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Abstract

Surveillance of drug-resistant bacteria is essential for healthcare providers to deliver effective 

empiric antibiotic therapy. However, traditional molecular epidemiology does not typically occur 

on a timescale that could impact patient treatment and outcomes. Here we present a method called 

‘genomic neighbor typing’ for inferring the phenotype of a bacterial sample by identifying its 

closest relatives in a database of genomes with metadata. We show that this technique can infer 

antibiotic susceptibility and resistance for both S. pneumoniae and N. gonorrhoeae. We 

implemented this with rapid k-mer matching, which, when used on Oxford Nanopore MinION 

data, can run in real time. This resulted in determination of resistance within ten minutes (sens/

spec 91%/100% for S. pneumoniae and 81%/100% for N. gonorrhoeae from isolates with a 

representative database) of sequencing starting, and for clinical metagenomic sputum samples 

(75%/100% for S. pneumoniae), within four hours of sample collection. This flexible approach has 

wide application to pathogen surveillance and may be used to greatly accelerate appropriate 

empirical antibiotic treatment.

Introduction

Infections pose multiple challenges to healthcare systems, contributing to higher mortality, 

morbidity, and escalating cost. Clinicians must regularly make rapid decisions on empiric 

antibiotic treatment of infectious syndromes without knowing the causative pathogen(s) or 

whether they are drug-susceptible or drug-resistant. In some cases, this is directly linked to 

poor outcomes; in the case of septic shock, the risk of death increases by an estimated 10% 

with every 60 minutes delay in initiating effective treatment1.

The molecular epidemiology of infectious disease allows us to identify high-risk pathogens 

and determine their patterns of spread, on the basis of their genetics or (increasingly) 

genomics. Conventionally such studies, including outbreak investigations and 

characterization of previously untested resistant strains, have been conducted in retrospect, 

but this has been changing with the availability of increasingly inexpensive sequencing 

technologies2,3. The wealth of data generated by genomics is promising but introduces a 

challenge: while many features of a sequence are correlated with the phenotype of interest, 

few are causative.

Prescription, however, has long been informed by correlative features when causative ones 

are difficult to measure, for example whether the same syndrome or pathogen occurring in 

other patients from the same clinical environment have responded to a particular antibiotic. 

This has also been observed at the genetic level as well, as a result of genetic linkage 

between resistance elements and the rest of the genome. An example is given by the 

pneumococcus (Streptococcus pneumoniae). The Centers for Disease Control have rated the 

threat level of drug-resistant pneumococcus as ‘serious’ 4. While resistance arises in 
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pneumococci through a variety of mechanisms, approximately 90% of the variance in the 

minimal inhibitory concentration (MIC) for antibiotics of different classes can be explained 

by the loci determining the strain type5, even though none of these loci themselves causes 

resistance. Thus, in the overwhelming majority of cases, resistance and susceptibility can be 

inferred from coarse strain typing based on population structure. This population structure 

could be leveraged to offer an alternative approach to detecting resistance in which rather 

than detecting high-risk genes, we identify high-risk strains. While many approaches have 

been developed to identify whether a pathogen carries mutations or genes known to confer 

resistance6,7,16–21,8–15 (see ref22 for a comprehensive review), this is not equivalent to the 

clinical question of whether the pathogen is susceptible.

We present a method called ‘genomic neighbor typing’ which can bring molecular 

epidemiology closer to the bedside and provide information relevant to treatment at a much 

earlier stage. Our method takes sequences generated from a sample in ‘real time’ and 

matches them to a database of genomes to identify the closest relatives. Because closely 

related isolates usually have similar properties, this yields an informed heuristic as to the 

pathogen’s phenotype. We demonstrate this by identifying drug-resistant and drug-

susceptible clones for both Streptococcus pneumoniae (the pneumococcus) and Neisseria 
gonorrhoeae (the gonococcus), within minutes after the start of sequencing using Oxford 

Nanopore Technology. The method has many potential applications, depending on the 

specific pathogen and quality of the databases available for matching, which we discuss 

together with its limitations.

Results

Resistance is associated with clones in S. pneumoniae and N. gonorrhoeae

To quantify the association of clones with antibiotic resistance of the pathogens S. 
pneumoniae and N. gonorrhoeae, we constructed optimal predictors of resistance from 

bacterial lineages and measured the associated Area under the Receiver Operation 

Characteristic Curve (AUC) (SI Fig. 1). First, we applied the method to 616 pneumococcal 

genomes from a carriage study in Massachusetts children23,24. Second, we used 1102 

clinical gonococcal isolates collected from 2000 to 2013 by the Centers for Disease Control 

and Prevention’s Gonococcal Isolate Surveillance Project25. In both cases, the datasets 

comprised draft genome assemblies from Illumina HiSeq reads, resistance data, and lineages 

inferred from sequence cluster computed using Bayesian Analysis of Population Structure 

(BAPS)26. Lineages of S. pneumoniae are predictive for benzylpenicillin, ceftriaxone, 

trimethoprim-sulfamethoxazole, erythromycin, and tetracycline resistance with AUC 

ranging from 0.90 to 0.97 (SI Fig. 2), consistent with previous works5. In N. gonorrhoeae, 

ciprofloxacin, ceftriaxone, and cefixime attained comparably large AUCs (from 0.93 to 

0.98) whereas azithromycin demonstrated lower association (AUC 0.80) (SI Fig. 3), as 

observed previously25.

Rapid identification of nearest known relative from sequencing reads

Based on the observed associations we developed an approach that we term ‘genomic 

neighbor typing’ to predict phenotype from sequencing data. Genomic neighbor typing is a 
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two-step algorithm, which first compares a provided sample to a database of reference 

genomes with a known phylogeny and phenotype, and then predicts the likely phenotype of 

the sample based on the best hits (nearest neighbors) and their matching quality. We apply 

this here to the detection of drug resistance.

