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Abstract

Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors 

which belong to the nuclear hormone receptor superfamily. They regulate key aspects of energy 

metabolism within cells. Recently, PPARα has been implicated in the regulation of autophagy-

lysosomal function, which plays a key role in cellular energy metabolism. PPARα 
transcriptionally upregulates several genes involved in the autophagy-lysosomal degradative 

pathway that participates in lipolysis of triglycerides within the hepatocytes. Interestingly, a 

reciprocal regulation of PPARα nuclear action by autophagy-lysosomal activity also exists with 

implications in lipid metabolism. This review succinctly discusses the unique relationship between 

PPARα nuclear action and lysosomal activity and explores its impact on hepatic lipid homeostasis 

under pathological conditions such as non-alcoholic fatty liver disease (NAFLD).
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1 Introduction

Lipid homeostasis in cells is maintained via a balance of lipid anabolic and lipid catabolic 

events, which control lipid levels within the hepatic cells [1]. Derangements in this delicate 

balance of lipid metabolism within the liver cells can lead to metabolic diseases such as non-

alcoholic fatty liver disease (NAFLD) and its advance clinical manifestation, non-alcoholic 

steatohepatitis (NASH) [1]. The incidence of NAFLD has been rapidly increasing 

worldwide. Targeting hepatic lipid metabolism is currently being investigated as a treatment 
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for NAFLD and its associated conditions such as insulin resistance, cardiovascular disease, 

and diabetic nephropathy [2].

Peroxisome proliferator-activated receptors (PPARs) are key regulators of hepatic lipid 

metabolism [3,4]. In mammals, three PPAR isoforms have been identified, alpha (α), beta/

delta (β/δ), and gamma (γ), which are differentially expressed among various tissues, with 

PPARα as the predominant isoform in liver [3,4]. The PPARs belong to the nuclear receptor 

family of ligand-activated transcription factors. The ligands of PPARs include endogenous 

lipids, such as free fatty acids (FFAs) and eicosanoids. Upon ligand binding, PPARs bind to 

the PPAR response elements located in promoters of target genes, heterodimerizing with 

another nuclear receptor, the retinoid X receptor (RXR). Several coactivator and corepressor 

proteins bind to PPAR/RXR heterodimers to further modulate their transcriptional activity 

[5]. This PPAR/RXR regulates the expression of genes encoding enzymes or proteins 

involved in the mitochondrial and peroxisomal β-oxidation, fatty acid (FA) uptake, and 

lipolysis [6]. Recently, an autophagy-lysosomal mediated lipolysis of triglycerides in liver 

termed as "lipophagy" was shown to be regulated by PPARα [7]. Additionally, proper 

lysosomal function was itself determining PPARα transcriptional activity by regulating the 

stability of its cofactor, peroxisome proliferator-activated receptor gamma coactivator 1-

alpha (PGC-1α) [8] and nuclear receptor co-repressor 1 (NCoR1) [9].

In this review, we describe the interplay of this PPARα/lysosomal signaling, which mediates 

the homeostatic hepatic lipid metabolism.

2 PPARα and Hepatic Lipid Catabolism

PPARα controls the expression of several genes involved in a plethora of lipid metabolic 

pathways, including microsomal, peroxisomal and mitochondrial β-oxidation, FA binding 

and activation, FA elongation and desaturation, synthesis and lipolysis, lipoprotein 

metabolism, gluconeogenesis, and bile acid metabolism [3]. Consistent with its action, 

PPARα is widely expressed in tissues with high FA oxidation rates, such as heart, liver, and 

skeletal muscle, and serves as a major regulator of FA homeostasis [10,11]. The human and 

mouse PPARα genes which share 91% homology are located on chromosome 22 and 

chromosome 15, respectively [10].

PPARα ligands are FA derivatives formed during lipolysis, lipogenesis, or FA catabolism. 

Animal studies involving genetic disruption of the first rate-limiting peroxisomal β-

oxidation enzyme, acyl-CoA oxidase 1 (ACOX1), suggest that its substrates likely are 

PPARα agonists [12]. Consistently, the deletion of ACOX1 gene in rodents results in 

increased peroxisome proliferation and elevated PPARα target gene expression [12]. 

Additionally, eicosanoid derivatives, such as chemoattractant LTB4 and 8(S)-HETE, and 

murine 8-LOX derivatized from arachidonic acid, also seem to serve as endogenous PPARα 
agonists [13]. Furthermore, observations suggest that fatty acid synthase (FASN), which is 

known to be regulated by feeding, is involved in the generation of endogenous PPARα 
ligands [14]. In addition to its natural ligands, a range of synthetic PPARα agonists, 

differing in species-specific potencies and efficacies, has been identified. Notably, fibrates 
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such as gemfibrozil, fenofibrate, and ciprofibrate are clinically used in the treatment of lipid 

disorders such as primary hypertriglyceridemia or mixed dyslipidemia [15].

