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Abstract

Damage to osteochondral (OC) tissues can lead to pain, loss of motility, and progress to 

osteoarthritis. Tissue engineering approaches offer the possibility of replacing damaged tissues and 

restoring joint function; however, replicating the spatial and functional heterogeneity of native OC 

tissue remains a pressing challenge. Chondrocytes in healthy cartilage exist in relatively low-

oxygen conditions, while osteoblasts in the underlying bone experience higher oxygen pressures. 

Such oxygen gradients also exist in the limb bud, where they influence OC tissue development. 

The cellular response to these spatial variations in oxygen pressure, which is mediated by the 

hypoxia inducible factor (HIF) pathway, plays a central role in regulating osteo- and 

chondrogenesis by directing progenitor cell differentiation and promoting and maintaining 

appropriate extracellular matrix production. Understanding the role of the HIF pathway in OC 

tissue development may enable new approaches to engineer OC tissue. In this review, we discuss 

strategies to spatially and temporarily regulate the HIF pathway in progenitor cells to create 

functional OC tissue for regenerative therapies.
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Introduction

Cartilage has a poor capacity for self-repair after injury, which can lead to joint pain, 

immobility, and eventually osteoarthritis (OA). By repairing cartilage, it may be possible to 

restore joint function and prevent the development of OA. Tissue engineering (TE), a field 

whose primary aim is to form new tissue,1 has the potential to revolutionize treatments for 

cartilage damage. Native cartilage’s primary function is to cushion bones and support the 

smooth movement of articular joints. Cartilage achieves this by seamlessly integrating with 
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its underlying bone. Therefore, cartilage TE strategies often aim to engineer bone and 

cartilage together to create osteochondral (OC) constructs that can integrate with the 

supportive subchondral bone. However, engineering such disparate tissues in a single TE 

construct is challenging as cartilage is dominated by a collagen type II/proteoglycan-rich 

matrix with embedded chondrocytes, while the underlying bone comprises a mineralized 

collagen type I structure that is maintained by osteocytes. However, fundamental to both the 

development and maintenance of native OC tissue is oxygen pressure. Oxygen pressure is 

low in native cartilage, but higher in subchondral bone. The cellular response to oxygen 

pressure, which is mediated by the hypoxia inducible factor (HIF) pathway, is central in 

controlling the differentiation of progenitor cells during development, their production of 

appropriate extracellular matrix (ECM), and maintenance of their correct phenotype. 

Therefore, by creating TE scaffolds that can spatially harness the cellular response to oxygen 

pressure, it may be possible to effectively engineer functional OC tissue. In this study, we 

review the role of the HIF pathway in OC development and maintenance and discuss its 

potential for use in OC TE.

The Effect of Oxygen Pressure and the HIF Pathway in OC Tissue 

Development and Maintenance

The cellular response to oxygen plays an important role in both the development and 

maintenance of OC tissue2–7 and is primarily mediated through the HIF pathway (Fig. 1). 

Under normoxic conditions, HIF-1α, the oxygen-responsive subunit of the HIF complex, is 

continually degraded. However, under hypoxic conditions, HIF-1α accumulates within the 

cytoplasm and translocates to the nucleus where it regulates expression of target (hypoxia-

responsive element, HRE) genes. Moreover, hypoxia enhances the binding between HIF-1α 
and its transcriptional cofactors, which further augments HIF complex-mediated regulation 

of gene expression.8 During development, the HIF pathway plays fundamental roles in 

directing the differentiation of OC progenitors. In general, increased HIF-1α stabilization 

(under low-oxygen conditions) stimulates a prochondrogenic, antiosteogenic, and 

antihypertrophic transcriptome.9 This effect is reversed in the presence of higher oxygen 

concentrations as HIF-1α is degraded, which promotes a more hypertrophic/osteoblastic 

fate.