To implement genomic neighbor typing we developed software called RASE (Resistance-

Associated Sequence Elements) (Fig. 1). RASE takes a stream of nanopore reads and 

compares their k-mer content to references using a modified version of ProPhyle27,28, a 

metagenomic classifier implementing a fast and memory-efficient exact colored de Bruijn 

graph data structure29 using a BWT index30 (Methods). Using ProPhyle RASE identifies 

which references are the most similar to the read and increases their similarity weights (this 

approach was inspired by but differs from other similar approaches such as Kraken31 and 

Kallisto32). These weights are cumulative scores capturing sample-to-reference similarity; 

they are set to zero at the beginning and are increased on-the-fly as sequencing proceeds 

according to each read’s ‘information content’ (Methods). Generally speaking, longer reads, 

such as those covering multiple accessory genes, tend to be specific and have high scores, 

whereas short reads or reads from the core genome are found in many lineages, tend to be 

non-specific and have low scores. Weights serve as a proxy to inverted genetic distance 

between the sample and the references.

Resistance or susceptibility is predicted in two steps based on the computed weights, the 

population structure, and the reference phenotypes. First, RASE identifies the lineage of the 

best matching reference genome and estimates the confidence of lineage assignment by 

comparing the two best matching lineages to compute a ‘lineage score’ (Methods). 

Subsequently, RASE identifies the best match within that lineage and predicts resistance 

from the nearest resistant and susceptible neighbors. Comparison of their weights provides a 

‘susceptibility score’, which quantifies the risk of resistance (Methods). When the weights 

are too similar, the call’s confidence is considered low; this happens when resistant and 

susceptible strains are insufficiently genetically distinct, which is often the case for 

resistance emerging recently in evolutionary history (Methods). The ability to pinpoint the 

closest relatives in the database offers further resolution, even in the case where the 

resistance phenotype varies within a lineage.

Results of RASE are reported in real time as the best match in the database, together with 

susceptibility scores to the antibiotics being tested and a proportion of matching k-mers for 

quality control. As the run progresses, the scores fluctuate and eventually stabilize (an 

example shown in Fig. 2).

RASE databases for hundreds of S. pneumoniae and N. gonorrhoeae strains

We constructed RASE databases for S. pneumoniae and N. gonorrhoeae from the same data 

as described above (Methods). We assigned each pneumococcal and gonococcal strains to an 

antibiotic-specific resistance categories using the European Committee on Antimicrobial 

Susceptibility Testing (EUCAST) breakpoints33 and the CDC Gonococcal Isolate 

Surveillance Project (GISP) breakpoints34, respectively (Methods). Where MIC data were 

unavailable or insufficiently specific, we estimated the likely resistance phenotype using 

ancestral state reconstruction (Methods, SI Note 1, Extended Data Fig. 3, and Extended Data 
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Fig. 4). To verify the results, we tested eight pneumococcal isolates for which resistance 

phenotypes were not originally available (Methods), and the measured MICs by 

microdilution matched the expected phenotypes (shown in bold in Table 1). We constructed 

the ProPhyle k-mer indexes with a k-mer length optimized to minimize prediction delays 

(k=18, Methods). The obtained pneumococcal and gonococcal RASE databases occupy 321 

MB and 242 MB RAM (4.3× and 12× compression rate) and can be further compressed for 

transmission to 47 MB and 32 MB (29× and 90x compression rate), respectively (Extended 

Data Fig. 1). This would allow RASE to be used on portable devices and its databases easily 

transmitted to the point of care over links with a limited bandwidth.

RASE identifies strains in the database within minutes

We first examined two pneumococcal isolates that were used to build the RASE database 

(Table 1a, sens/spec 100%/100%, n=10) to test RASE can function in ideal circumstances. 

In the case of a fully susceptible isolate (SP01), the correct lineage and sequenced strain 

were identified within 1 minute and 7 minutes respectively. A multidrug-resistant isolate 

(SP02) was predicted even faster, with both lineage and the sequenced strain correctly 

detected and stabilized within 1 minute. To compare with gene-based approaches for 

detecting resistance22 we evaluated how long it took for resistance genes to be sequenced on 

the device, and observed that at least 25 minutes would be needed for single copies to be 

detected (SI Note 2, Extended Data Fig. 2).

We then performed a similar evaluation with five gonococcal isolates from the database 

(Table 2a, sens/spec 57%/100%, n=20); however, here we selected more complicated cases. 

First, we tested a susceptible isolate (GC01), for which RASE identified the correct strain 

and antibiogram within 3 minutes of sequencing. We then sequenced an isolate with an 

uncommon mechanism of cephalosporin resistance that has emerged recently (GC02)35. 

Under such circumstances, the resistant strain and its susceptible neighbors tend to be 

genetically very similar, which could confound our analysis. However, RASE was still able 

to identify the correct resistance phenotypes in 9 minutes, with the delay being due to 

difficulty distinguishing between the close relatives, reflected also by a susceptibility score 

in the low-confidence range (Methods). This was repeated in further experiments with the 

same isolate (GC03) which consistently reported low confidence in resistance phenotype 

(Methods), which is a feature of our approach intended to draw operators’ attention and 

indicate that further testing is necessary. In this experiment, RASE also resolved sample 

mislabeling (SI Note 3). For a multidrug-resistant isolate (GC04) RASE predictions 

stabilized within 2 minutes but incorrectly predicted susceptibility to ceftriaxone. A 

subsequent analysis revealed that the ceftriaxone MIC of the sample was equal to the CDC 

GISP breakpoint (0.125 μg/mL), whereas the best match in the database had an MIC of 

0.062 μg/mL, within a single doubling dilution. We further found that RASE performed well 

even with extremely poor data and low-quality reads (GC05, SI Note 4). We also evaluated 

how genomic neighbor typing would perform if RASE used Kraken31 instead of 

ProPhyle27,28 (SI Note 5).
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RASE identifies the closest relative of previously untested isolates

We next examined four pneumococcal isolates (Table 1b, sens/spec 89%/100%, n=20) for 

which the serotype and limited antibiogram and lineage data were known. We compared 

three characteristics of the sample to assess our performance: the serotype, the MLST 

sequence type, and the antibiograms (benzylpenicillin, ceftriaxone, trimethoprim-

sulfamethoxazole, erythromycin, and tetracycline resistance according to the EUCAST 

breakpoints33).

