M.
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Fig. 3. 
Analytic solution: geometry and boundary conditions.
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Fig. 4. 
Analytic solution: (a) y-component of displacement and (b) pressure at point P = (2, 0, 1)⊤. 

Simulation results of all proposed formulations are in perfect alignment with the analytic 

solution printed in blue.
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Fig. 5. 
Block under compression: geometry and boundary conditions.
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Fig. 6. 
Block under compression: vertical displacement at point A versus number of degrees of 

freedom in a logarithmic scale at load level (a) p0 = 320 MPa and (b) p0 = 640 MPa. Results 

for the MINI element and the pressure-projection stabilization are compared to classical 

choices of elements, i.e., ℚ1 – ℙ0 hexahedral elements, ℙ1 – ℙ0 tetrahedral elements, and 

Taylor–Hood (ℙ2 – ℙ1) tetrahedral elements. For case (b) the choice of ℚ1 – ℙ0 and ℙ1 – ℙ0 

elements did not give reasonable results and were thus omitted.
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Fig. 7. 
Block under compression: deformed meshes of hexahedral (a,b) and tetrahedral (c,d) 

elements for the ℓ = 2 mesh in Table 1 at load level p = 320 MPa (a,c) and load level p = 640 

MPa (b,d).

Karabelas et al. Page 33

Comput Mech. Author manuscript; available in PMC 2020 January 23.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Fig. 8. 
Block under compression: comparison of hexahedral (a,b) and tetrahedral (c,d) elements 

with bubble-based (a,c) and projection-based (b,d) stabilization. Shown is the pressure 

contour on the deformed mesh at load level p = 320 MPa in the first row and p = 640 MPa in 

the second row.
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Fig. 9. 
Cook-type cantilever problem: geometry and boundary conditions.
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Fig. 10. 
Cook-type cantilever problem: displacements ux, uy, and uz at point C versus the number of 

degrees of freedom in a logarithmic scale using the fully incompressible formulation.

Karabelas et al. Page 36

Comput Mech. Author manuscript; available in PMC 2020 January 23.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Fig. 11. 
Cook-type cantilever problem: stresses σxx at (left) point A and (middle) point B and σyy at 

(right) point B versus the number of degrees of freedom in a logarithmic scale using the 

fully incompressible formulation.
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Fig. 12. 
Cook-type cantilever problem: boxplots showing the distribution of J = det(F) for (a) 
hexahedral and (b) tetrahedral elements. Additionally, the minimal and maximal value, as 

well as the mean (μ) and the standard deviation (σ) is given for each setting.
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Fig. 13. 
Cook-type cantilever problem: comparison of hexahedral (a,c) and tetrahedral (b,d) elements 

with bubble-based (a,b) and projection-based (c,d) stabilization. Shown is the distribution of 

J = det(F) (first row); distribution of the hydrostatic pressure p (second row) in kPa; and the 

distribution of the stress σxx (third row) in kPa for the fully incompressible formulation.
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Fig. 14. 
Twisting column test: geometry and boundary conditions.

Karabelas et al. Page 40

Comput Mech. Author manuscript; available in PMC 2020 January 23.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Fig. 15. 
Twisting column test: mesh convergence for (A) hexahedral and (B) tetrahedral elements. 

Shown are displacements ux, uy, and uz at tip D versus time. For experiments depicted the 

incompressible formulation with MINI elements was chosen. At finer levels of refinement ℓ 
= 3, 4, 5 (in black) results converge to a solution for each displacement direction.
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Fig. 16. 
Twisting column test: comparison of stabilization techniques for the finest grids (ℓ = 5). 

Shown are displacements ux, uy, and uz at tip D versus time. Both MINI elements (dashed 

line) and projection-based stabilization (dashed lines) render almost identical results for 

hexahedral (in gray) and tetrahedral elements (in black).
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Fig. 17. 
Twisting column test: comparison of nearly and fully incompressible formulation for the 

finest tetrahedral grids (ℓ = 5) and MINI elements. Displacements ux, uy, and uz are almost 

identical for the whole simulation duration of 0.4 s.
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Fig. 18. 
Twisting column test: (a) stress σyy and (b) hydrostatic pressure p contours at time instant t 
= 0.3 s for the different grids and stabilization techniques.
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Fig. 19. 
Twisting column test: magnitude of (a) velocity v and (b) acceleration a at time instant t = 

0.3 s for the different grids and stabilization techniques.
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Table 1

Properties of cube meshes used in Section 4.2.

Hexahedral Meshes Tetrahedral Meshes

ℓ Elements Nodes ℓ Elements Nodes

1 512 729 1 3072 729

2 4096 4913 2 24 576 4913

3 32 768 35 937 3 196 608 35 937

4 262 144 274 625 4 1 572 864 274 625

5 2 097 152 2 146 689 5 12 582 912 2 146 689
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Table 2

Block under compression: Comparison of computational times for different discretizations. Timings were 

obtained using (a) 48 cores and (b) 192 cores on ARCHER, UK. Coarser grids, see Table 1, are used for 

Taylor–Hood elements ℙ2 – ℙ1 to compare computational times for a similar number of degrees of freedom 

(DOF).

(a)

Discretization Grid DOF Tet. Hex.

Projection ℓ = 4 1.098 Mio. 330 s 438 s

MINI ℓ = 4 1.098 Mio. 873 s 655 s

ℙ2 – ℙ1 ℓ = 3 0.860 Mio. 1202 s –

(b)

Discretization Grid DOF Tet. Hex.

Projection ℓ = 5 8.587 Mio. 2488 s 2192 s

MINI ℓ = 5 8.587 Mio. 3505 s 4640 s

ℙ2 – ℙ1 ℓ = 4 6.715 Mio. 27 154 s –
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Table 3

Properties of cantilever meshes used in Section 4.3.

Hexahedral Meshes Tetrahedral Meshes

ℓ Elements Nodes ℓ Elements Nodes

1 324 500 1 1944 500

2 2592 3249 2 15 552 3249

3 20 736 23 273 3 124 416 23 273

4 165 888 175 857 4 995 328 175 857
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Table 4

Properties of column meshes used in Section 4.4.

Hexahedral Meshes Tetrahedral Meshes

ℓ Elements Nodes ℓ Elements Nodes

1 48 117 1 240 117

2 384 625 2 1920 625

3 3072 3969 3 15 360 3969

4 24 576 28 033 4 122 880 28 033

5 196 608 210 177 5 983 040 210 177
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