The Role of HIF-1α in Differentiation of OC Progenitor Cells, Their Survival, and 
Phenotypic Maintenance

During development, articular cartilage forms during endochondral ossification,10 the 

process by which the axial skeleton is created. To achieve this, a condensed population of 

mesenchymal precursors form the initial cartilaginous anlage, which is subsequently 

infiltrated by the vasculature and ossified.11 Concomitant with this process, cartilage is 

maintained at the ends of long bones and within it, a population of chondrocytes, which will 

go on to form the articular cartilage. HIF-1α is essential in this process as under the low-

oxygen conditions of the developing growth plate, knockdown of HIF-1α results in 

chondrocyte cell death.2 Moreover, knockdown of the enzyme required for HIF-1α 
degradation in the growth plate deregulates mesenchymal precursor and chondrocyte 

proliferation12,13 and its conditional inactivation in the developing mouse limb bud 
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mesenchyme negatively impacts both the formation of cartilage and joint development.7 

When HIF-1α is conditionally inactivated, expression of SOX9, the master transcriptional 

regulator of chondrogenesis, and its downstream targets, the genes that encode collagen type 

II and aggrecan, the main constituents of cartilage tissue, are all reduced.7,9 In vitro 
activation of the HIF pathway has similarly been shown to upregulate SOX9 expression and 

that of its downstream targets in murine14 and rat15 mesenchymal stromal cells (MSCs) as 

well as in human articular chondrocytes (hACs).16 Furthermore, engineering murine MSCs 

to stably express HIF-1α under normoxic conditions has been shown to potentiate their 

BMP2-induced chondrogenic differentiation.17

In addition to driving the differentiation of progenitors, hypoxia and HIF-1α also play a role 

in maintaining cells’ chondrogenic phenotypes by preventing their hypertrophic or 

osteogenic differentiation. During endochondral ossification, signaling gradients, including 

those triggered by oxygen pressure, are responsible for retaining populations of 

chondrocytes in their nonhypertrophic state, priming them for a permanent, articular 

chondrocyte fate.18 Hypoxia and HIF-1α achieve this in hACs by downregulating the 

expression of hypertrophic fibroblast-like markers such as COL1A1 and COL3A1.19 

Moreover, hypoxia suppresses the expression of matrix metalloproteinases (MMPs) and 

aggrecanases in hACs, both of which degrade the cartilage matrix.20 Similarly, human and 

other mammalian cartilage explants cultured under hypoxic conditions show HIF-1α-

mediated suppression of cartilage catabolism by a disintegrin and metalloproteinase with 

thrombospondin motifs (ADAMTS-5) and MMP-13.21 The ability of HIF signaling to 

promote a stable articular phenotype is also supported by observations that hypoxia 

enhances the expression of antihypertrophic Wnt antagonists,22 and HIF-1α conditional 

knockout in developing cartilage results in reduced expression of Wnt9a and GDF5.9

The Role of HIF-1α in Cartilage ECM Formation

Not only do physiological hypoxia and the HIF pathway play important roles in regulating 

the differentiation of OC progenitor cells but they also appear to drive the formation of 

appropriate ECM. The ECM of native cartilage is dominated by a combination of collagen 

type II and proteoglycans, and hypoxia and the HIF pathway have been shown to regulate 

the formation of this matrix (Fig. 2). For example, physiological hypoxia enhances the 

production of cartilagespecific ECM in cultured hACs when compared with that formed 

under normoxic conditions.23 Similarly, hACs in pellet cultures synthesize collagen fibrils 

with more ordered morphologies when cultured in 5% oxygen compared with under 

normoxic conditions.16,21,23 Similar observations have been made in chondrocytes 

embedded in alginate hydrogels24 and seeded on 3D PLGA scaffolds.25 Moreover, human 

bone marrow-derived MSCs and hACs pretreated with hypoxia before encapsulation in 

alginate and implantation in a nude mouse model showed enhanced cartilage ECM 

formation compared with that observed when cells were precultured under normoxic 

conditions.26

Regulation of ECM synthesis is dependent on the activity of HIF-1α as its conditional 

knockdown in developing murine limbs results in abnormal ECM morphology as well as 