In all cases, the closest relative was identified within 5 minutes, even if the correct MLST 

sequence type was absent from the RASE database (an example shown in Fig. 2). The two 

samples from the 23F clone (SP03 and SP06) were correctly called as being closely related 

to the Tennessee 23F-4 clone identified by PMEN, a clone strongly associated with 

macrolide resistance36. Consistent with this, the two samples were indeed resistant to 

erythromycin. However, the Tennessee 23F-4 clone was absent from the Massachusetts 

sample, with the best match being a comparatively distantly related strain that was penicillin 

resistant, but erythromycin susceptible. This illustrates the importance of a relevant 

database.

We evaluated RASE with 14 clinical gonococcal isolates from the RaDAR-Go project37 

(Switzerland, 2015–2016) (Table 2b, sens/spec 93%/100%, n=56). These isolates were 

previously sequenced using nanopore and have full antibiograms available38. The 55/56 

correct calls indicate the strength of the genomic neighbor typing in a clinical setting. The 

only incorrect call (susceptibility to azithromycin in GC15) was marked as being low-

confidence on the basis of a poor susceptibility score. It should be noted that the ranges for 

what is considered low-confidence could vary among settings and pathogens but can be 

empirically determined and modified by users. In this case our results suggest that 

informative results can be obtained even using a database from one region (the US) to 

predict phenotype in another (Europe). However, this may not be the case for all pathogens.

Inference is still informative but lower quality on highly divergent lineages

As noted above, an important precondition of genomic neighbor typing is a comprehensive 

and relevant reference database. To evaluate RASE performance in a setting with an 

incomplete database, we used the gonococcal WHO 2016 reference strain collection39. This 

includes a global collection of 14 diverse isolates from Europe, Asia, North America, and 

Australia, collected over two decades and exhibiting phenotypes ranging from pan-

susceptibility to multidrug resistance, and as such the GISP database is expected to be non-

representative in this study. The WHO strains are available from the National Collection of 

Type Cultures, and were previously sequenced using nanopore38 and genetically and 

phenotypically characterized39. Surprisingly, RASE correctly identified all MLST sequence 

types represented in the database and in 7 cases it provided fully correct resistance 

phenotypes (Supplementary Table 1, sens/spec 67%/91%, n=56). In 6/7 cases where the 

complete resistance profile was not recovered, the closest relatives were identified correctly 

but were genetically divergent from the query isolates (SI Note 6). In one case, the errors 

were due to a misidentification of the closest relatives by ProPhyle. Therefore, most 

prediction errors could be addressed with a more comprehensive database.
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RASE can identify resistance in pneumococcus from sputum metagenomic samples

Because bacterial culture and phenotyping via agar-dilution, Etest, or disk diffusion 

introduces significant delays in resistance profiling, direct metagenomic sequencing of 

clinical samples would be preferable for point-of-care use. We therefore analyzed 

metagenomic nanopore data from sputum samples obtained from patients suffering from 

lower respiratory tract infections40 (UK, 2017), selecting 6 samples from the study that were 

already known to contain S. pneumoniae (Table 1c, sens/spec 75%/100%, n=16).

One sample (SP10) contained DNA from multiple bacterial species. However, within 5 

minutes sequence was identified belonging to the Swedish 15A-25 clone (ST63) which is 

also known to be associated with resistance phenotypes including macrolides and 

tetracyclines41. This sample was confirmed to be resistant to erythromycin, as well as 

clindamycin, tetracycline and oxacillin according to the EUCAST breakpoints33. The 

original report of the Swedish 15A-25 clone did not report resistance to penicillin 

antibiotics41, which has subsequently emerged in this lineage. However, our database 

correctly identified the risk of penicillin resistance in this sample. The metagenomes SP11 

and SP12 contain an estimated >20% reads that matched to S. pneumoniae, and their 

serotypes were identified to be 15A and 3, respectively. The susceptibility scores of the best 

matches were fully consistent with the resistance profiles found in the samples, with the 

exception of tetracycline resistance in SP12 due to an incomplete database (SI Note 7). The 

last remaining samples, SP07–SP09, contained less than 5% unambiguously pneumococcal 

reads. Despite the low proportions, all predicted phenotypes were concordant with 

phenotypic tests, with the exception of SP07, which matched the same strain as SP12 

(discussed above).

Discussion

This paper presents a method that we term genomic neighbor typing to pinpoint the closest 

relatives of a query genome within a suitable database and then to infer the phenotypic 

properties of the query strain on the basis of the reported properties of its relatives. At 

present, the precise lineage of a bacterial pathogen is often determined after most important 

clinical decisions have been made. However, incorporating genomic neighbor typing at an 

earlier stage offers a way of leveraging bacterial population structure to gain information on 

resistance and susceptibility, and inform antimicrobial therapy. The results from the 

metagenomic samples suggest that it is possible to apply this approach directly to clinical 

samples, and the success with both S. pneumoniae and N. gonorrhoeae indicates that it may 

have wide application.