reduced production of proteoglycans and collagen type II in the growth plate.7,9,27 Similarly, 
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stabilizing HIF-1α chemically by inhibiting its ubiquitination and degradation causes hACs 

to increase their secretion of collagen type II and aggrecan.28 Hypoxia has also been shown 

to increase cartilage-like ECM production in MSCs.29 Indeed, delivery of a HIF-1α 
expression vector enhances the expression of genes for both collagen type II and the 

proteoglycan aggrecan, as well as a panel of chondrogenic transcription factors.26 Moreover, 

stabilization of HIF-1α promotes the formation of cartilage-specific ECM by both 

upregulating the expression of SOX9 and through post-translational modifications to 

collagen type II.30 HIF-1α’s role in regulating ECM production is thought to be mediated by 

its regulation of collagen prolyl 4-hydroxylase, which is required for the addition of 4-

hydroxyproline residues to collagen fibrils, allowing them to form triple helices.30 In 

addition, the HIF pathway is also thought to control expression of lysyl oxidase, an enzyme 

required for the cross-linking of collagen triple helices.31,32

Strategies for OC TE

A common approach to engineer cartilage tissue is to mimic aspects of the native, in vivo 
cellular microenvironment in 3D scaffolds seeded with appropriate progenitor cells.33–35 A 

clinical example of this is matrix-assisted, autologous chondrocyte transplantation/

implantation (MACT/MACI), which involves seeding autologous chondrocytes in a 3D 

scaffold before surgical implantation. However, despite providing chondrocytes with a 3D 

environment,36 the MACT matrix often does not adequately mimic many 

microenvironmental conditions within native cartilage, including local oxygen pressure. 

Moreover, integration with the underlying subchondral bone remains an issue.

Because of these drawbacks, researchers have attempted to engineer OC tissue that can 

seamlessly integrate with the underlying subchondral bone. This can be accomplished either 

by engineering a monophasic cartilage construct and then relying on the native local 

environment to drive ossification at the bone interface or by engineering a bone–cartilage 

construct that contains both tissues before implantation. Monophasic cartilage TE 

approaches have been applied widely. For example, Koga et al. created cartilage using 

synovium-derived MSCs. When implanted in a rabbit model, MSCs produced extensive 

cartilage matrix, while cells adjacent to the subchondral bone differentiated into osteoblasts.
37 However, such endogenous processes are uncontrolled, and movement of the tidemark, 

the interface between the bone and the cartilage, has been observed. Therefore, others have 

attempted to create OC constructs that contain either bone and cartilage or bone, cartilage, 

and an interfacial region. Engineering a single construct that contains bone and cartilage, 

however, remains challenging because of the tissues’ distinct compositions, architectures, 

and cellular microenvironments. One strategy to address this is to create biphasic scaffolds 

formed from separate osteogenic and chondrogenic constructs that are later combined. Such 

strategies have been tested in vitro38 and in large animal models.39 However, unlike in native 

OC tissue in which a calcified hypertrophic zone exists between the bone and cartilage, in 

many biphasic scaffolds, an abrupt artificial interface may form, which may impact the 

construct’s mechanical integrity. For example, when Grayson et al. synthesized a biphasic 

construct by placing agarose within a decellularized bone scaffold, they reported the absence 

of a hypertrophic transition zone.40

Taheem et al. Page 4

Tissue Eng Part B Rev. Author manuscript; available in PMC 2020 April 18.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Researchers have also attempted to form triphasic scaffolds, which contain an interfacial 

region between the cartilage and bone scaffolds, to more faithfully recapitulate the native 

OC interface. For example, Da et al. formed a compact interfacial layer by placing 

poly(lactic-co-glycolic acid)-β-tricalcium phosphate between the chondrogenic and bony 

components of a biphasic scaffold. They observed enhanced mechanical properties in the 

interface-containing scaffolds compared with those that lacked the interfacial region, as well 

as increased OC tissue regeneration in a rabbit model.41 Similarly, Kon et al. formed 

triphasic scaffolds by varying the ratios of type I collagen and hydroxyapatite in their 

constructs. When tested in 15 patients with cartilage lesions, they were able to demonstrate 

safety and short-term follow-up appeared promising.42 Nevertheless, like biphasic scaffolds, 

triphasic scaffolds may still not fully recapitulate the native tissue’s seamless interface and 

thus may separate in vivo. This has been observed in polycaprolactone/alginate scaffolds 

upon subcutaneous implantation in a rat model, where the osteogenic and chondrogenic 

portions often became separated.43 Moreover, biphasic and triphasic scaffolds may require 

separate chondrogenic and osteogenic culture conditions, which may create logistical 

challenges for their scale-up and clinical use.

Alternatives to multiphasic scaffolds are continuous OC scaffolds designed to enable 

synchronous formation of both cartilage and bone with a seamless transition, mimicking the 

calcified hypertrophic interface in native OC tissue. Continuous scaffolds may also preclude 

the need for separate culture conditions as they can be designed to differentiate a single 

progenitor population down different lineages depending on location within the biomaterial 

construct. For example, Harley et al. created continuous OC scaffolds by lyophilizing 

mineralized and unmineralized type I collagen–glycosaminoglycan suspensions to form a 

natural interface.44 Researchers have also achieved continuous scaffolds by creating 

morphogen gradients. For example, Wang et al. utilized BMP2 and IGF-1-containing 

microspheres to create inverse gradients in alginate hydrogels and observed corresponding 

differentiation of encapsulated human MSCs (hMSCs) down chondrogenic and osteogenic 

lineages.45 Similarly, Mohan et al. utilized inverse gradients of microspheres containing 

BMP2 and TGF-β1. When implanted in a rat femoral defect model, they showed region-

specific regeneration of cartilage and bone and formation of a stable interface.46

Exploiting the HIF-1α Regulatory Network for OC TE

As oxygen gradients form during OC tissue development and aid in the maintenance of OC 

tissue in the adult, controlling oxygen pressure may be an effective strategy to engineer OC 

tissue. Researchers have described strategies to locally regulate oxygen pressure in situ 
within biomaterials. For example, oxygen-releasing molecules such as perfluorocarbons47 

and hemoglobin48 or myglobin49 can be incorporated into biomaterials to increase local 

oxygen levels, using strategies amenable for OC TE. Similarly, manganese dioxide 

nanoparticles50 and calcium peroxide51 can be used to generate oxygen within a TE 

construct. Alternatively, oxygen scavengers can mediate the opposite effect and lower local 

levels of oxygen. Indeed, it is possible to locally decrease the oxygen pressure within a 

biomaterial either by incorporating various molecules52 or simply by limiting oxygen 

diffusion, which has been shown to stimulate the chondrogenesis of progenitor cells.53
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However, regulating oxygen itself may not be ideal as hypoxia is also known to cause 

oxidative stress, prompt potentially undesirable effects on cell metabolism, and negatively 

impact cell growth and viability,54 all of which may be detrimental to forming tissue. An 

alternative approach is to stabilize HIF-1α under normoxic conditions as this has the 

potential to provide the beneficial prochondrogenic effects of hypoxia, but in a more 

controlled and potentially less deleterious manner. Indeed, as stabilization of HIF-1α 
enhances the chondrogenic differentiation of progenitor cells,55 minimizes chondrocyte 

hypertrophy, and stimulates the production of cartilage-like ECM, manipulating its 

regulatory network within TE scaffolds may be an effective strategy to engineer OC tissue. 

A number of compounds have been reported to ectopically stabilize HIF-1α at normoxia and 

thus stimulate cellular responses that mimic those elicited by low oxygen pressure. 

Therefore, by incorporating these HIF mimetics into the chondrogenic region of a TE 

scaffold, it may be possible to stimulate progenitor cells to undergo region-specific 

formation of articular cartilage (Fig. 3). To accomplish this, appropriate components of the 

HIF complex that can be targeted pharmacologically need to be recognized and compounds 

that act against them identified and incorporated into scaffolds.