The two pathogens studied here present contrasting features; the gonococcus is Gram-

negative, harbors plasmids, and has a strikingly uniform core genome, while the 

pneumococcus is Gram-positive, does not contain plasmids and is diverse in both its core 

and accessory genome. Both exhibit high rates of homologous recombination, which is 

expected to both spread chromosomally encoded resistance elements and to scramble the 

phylogenetic signal that we use to identify the lineages. Despite these differences and the 

large degree of recombination, our approach performs well with both pathogens, with some 

differences that indicate opportunities and limitations for the application.
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The initial identification of the closest relative is consistently more robust in the 

pneumococcus than the gonococcus, as a result of the former having more k-mers that are 

specific to an individual lineage, reflecting greater sequence diversity. As a consequence of 

the much lower diversity in gonococcus, when multiple closely related genomes are present 

in the database, RASE fluctuates between them, even though it correctly identifies the region 

of the phylogeny. If these genomes vary in their resistance profile, this is properly reflected 

in an uncertain susceptibility score indicating that caution and further investigation are 

merited (e.g., GC03).

As in all inference, the principle limitation of genomic neighbor typing is the 

representativeness of the database. While we have made use of relatively small samples from 

limited geographic areas to demonstrate proof of principle, in practice there are multiple 

examples of large genome databases generated by public health agencies, which could be 

combined with metadata on resistance for genomic neighbor typing. Such databases could, if 

necessary, be supplemented with local sampling. The relevant question for our approach 

therefore becomes whether the database contains a sufficiently high proportion of strains 

that will be encountered in the clinic and whether the resistance data are correct. Further 

work is required to determine the optimal structure and contents of databases for each 

application, but we emphasize the range of pathogens which appear to show promise for this 

approach. These include E. coli, in which data on MLST type supplemented with 

epidemiologic information can consistently produce AUCs in excess of 0.90 for multiple 

antibiotics42, suggesting great potential for neighbor typing to offer excellent resolution 

superior to MLST. However, we anticipate that genomic neighbor typing may be less 

suitable in case of a little within-species genomic variation (meaning it is hard to identify the 

nearest neighbor) or when resistance emerges rapidly on independent and diverse genomic 

backgrounds (meaning resistance is poorly correlated with those backgrounds) (SI Note 8).

In the case where the infectious agent is unknown this problem is significantly more 

challenging. K-mers from one pathogen can match others and produce false predictions, and 

so choice of the correct database for prediction is key. Doing this will likely require a two-

step solution in which the reads are first passed through a metagenomic classifier such as 

Centrifuge43 or MetaMaps44, which would be used to select the correct RASE database on 

which to make a resistance call.

Another limitation is the time required for sample preparation, which currently includes 

human DNA depletion, DNA isolation, and library preparation, taking a total of 4 hours. 

This is a rapidly evolving area of technology and automated rapid library preparation kits are 

already in development45. Further advances in this space, in particular for the preparation of 

metagenomic samples, will be required to bring the method closer to the bedside.

We have demonstrated that effectively predicting resistance and susceptibility from 

sequencing data does not require knowledge of causal resistance determinants. In fact, 

neighbor typing only requires that the phenotype be sufficiently strongly associated with the 

population structure to make reliable predictions.
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A key advantage of this approach is that it requires very little genomic data, thus it is not 

limited by high error rates or low coverage. In particular, it is not attempting to define the 

exact genome sequence of the sample being tested, but merely which lineage it comes from. 

As a result, even when a small fraction of k-mers in the read are informative in matching to 

the RASE database, this is sufficient to call the lineage. This has the benefit of being faster 

than gene detection by virtue of the informative k-mers being distributed throughout the 

genome, and so more likely to appear in the first few reads sequenced by the nanopore. 

Therefore, the approach we present here can be seen as an application of compressed 

sensing: by measuring a sparse signal distributed broadly across our data we can identify it 

with comparatively few error-tolerant measurements.

Genomic neighbor typing can also be used to detect other phenotypes that are sufficiently 

tightly linked to a phylogeny, such as virulence. Further applications may include rapid 

outbreak investigations, as the closely related isolates involved in the outbreak would all be 

predicted to match to the same strain in the RASE database. The approach also lends itself to 

enhanced surveillance, including in the field; the 2014–2016 Ebola outbreak in West Africa, 

for example, saw MinION devices used in remote locations without advanced healthcare 

facilities2. Finally, at present empiric treatment decisions are made within successive 

‘windows’46, in which increasing information becomes available, from initial Gram stain to 

full phenotypic characterization. The information from genomic neighbor typing is a natural 

complement to this process with the potential to improve therapy long before it would 

become clinically apparent that the patient is not responding or before phenotypic 

susceptibility data were available. The combination of high-quality RASE databases with 

genomic neighbor typing offers an alternative forward-looking model for diagnostics and 

surveillance, with wide applications for the improved clinical management of infectious 

disease.

Methods

Overview

RASE uses rapid approximate k-mer-based matching of long sequencing reads against a 

database of strains to predict resistance via neighbor typing. The database contains a highly 

compressed exact k-mer index, a representation of the tree population structure, and 

metadata such as lineage, resistance profiles, MLST sequence type and serotype. The RASE 

prediction pipeline iterates over reads from the nanopore sequencer and provides real-time 

predictions of lineage and resistance or susceptibility (Fig. 1).

Resistance profiles

For all antibiotics, RASE associates individual strains with a resistance category, 

‘susceptible’ (S) or ‘non-susceptible’ (R). First, intervals of possible MIC values are 

extracted using regular expressions from the available textual antibiograms. For instance, 

‘>=4’, `2`, and ‘NA’ would be translated to the intervals [4,+∞), [2,2], and [0,+∞), 

respectively. Then the acquired intervals are compared to the antibiotic-specific breakpoints. 