Regulation of the HIF Transcriptional Complex

The α subunit of HIF exists in two forms—HIF-1α and HIF-2α—both of which play roles 

in the regulation of cartilage formation. Knockout of HIF-1α results in cell death and 

cartilage catabolism in the developing limb bud mesenchyme,2,56 and suppression of 

HIF-1α negatively impacts the production of cartilage-associated matrix proteins in cultured 

chondrocytes. HIF-2α, on the other hand, regulates endochondral ossification by mediating 

angiogenesis and ossification of the cartilage template56 and plays important roles in 

cartilage degradation during OA.57 Therefore, because of HIF-1α’s central role in 

maintaining the chondrocyte phenotype and cartilage ECM,30 it is the more obvious target 

for OC TE strategies.

Central to regulation of HIF-1α is the prolyl hydroxylase 2–von Hippel-Lindau (PHD2-

VHL) signaling cascade58 (Fig. 4). At normoxia, PHD2 utilizes molecular oxygen and other 

cofactors to hydroxylate residues on the oxygen-dependent degradation domain (ODDD) of 

HIF-1α.59 The hydroxylated residues then serve as recognition motifs by the VHL tumor 

suppressor protein. As part of the E3 ubiquitin ligase complex, VHL binds and ubiquitinates 

the hydroxylated residues of HIF-1α, targeting the molecule for degradation by the 

proteasome.60–62 However, under hypoxic conditions, PHD2’s ability to hydroxylate 

HIF-1α is diminished, enabling its cytosolic accumulation and nuclear translocation, where 

together with transcriptional cofactors, it activates expression of its target genes in the HIF 

complex.63 Other pathways central to regulating HIF-1α degradation are RACK1 and 

HSP90. HSP90 normally binds to HIF-1α, thus preventing its degradation. However, 

RACK1 can compete with HSP90 in its binding to HIF-1α and, in doing so, recruits the 

same ubiquitinating complex utilized by VHL, thereby resulting in PHD2/VHL-independent 

HIF-1α degradation.64–66

In addition to the PHD2-VHL pathway, HIF-1α also requires cofactors to be recruited to the 

HIF transcriptional complex to activate gene expression when bound to the HRE in target 
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gene promoters. Two important factors in this complex are p300 and the CREB-binding 

protein (CBP).67 One key residue on HIF-1α involved in its binding with p300/CBP is 

asparagine-803 (Asn-803).8 Indeed, Asn-803 is also the target of another 2-oxoglutarate (2-

OG)-utilizing hydroxylase, factor inhibiting HIF (FIH), which similarly regulates HIF 

transcriptional activity.8 FIH hydroxylates Asn-803 on HIF-1α, preventing the binding of 

p300/CBP to HIF-1α, and therefore disrupts the formation of a functional HIF 

transcriptional complex.8

Harnessing the HIF Pathway for OC TE by Stabilizing HIF-1α

Over the past two decades, there has been tremendous interest in identifying compounds that 

are able to stabilize HIF-1α and enhance its binding by transcriptional cofactors at normoxia 

(Fig. 5) for potential use as therapeutic agents to treat a range of conditions. The most 

common HIF mimetics include dimethyloxalylglycine (DMOG), desferrioxamine (DFX), 

and cobalt chloride (CoCl2), all of which target PHD2 and/or FIH.68,69 By targeting PHD2 

and FIH, HIF mimetics reduce HIF-1α’s prolyl and asparagine hydroxylation, reducing its 

subsequent degradation, and enhance its binding by transcriptional cofactors. DMOG acts 

through competition with 2-OG by engaging the binding pocket of the prolyl hydroxylase 

active site on both FIH and PHD2.70 DFX is an iron chelator and sequesters available Fe2+, 

which is required by both FIH and PHD2, thereby reducing their activity.71 CoCl2, on the 

other hand, may directly compete with Fe2+ binding to the PHD2 active site.72

Recent work to compare how DFX, DMOG, and CoCl2 impact hMSC chondrogenesis in 
vitro showed that DMOG upregulated expression of HIF target genes and induced a more 

chondrogenic transcriptional profile compared with either DFX or CoCl2.55 These 

observations suggest that hMSC chondrogenesis may be regulated by mechanisms with a 

greater dependence on 2-OG than Fe2+ availability and suggest that compounds that target 2-

OG may be more effective for OC TE. These findings are supported by observations that 

cobalt, when released from a bioactive glass, reduces hMSC chondrogenic differentiation 

despite stabilizing HIF-1α.73 Sathy et al. have since exploited the hypoxia-mimicking 

properties of DMOG for cartilage TE by placing it within porcine-MSC-laden alginate 

hydrogels. They showed that DMOG-containing constructs enhanced MSC chondrogenesis 

in vitro and cartilage-like tissue formation in vivo.74 However, the HIF mimetic type, 

specificity, concentration, and duration of exposure may also play roles in their efficacy in 

promoting chondrogenesis, as highlighted by conflicting results in the literature. Indeed, 

while cobalt has been shown to promote chondrogenesis,75 others have demonstrated that it 

inhibits chondrogenesis73 and that this may be dependent on cell source.76

Nevertheless, although promising, the three most widely tested HIF mimetics lack a high 

degree of specificity for PHD2 FIH. Indeed, DMOG may also target similarly structured 

enzymes that are essential for formation of the collagen triple helix.77 Similarly, chelating 

Fe2+ ions or displacing them in enzymatic reactions lends a poor degree of control as iron is 

central in a range of other vital biological processes, including the mitochondrial respiratory 

chain or PHDs involved in collagen synthesis.78 More recently, screens have identified 

additional 2-OG inhibitors,79 including Kreb’s cycle metabolites80,81 and metal chelators,82 

some of which have been tested in clinical trials.83 GSK360A, for example, has been shown 
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to improve ventricular remodeling following myocardial infarction,84 and FibroGen’s 

FG-2216 alleviates erythropoietin deficiency in various anemic conditions.85 It will be 

particularly interesting to learn how these compounds influence cell behavior in OC TE 

applications.

Alternative approaches can also be used to ectopically stabilize HIF-1α by targeting the 

PHD2-VHL pathway. For example, high-density lipoproteins (HDLs) enhance HIF-

dependent VEGF signaling through regulation of HIF-1α post-translational modification.
86,87 HDLs act through activation of the ubiquitin ligase Siah2,88 which (when active) 

inhibits PHD2/PHD3, leading to HIF-1α accumulation.87,89 PHD2/FIH inhibitors designed 

to mimic cofactors that act with hydroxylases or interfering RNA molecules are promising 

tools in this regard as they can specifically target PHD2 and FIH. Indeed, RNAi against 

PHD228,90 and native hypoxia-driven micro-RNA91,92 have been shown to enhance HIF-1α 
stabilization.

Nitric oxide (NO) has also been implicated as a regulator of HIF-1α,93 an effect that can 

also be induced by NO donors such as GSNO, SNAP, NAC, and DetaNONOATE, which 

similarly increase intracellular HIF-1α levels.94 These compounds modify the HIF-1α 
ODDD through N-nitrosylation and, in doing so, block VHL binding and subsequent 

HIF-1α ubiquitination.95,96 GSNO has also been shown to inhibit PHD2 and FIH activity, at 

least in part, by blocking the binding of Fe2+ to the active site, leading to similar levels of 

HIF-1α stabilization as those observed in CoCl2-treated cell cultures.97,98 SNAP similarly 

promotes HIF-dependent gene expression by inhibiting VHL-HIF-1α binding and FIH 

activity,99 and NAC has been shown to mimic the physiological effect of chronic hypoxia in 

murine, vascular, pulmonary endothelial cells through nitrosylation of proteins in the 

PHD2/VHL pathway.100 Nevertheless, like the HIF mimetics, targeting NO for OC TE is not 

specific as NO has a variety of biological roles.