If a given breakpoint is above or below the interval, susceptibility or non-susceptibility is 

reported, respectively. However, no category can be assigned at this step if the breakpoint 
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lies within the extracted interval, an antibiogram is entirely missing, it is insufficiently 

specific, or its parsing failed. Finally, missing categories are inferred using ancestral state 

reconstruction on the associated phylogenetic tree while maximizing parsimony (i.e., 

minimizing the number of nodes switching its resistance category; Extended Data Fig. 3 and 

Extended Data Fig. 4). When the solution for a node is not unique, non-susceptibility is 

assigned.

Genomic neighbor typing using nanopore sequencing

All reference strains in the database are associated with similarity weights that are set to zero 

at the start of the run. Each time a new read is read from the stream, k-mer-based matching 

is applied to identify the strains with the maximum number of matching k-mers (see below). 

Such strains are read’s nearest neighbors in the database according to the 1/(‘number of 

matched k-mers’) pseudodistance.

The weights of the nearest neighbors are then increased according to the ‘information 

content’ of the read, calculated as the number of matched k-mers divided by the number of 

nearest neighbors. Reads that do not match (i.e., 0 matching k-mers in the database) are not 

used in subsequent analysis. The computed matches are also used for updating the k-mer 

score (KS), which is the proportion of matched k-mers in all reads. KS helps to assess 

whether a sample is truly matching the database and predicting resistance for the database 

species makes sense.

The obtained weights serve as a proxy to inverted genetic distance and are used as a basis for 

the subsequent predictions of the lineage, and antibiotic resistance and susceptibility.

Predicting lineage

A lineage is predicted as the lineage of the best matching reference strain, i.e., the one with 

the largest weight. The quality of lineage prediction is further quantified using a lineage 

score (LS), calculated as LS=2f/(f+t)-1, where f and t denote the weights of the best matches 

in the first (‘predicted’) and in the second best (‘alternative’) lineage, respectively. The 

values of LS can range from 0.0 to 1.0 with the following special cases: LS=1.0 means that 

all reads were perfectly matching the predicted lineage, whereas LS=0.0 means that the 

predicted and alternative lineages were matched equally well.

LS is used to measure how well a sample matching the identified lineage. If LS is higher 

than a specified threshold (0.6 in default settings), the call is considered successful. If the 

score is lower than this, the sample cannot be securely assigned to a lineage, and this should 

draw operators’ attention. Note that custom RASE databases may require a re-calibration of 

the threshold.

Predicting resistance and susceptibility

Resistance or susceptibility are predicted for individual antibiotics independently, based the 

weights of the strains that belong to the predicted lineage. These are used to calculate a 

susceptibility score, which is further interpreted by comparing to pre-defined thresholds.
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The susceptibility score is calculated as SS=s/(s+r), where s and r denote the weights of the 

best matching susceptible and best matching non-susceptible strains within the lineage. The 

values of SS can range from 0.0 to 1.0 with the following special cases: SS=0.0 and SS=1.0 

mean that all reads match only resistant or susceptible strains in the lineage, respectively. In 

practice, this happens only if the lineage is entirely associated with resistance or 

susceptibility. SS=0.5 means that the best matching resistant and susceptible strains are 

matched equally well. As follows from the score definition, if SS is greater than 0.5, then the 

best matching strain is susceptible, otherwise it is non-susceptible.

SS is used for predicting resistance or susceptibility as well as for evaluating the prediction’s 

confidence. If SS is greater than 0.5, susceptibility to the antibiotic is reported, non-

susceptibility otherwise. Hence resistance is predicted as the resistance of the best match. 

However, when SS is within the [0.4, 0.6] range, it is considered a low-confidence call, and 

as such it should draw operators’ attention; this usually indicates that resistance or 

susceptibility emerged recently in the evolutionary history and genomic neighbor typing 

may not be able to confidently distinguish between these similar, but phenotypically distinct, 

strains. Note that the thresholds above might require a further re-calibration, based on the 

specific database, antibiotics, and application of RASE.

S. pneumoniae RASE database

The S. pneumoniae RASE database was constructed with the EUCAST breakpoints33 ([mg/

L]): ceftriaxone (CRO): 0.25, erythromycin (ERY): 0.25, benzylpenicillin (PEN): 0.06, 

trimethoprim-sulfamethoxazole (SXT): 1.00, and tetracycline (TET): 1.00. While we have 

used the above values in the present work, others may be readily defined and the database 

rapidly updated. This is especially useful in the case where breakpoints may vary depending 

on the site of infection (as is the case with pneumococcal meningitis and otitis media, where 

lower MICs are considered to be resistant33).

The draft assemblies were downloaded from the SRA FTP server using the accession codes 

provided in Table 1 in ref24. The phylogenetic tree was downloaded from DataDryad 

(accession: ‘10.5061/dryad.t55gq’). The pneumococcal ProPhyle index was constructed with 

the k-mer size k=18.

The obtained S. pneumoniae RASE database including the source code and data is available 

from https://github.com/c2-d2/rase-db-spneumoniae-sparc.

N. gonorrhoeae RASE database

The N. gonorrhoeae RASE database was constructed with the CDC GISP breakpoints34 

([mg/L]): azithromycin (AZM): 2.0, cefixime (CFM): 0.25, ciprofloxacin (CIP): 1.0, and 

ceftriaxone (CRO): 0.125. Before applying the breakpoints, azithromycin MICs for strains 

collected before 2005 were doubled in order to correct for the known inconsistencies of the 

phenotyping protocol due to a change in formulation of the commercial media47.

The draft assemblies and the phylogenetic tree were downloaded from Zenodo (accession: 

‘10.5281/zenodo.2618836’). Three prevalent types of plasmids48 were downloaded from 

GenBank, localized in the GISP database using BLAST49, and removed from the dataset: 
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the cryptic plasmid (‘pJD1’, GenBank accession ‘NC_001377.1’), the beta-lactamase 

plasmid (‘pJD4’, GenBank accession ‘NC_002098.1’), and the conjugative plasmid 

(‘pEP5289’, GenBank accession ‘GU479466.1’). The gonococcal ProPhyle index was 

constructed with the k-mer size k=18.