Researchers have also attempted to target the HIF-1α-regulating effects of VHL.101 Peptides 

that mimic the hydroxylated ODDD of HIF-1α compete with native HIF-1α to bind to 

VHL, reducing HIF-1α ubiquitination.102,103 This is a particularly promising approach for 

OC TE as the peptidebased inhibitors can be highly specific. Calcium signaling is also a 

potential target. A calcium ionophore, which facilitates Ca2+ entry into the cell, has been 

shown to inhibit dimerization and activation of RACK1, thereby inhibiting its role in 

HIF-1α degradation.104 An alternative to reducing HIF-1α degradation is augmenting 

HIF-1α translation. Calcium ionophores or a calcium compound may tap into calcium’s role 

in HIF-1α translation. However, the use of factors that enhance HIF-1α translation may be 

most effective when used in combination with those that inhibit HIF-1α degradation to 

increase overall levels of HIF-1α and increase biological function of the HIF transcriptional 

complex.

Outlook

As hypoxia plays fundamental roles in development and maintenance of OC tissue, 

attempting to mimic its effects on progenitor cells may be an effective means to engineer OC 

tissue. Indeed, a biomaterial that is able to spatially control the intracellular stabilization and 
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cofactor binding of HIF-1α may stimulate region-specific formation of articular cartilage 

where HIF-1α is active, while promoting the formation of a subchondral bone region where 

HIF-1α activity is depleted, all within a single construct cultured under normoxic 

conditions. Stabilization of HIF-1α at normoxia can be achieved by using HIF mimetics 

such as DMOG, DFX, and CoCl2. However, targeting the native regulatory signaling 

pathways that control intracellular levels of HIF-1α, such as the ODDD domain of HIF-1α, 

using peptides or RNAi may be an even more effective means to control intracellular levels 

of HIF-1α.

Utilizing HIF mimetics for OC TE will likely require them to be stably incorporated into 

scaffolds in a regional or gradient manner and for their controlled release. This could be 

achieved by tethering HIF mimetics directly to the scaffold or by incorporating soluble 

factors within degradable microspheres, whose locations within the scaffold are spatially 

controlled.45 Light-based chemistries could also be used to locally attach a HIF mimetic to a 

scaffold by applying differential levels of UV light along the length of a presynthesized 

biomaterial.105 Indeed, strategies to achieve localized delivery of HIF mimetics are already 

within reach and thus can be quickly incorporated into OC TE designs with the potential to 

deliver on the promise of OC TE to repair cartilage lesions and prevent OA.
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Impact Statement

Strategies to engineer osteochondral (OC) tissue are limited by the complex and varying 

microenvironmental conditions in native bone and cartilage. Indeed, native cartilage 

experiences low-oxygen conditions, while the underlying bone is relatively normoxic. 

The cellular response to these low-oxygen conditions, which is mediated through the 

hypoxia inducible factor (HIF) pathway, is known to promote and maintain the 

chondrocyte phenotype. By using tissue engineering scaffolds to spatially and temporally 

harness the HIF pathway, it may be possible to improve OC tissue engineering strategies 

for the regeneration of damaged cartilage and its underlying subchondral bone.
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Fig. 1. 
HIF pathway-mediated regulation of OC progenitor cells. Under hypoxic conditions, the 

HIF complex binds to its response elements (HREs) on target genes (A) where it acts to 

enhance SOX9 expression and activity (B), resulting in increased production of cartilage 

ECM (C), dampened activity of RUNX2 (D), and reduced expression of genes involved in 

osteogenesis (E) and chondrocyte hypertrophy (F). HIF has also been shown to increase 

expression of glycolytic enzymes (G) as well as Wnt antagonists involved in delaying 

chondrocyte hypertrophy (H). Yellow arrows indicate pathways/genes that are activated, 

while red arrows show pathways/genes that are inhibited under hypoxic conditions. ECM, 

extracellular matrix; HIF, hypoxia inducible factor; HRE, hypoxia-responsive element; OC, 

osteochondral. Color images are available online.
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Fig. 2. 
Oxygen, HIF-1α, transcription factor, and ECM gradients in OC tissue. Oxygen pressure is 

low in native cartilage, but high in the subchondral bone. The cellular response to these 

varying oxygen pressures, which are mediated by HIF-1α, plays a role in regulating 

transcription factors important in progenitor cell differentiation toward chondrogenic and 

osteogenic phenotypes and in promoting the production of proteins that are abundant in 

cartilage compared with bone. (a) A histological section of the OC tissue from a rabbit 

metacarpophalangeal joint stained with hematoxylin, Safranin O, and fast green. Cartilage 

appears red, calcified cartilage appears dark green, and bone appears blue. Image is adapted 

from106 (CC-BY 2.0). (b) A schematic of OC tissue showing expression gradients of 