The obtained N. gonorrhoeae RASE database including the source code and data is available 

from https://github.com/c2-d2/rase-db-ngonorrhoeae-gisp.

K-mer-based matching

Reads were matched against the RASE databases using the ProPhyle classifier27,28 (commit 

b55e026) and its ProPhex component50,51. ProPhyle index stores k-mers of all strains in a 

highly compressed form, reducing the required memory footprint. In the database 

construction phase, the strains’ k-mers are first propagated along the phylogenetic tree and 

then greedily assembled to contigs. The obtained contigs are then placed into a single text 

file, for which a BWT index is constructed30.

In the course of sequencing, each read is decomposed into overlapping k-mers. The k-mers 

are then searched in the BWT index by ProPhex using BWT search using a sliding 

window50. For every k-mer, the obtained matches are translated back on the tree. This 

provides a list of nodes whose descending leaves are the strains containing that k-mer. 

Finally, strains with maximum number of matched k-mers are identified for each read, and 

reported in the SAM/BAM format52.

Optimizing k-mer length

The k-mer length is the main parameter of the classification. First, the subword complexity 

function53 of pneumococcus was calculated using JellyFish54 (version 2.2.10) (Extended 

Data Fig. 5). Then, based on the characteristics of the function and the k-mer range 

supported by ProPhyle, the possible range of k was determined as in [17, 32]. For these k-

mer lengths, RASE indexes were constructed and their performance evaluated using the 

RASE prediction pipeline and selected experiments. While RASE showed robustness to k-

mer length in terms of final predictions, prediction delays differed (Extended Data Fig. 6). 

Based on the obtained timing data, we set k to 18.

Comparison to Kraken

For each RASE database, a fake NCBI taxonomy was generated from the database tree. 

Then a library was built using Kraken31 (version 1.1.1, default parameters) from the same 

FASTA files as used for building the RASE database. Finally, Kraken databases were 

constructed for both k=18 and k=31.

The obtained Kraken databases were used to classify reads from individual experiments. The 

obtained Kraken assignment were subsequently converted using an ad-hoc Python script to 

RASE-BAM (a subset of the BAM format52 used by RASE). Finally, RASE prediction was 

applied on the BAM files, with the use of the RASE database metadata, and the results 

compared with the results of the standard RASE with ProPhyle.
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Measuring time

To determine how RASE works with nanopore data generated in real time, the timestamps of 

individual reads extracted were using regular expressions from the read names. These were 

then used for sorting the base-called nanopore reads by time. When the RASE pipeline was 

applied, the timestamps were used for expressing the predictions as a function of time. The 

times of ProPhyle assignments were also compared to the original timestamps to ensure that 

the prediction pipeline was not slower than sequencing.

When timestamps of sequencing reads were not available (i.e., the gonococcal WHO and 

clinical samples), RASE estimated the progress in time from the number of processed base 

pairs. This was done by dividing the cumulative base-pair count by the typical nanopore 

flow, which we had previously estimated from SP01 as 1.43Mbps per second. However, such 

an estimated progress is indicative only, as it does not follow the true order of reads in the 

course of sequencing. As the nanopore signal quality tends to decrease over time (see the 

decrease of KS in Fig. 2 after t=15mins), the randomized read order provides results of 

lower quality than true real-time sequencing.

Lower time estimates on resistance gene detection

A complete genome of the multidrug-resistant SP02 isolate was assembled from the 

nanopore reads using CANU55 (version 1.5, default parameters). Prior to the assembly step, 

reads were filtered using SAMsift56 based on the matching quality with the pneumococcal 

RASE database: only reads at least 1000bp long with at least 10% 18-mers shared with some 

of the reference draft assemblies were used. The obtained assembly was further corrected by 

Pilon57 (version 1.2, default parameters) using Illumina reads from the same isolate (taxid 

‘1QJAP’ in the SPARC dataset24) mapped to the nanopore assembly using BWA-MEM58 

(version 0.7.17, default parameters) and sorted using SAMtools52.

The obtained assembly was searched for resistance-causing genes using the online CARD 

tool16 (as of 2018/08/01). All of the original nanopore reads were then mapped using 

Minimap259 (version 2.11, with ‘-x map-ont’) to the corrected assembly and resistance 

genes in the reads identified using BEDtools–intersect60 (version 2.27.1, with ‘-F 95’). 

Timestamps of the resistance-informative reads were extracted and associated with the 

genes. Only reads longer than 2kbp were used in the analysis.

Evaluation of the N. gonorrhoeae WHO samples

To evaluate the predictions of the WHO samples, we inferred a phylogenetic tree from a data 

set comprising both the GISP isolates and the WHO isolates. First, reads were downloaded 

for the GISP isolates (NCBI BioProject: ‘PRJEB2999’ and ‘PRJEB7904’) and for the WHO 

isolates F–P (NCBI BioProject: ‘PRJEB4024’). For the WHO isolates U–Z, read data were 

simulated from the finished de-novo assemblies (NCBI BioProject: ‘PRJEB14020’) using 

Art-Illumina61 (version 2.5.1). Reads were mapped to the NCCP11945 reference genome 

(GenBank accession: ‘CP001050.1’) using BWA-MEM58 (version 0.7.17) and deduplicated 

using Picard62 (version 2.8.0). Pilon57 (version 1.16, with ‘--mindepth 10 --minmq 20’) was 

used to call variants and further filtered to include only ‘pass’ sites and sites where the 

alternate allele was supported with AF > 0.9. Gubbins63 (version 2.3.4) with RAxML64 
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(version 8.2.10) were run on the aligned pseudogenomes to generate the final 

recombination-corrected phylogeny (Supplementary Data 1).

The closest relatives identified by RASE were verified using the obtained tree. For every 

WHO isolate, the obtained RASE prediction was compared to the closest GISP isolate on 

the tree.

Library preparation

For isolates SP01-SP06, cultures were grown in Todd–Hewitt medium with 0.5% yeast 

extract (THY; Becton Dickinson and Company, Sparks, MD) at 37°C in 5% CO2 for 24 hrs. 

High-molecular-weight (>1 μg) genomic DNA was extracted and purified from cultures 

using DNeasy Blood and Tissue kit (QIAGEN, Valencia CA). DNA concentration was 

measured using Qubit fluorometer (Invitrogen, Grand Island NY). Library preparation was 

performed using the Oxford Nanopore Technologies 1D ligation sequencing kit SQK 

LSK108.

For experiments SP07-SP12, library preparation was performed using the ONT Rapid Low-

Input Barcoding kit SQK-RLB001, with saponin-based host DNA depletion used for 

reducing the proportion of human reads. More details can be found in the original 

manuscript40.

For isolates GC01-GC05, cultures were grown on Chocolate-Agar media i.e., Difco GC base 

media containing 1% IsoVitaleX (Becton Dickinson Co., Franklin Lakes, NJ) and 1% Remel 

Hemoglobin (Thermo Fisher Scientific, Carlsbad, CA) at 37°C in 5% CO2 for 20 hrs. For 

GC01-GC04 genomic DNA was extracted and purified from cultures using the PureLink 

Genomic DNA MiniKit (Thermo Fisher Scientific, Carlsbad, CA), and for GC05 DNA was 

extracted using the phenol-chloroform method65. Genomic DNA was extracted and purified 

from cultures using the PureLink Genomic DNA MiniKit (Thermo Fisher Scientific, 

Carlsbad, CA). DNA concentration was measured using the Qubit fluorometer (Invitrogen, 

Grand Island, NY). Library preparation was performed using the Oxford Nanopore 

Technologies 1D ligation sequencing kit SQK-LSK109.

MinION sequencing

Sequencing was performed on the MinION MK1 device using R9.4/FLO-MIN106 flow 

cells, according to the manufacturer’s instructions. For experiments SP01-SP06, base-calling 

was performed using ONT Metrichor (versions 1.6.11 (SP01), 1.7.3 (SP02), 1.7.14 (SP03–

SP06)) simultaneously with sequencing and all reads passing Metrichor quality check were 

used in the further analysis. For experiments SP07-SP12, the ONT MinKNOW software 

(versions 1.4-1.13.1) was used to collect raw sequencing data and ONT Albacore (versions 

1.2.2-2.1.10) was used for local base-calling of the raw data after sequencing runs were 

completed. For experiments GC01–GC05, ONT MinKNOW software was used to collect 

raw sequencing data and ONT Albacore (version 2.3.4) was used for local base-calling.
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Testing resistance phenotype

Additional retesting of SPARC isolates was done using microdilution. Organism suspensions 

were prepared from overnight growth on blood agar plates to the density of a 0.5 McFarland 

standard. This organism suspension was then diluted to provide a final inoculum of 105 to 

106 CFU/mL. Microdilution trays were prepared according to the NCCLS methodology 

with cation-adjusted Mueller-Hinton broth (Sigma-Aldrich) supplemented with 5% lysed 

horse blood (Hemostat Laboratories)66,67. Penicillin (TRC Canada) and chloramphenicol 

(USB) concentrations ranged from 0.016 to 16 μg/mL. Erythromycin (Enzo Life Sciences), 

tetracycline (Sigma-Aldrich), and trimethoprim-sulfamethoxazole (MP Biomedicals) 

concentrations ranged from 0.0625 to 64 μg/mL. Ceftriaxone (Sigma-Aldrich) 

concentrations ranged from 0.007 to 8 μg/mL. The microdilution trays were incubated in 

ambient air at 35°C for 24 h. The MICs were then visually read and breakpoints applied. A 

list of individual microdilution measurements and the obtained resistance categories is 

provided in Supplementary Table 2.

Resistance of streptococcus in the metagenomic samples (SP07–SP12) was determined by 

agar diffusion using the EUCAST methodology and breakpoints33. First, the inoculated agar 

plates were incubated at 37 °C overnight and then examined for growth with the potential for 

re-incubation up to 48 hours. Then, the samples were screened to oxacillin: if the zone 

diameter r was >20mm, the isolate was considered sensitive to benzylpenicillin, otherwise a 

full MIC measurement to benzylpenicillin was done. Finally, the isolate was screened for 

resistance to tetracycline (r≥25mm for sensitive, r<22mm for resistant) and erythromycin 

(r≥22mm for sensitive, r<19mm for resistant); when the isolate showed intermediate 

resistance, a full MIC measurement was done.

Results for all tested samples – isolates and metagenomes – are summarized in 

Supplementary Table 3.

Extended Data
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Extended Data Fig. 1. Size and memory footprint of the S. pneumoniae and N. gonorrhoeae 
RASE databases
The graph compares the size of the ProPhyle RASE index to the size of the original 

sequences: original draft assemblies (seq–fa), original draft assemblies compressed using 

gzip (seq–fagz), memory footprint of ProPhyle with the RASE index (ind–mem), and size of 

the ProPhyle RASE index compressed for transmission (ind–transm)
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Extended Data Fig. 2. Timeline of resistance genes
Number of occurrences of individual resistance genes in reads of SP02, as a function of time 

for the first hour of nanopore sequencing.
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Extended Data Fig. 3. Ancestral state reconstruction of resistance categories in the S. 
pneumoniae RASE database
Each panel corresponds to a single antibiotic and displays the database phylogenetic tree, 

colored according to the reconstructed resistance categories for the antibiotic (blue, green, 

red, violet correspond to ‘susceptible’, ‘unknown – inferred susceptible’, ‘non-susceptible’, 

‘unknown – inferred non-susceptible’, respectively).