HIF-1α, transcription factors, proteins, and enzymes. Factors in blue are upregulated or 

promoted in response to low oxygen pressures, while those in red are downregulated.
2,107–112 col II, collagen type II; acan, aggrecan; col I, collagen type I; col X, collagen type 

X. Color images are available online.
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Fig. 3. 
Exploiting the HIF pathway in OC TE. An example of a progenitor-seeded biomaterial 

scaffold containing a gradient of an HIF-1α-stabilizing compound. During differentiation 

and tissue formation, the differential levels of the HIF-1α-stabilizing agent promote a 

continuous interface that mimics that in native OC tissue. The resulting continuous OC 

construct would then contain spatially restricted regions of articular cartilage and 

subchondral bone. TE, tissue engineering. Color images are available online.
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Fig. 4. 
The PHD2-VHL signaling cascade: an opportunity to regulate the HIF pathway. In response 

to molecular oxygen (O2), FIH and PHD2 (in the presence of Fe2+, 2-OG, and ascorbate) 

hydroxylate specific amino acid residues on HIF-1α. FIH-mediated hydroxylation blocks 

cofactors CBP/p300 from binding to HIF-1α, thereby reducing HIF transcriptional activity. 

PHD2-mediated hydroxylation results in ubiquitination of the ODDD domain of HIF-1α by 

the VHL component of the ECV (elongin/culin/VHL) ubiquitin ligase complex, thus 

promoting degradation of HIF-1α in the 265 proteasome and reducing HIF transcriptional 

activity. Under hypoxic conditions, PHD2 and FIH activity are reduced, thus enabling 

HIF-1α to translocate and accumulate in the nucleus, where it activates expression of HIF 

target genes in the HRE as part of a transcriptional complex with HIF-1β, CBP/p300, and 

other cofactors. A negative feedback mechanism exists in which PHD2 expression is also 

enhanced by HIF activity. CBP, CREB-binding protein; FIH, factor inhibiting HIF; 2-OG, 2-

oxoglutarate; ODDD, oxygen-dependent degradation domain; PHD2-VHL, prolyl 

hydroxylase 2–von Hippel-Lindau. Color images are available online.
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Fig. 5. 
Pharmacological strategies to manipulate the HIF pathway. (A) High-density lipoproteins 

regulate HIF-1α levels through activation of Siah2, an E3 ubiquitin ligase, which targets 

PHD2 for proteasomal degradation. (B) Blocking binding of the VHL component of the E3 

ubiquitin ligase to HIF-1α, following its proline hydroxylation, reduces ubiquitination and 

degradation. This can be achieved by molecules that bind and occupy the HIF-1α binding 

site of VHL or through the use of nitric oxide donors, which chemically modify VHL or the 

ODDD of HIF-1α. (C) HIF-1α hydroxylation reactions can be inhibited to reduce the 
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subsequent ubiquitination and degradation of HIF-1α. For example, hydroxylation can be 

inhibited by specific hydroxylase inhibitors such as cofactor analogs, agents that sequester 

the Fe2+ that is required at the hydroxylase active sites, or ROS, which downregulate 

expression of PHD2. (D) HIF hydroxylases are susceptible to downregulation at the 

transcriptional level by interfering RNA molecules, which reduce their translation and thus 

HIF-1α hydroxylation. Asn803, asparagine-803; pro564/pro402, proline564/proline402; 

ROS, reactive oxygen species. Color images are available online.
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