Břinda et al. Page 18

Nat Microbiol. Author manuscript; available in PMC 2020 February 28.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Extended Data Fig. 4. Ancestral state reconstruction of resistance categories in the N. 
gonorrhoeae RASE database
Each panel corresponds to a single antibiotic and displays the database phylogenetic tree, 

colored according to the reconstructed resistance categories for the antibiotic (blue, green, 

red, violet correspond to ‘susceptible’, ‘unknown – inferred susceptible’, ‘non-susceptible’, 

‘unknown – inferred non-susceptible’, respectively).
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Extended Data Fig. 5. Subword complexity of pneumococcus
The plot depicts the number of canonical k-mers as a function of k for S. pneumoniae ATCC 

700669 (GenBank accession: ‘NC_011900.1’) and for a random DNA text containing all 

possible k-mers. For k<10, the pneumococcus k-mer composition is similar to the one of 

random text. For k>14, the k-mer sets are almost saturated and the complexity grows very 

slowly. Since the genome length is finite and bacterial chromosomes are circular, the 

function attains its maximum at the genome size (2,221,315 in this case). The highlighted 

region corresponds to the range of values of k, which are suitable for use in RASE.
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Extended Data Fig. 6. Delays in prediction based on the k-mer length
The plot displays delays in prediction as a function of the used k-mer length, for selected 

experiments and all possible k-mer lengths. Each horizontal panel displays times required 

for stabilization of one of the three predictions: the lineage, the alternative lineage, and the 

closest strain. Every column within a panel corresponds to a single k-mer length. When the 

required time exceeded 1 hour, the point is displayed at the top. Experiments where lineage 

could not be identified are plotted in red. The highlighted column corresponds to the k-mer 

length used for constructing the RASE databases in this paper.

Břinda et al. Page 21

Nat Microbiol. Author manuscript; available in PMC 2020 February 28.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Overview of the RASE approach.
In the first, loading step, the precomputed RASE database is loaded into memory. As reads 

are generated, they are matched against the database using ProPhyle to calculate similarity to 

individual strains. The weights for the most similar strains (D and E in the figure) are 

increased proportionate to the number of matching k-mers. Finally, resistance is predicted 

from the obtained weights and the resistance profiles of the database strains as follows: First, 

the best lineage is identified as the lineage of the best match (having the highest weight, E in 

the figure) and its score is calculated (lineage score, LS). Second, for every antibiotic, a 

score quantifying the chance of susceptibility (susceptibility score, SS) is calculated, based 

on the most similar susceptible and resistant strains inside the identified lineage (B and E in 

the figure, respectively). The susceptibility or resistance to each of the antibiotics is 

predicted from their susceptibility scores by a comparison with a threshold (0.5 in the 

default setting), and reported together with the lineage, the best matching strain and that 

strain’s known properties (e.g., the original antibiograms, MLST sequence type, or 

serotype).
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Fig. 2. RASE obtains stable predictions of antibiotic resistance or susceptibility and lineage 
within minutes for an isolate of a pneumococcal 23F clone (SP06).
Left: Number of reads, lineage score (LS), k-mer score (KS), and susceptibility scores (SS) 

for individual antibiotics as a function of time from the start of sequencing. In the top left 

plot, the times of stabilization are shown for the predicted lineage and susceptibility or 

resistance to all antibiotics. Blue and red colors correspond to susceptibility and non-

susceptibility calls, respectively. The dashed lines mark selected time points (1 minute, 5 

minutes, and the end of sequencing). Right: a)-c) Similarity rank plots for selected time 
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points (1 minute, 5 minutes, and the end of sequencing). The bars correspond to 70 best 

matching strains in the database and display the normalized weights, which serve as a proxy 

to inverted genetic distance. They are arranged by rank and colored according to the 

presence in the predicted, alternative or another lineage. The bottom panels display the 

resistance profiles of the strains.
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Table 2
Predicted phenotypes of N. gonorrhoeae for a) database isolates and b) non-database 
isolates.

The table displays actual and predicted resistance phenotypes (S = susceptible, R = non-susceptible) for 

individual experiments, as well as information on match of the predicted MLST sequence type.

a) Database isolates

Sample
Lineage 

confidently 
detected

Matched 
k-mers

Antibiogram 
AZM

Antibiogram 
CFM Antibiogram CIP Antibiogram 

CRO MLST 
match

Actual Best 
match Actual Best 

match Actual Best 
match Actual Best 

match

GC01 yes 27% S S S S S S S S Yes

GC02 yes 27% S S R R! S S R R! Yes

GC03 yes 33% S S R S! S S R S! Yes

GC04 yes 21% S S R R R R R S Yes

GC05 yes 7% R R S S S S S S Yes

b) Non-database isolates

Sample
Lineage 

confidently 
detected

Matched k-
mers

Antibiogram AZM Antibiogram CFM Antibiogram CIP Antibiogram CRO

Actual Best 
match Actual Best 

match Actual Best 
match Actual Best 

match

GC06 yes 19% S S R R R R S S

GC07 no 20% S S S S R R S S

GC08 no 19% S S S S R R S S

GC09 no 18% S S S S S S S S

GC10 no 20% S S S S R R S S

GC11 no 20% S S S S R R S S

GC12 no 20% S S S S R R S S

GC13 yes 20% S S S S R R S S

GC14 yes 19% S S S S R R S S

GC15 yes 19% R S! S S S S S S

GC16 no 18% S S S S! R R S S!

GC17 no 19% S S S S! R R S S!

GC18 no 20% S S S S R R S S

GC19 yes 18% S S S S R R S S

Legend

Correct prediction

Incorrect prediction

S Susceptible
R Non-susceptible
! Low-confidence call
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