In the absence of specific ligands, PPARα/RXR heterodimers bind to the DNA response 

elements (PPRE) located in the promoter, enhancer, or intronic region of target genes, and 

recruit corepressors such as NCoR1, which in turn facilitates histone deacetylases (HDACs) 

to repress PPARα target gene transcription. However, upon ligand binding nuclear 

corepressors are released and replaced by coactivators such as PGC1α which, via histone 

acetylase (HAT) activity, derepress and induce the expression of PPARα target genes 

involved in hepatic lipid and glucose metabolism. The wide repertoire of genes that is 

induced in liver after PPARα activation, is suggestive of its central regulatory role in hepatic 

lipid metabolism [10,16]. These genes include FA transporter, FAT/CD36 and fatty acid-

binding protein (L-FABP), and rate-limiting enzymes of peroxisomal β-oxidation, including 

acyl-CoA oxidase 1 (ACOX1) and L-bifunctional enzyme (EHHADH), most pronouncedly 

in rodents. Additionally, both rodent and primate carnitine palmitoyltransferase I and II 

(CPT-I and CPT-II) protein, localized in the outer and inner mitochondrial membrane, 

respectively, are regulated by PPARα [10,16]. Moreover, PPARα regulates the critical 

reaction of mitochondrial β-oxidation by directly controlling medium-chain acyl-CoA 

dehydrogenase (MCAD), long-chain acyl-CoA dehydrogenase (LCAD), very long-chain 

acyl-CoA dehydrogenase (VLCAD), and mitochondrial 3-hydroxy3-methylglutaryl-CoA 

synthase (mHMGCoAS) expression levels [10,16]. Studies performed in mice indicate that 

mechanistic target of rapamycin complex 1 (MTORC1) regulates PPARα activities during 

the feeding/fasting transition and under pathophysiological conditions. In the fed state, 

activated MTORC1, through its activation of ribosomal protein S6 kinase beta-2 (S6K2), 

promotes the nuclear translocation of NCoR1, thereby inhibiting PPARα transcriptional 

activity. However, the inhibition of MTORC1 and its downstream effector S6K2, during 

fasting, promotes a cytoplasmic retention of NCoR1 restoring a PPARα mediated increase in 

genes involved in fat oxidation and ketogenesis [17].

3 Autophagy and Its Role in Liver Lipid Metabolism

Autophagy is a cellular catabolic mechanism and is a highly conserved recycling process 

which involves the degradation of cellular constituents in the lysosomes. Although 

autophagy regulates a number of cell functions, it is primarily involved in maintaining 

energy balance in liver cells [18]. In the liver, other than maintaining hepatic mitochondrial 

health in response to energy demand [19], autophagy also helps to provide FAs for 

mitochondrial oxidation via recycling of hepatic lipid stores [20]. Under lipid loading 

conditions, hepatocytes in culture accumulate triglycerides (TG) and store them as lipid 

droplets (LDs) [21]. Intriguingly, both genetic and pharmacological inhibition of autophagy 

lead to further accumulation of LDs within the hepatocytes, which is associated with 

defective lipolysis and β-oxidation [21]. However, lipid accumulation is reduced upon 

autophagy induction. Concurrently, liver-specific deletion of autophagy genes in mice 

further corroborated these effects on lipid catabolism by displaying increased liver TG and 

cholesterol levels [21].
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Therefore, in addition to hepatic lipases such as adipose triglyceride lipase (ATGL and 

PNPLA2), hepatic lipid stores can be mobilized by a specific subtype of selective autophagy 

termed as "lipophagy". Lipophagy targets LDs and catabolizes their components into FFAs 

and glycerol which are, then, metabolized by the mitochondria [21,22]. The initial stage of 

lipophagy primarily involves the recognition of LDs by the autophagosomal membrane via 

the microtubule-associated protein 1 light chain 3 (MAP1LC3), a mammalian homologue of 

yeast Atg8 and a core component of the phagophore [23]. After subsequent formation of the 

lipid-laden autophagosomes, these autophagosomes fuse with the lysosomes and the lipid 

cargo undergoes lipolysis by lysosomal-resident acid lipases [23]. The precise identities of 

the proteins facilitating these steps of LD recognition are not entirely known, but the 

polyglutamine protein, Huntingtin, seems to be necessary for lipophagy under stress 

conditions [24]. Proteins of the Rab family can also play an important role in lipophagy, as 

many of them have been detected on LDs [25] and some have been associated with 

autophagy regulation (e.g., Rab7 [26], Rab10 [27], and Rab25 [28]). Interestingly, the 

cytosolic lipase, ATGL, also facilitates lipophagy suggesting there is a tight co-ordination 

between cytosolic and lysosomal lipolytic pathways [29,30]. Another lipase, Calcium-

independent phospholipase A2-gamma (PNPLA8), also interacts with LC3 to induce 

lipophagy as part of a SREBP-2-mediated response in a high-fat diet mouse model [31]. 

Similarly, both PNPLA3 and PNPLA5 mediate lipophagy in human hepatocytes during 

starvation conditions [31,32].

The major lipases involved in lipophagy are the lysosomal acid lipases (LALs) that are 

capable of catabolizing triacylglycerides, diacylglycerides, cholesteryl esters, and retinyl 

esters [33,34]. These lipases are mechanistically different from their cytosolic counterparts 

because of their abilities to function in acidic, rather than neutral environments [35]. The 

induction of lipophagy is coupled with mitochondrial β-oxidation and treating hepatocytes 

with lysosomal inhibitors or silencing of autophagy genes leads to increased hepatic 

triglycerides (TAGs) accumulation and reduced mitochondrial β-oxidation [21,36,37]. The 

cell signaling pathways involved in regulating lipophagy are similar to general autophagy at 

the post-translational level and are controlled by the energy- and nutrient-sensing kinases 5'-

AMP-activated protein kinase (AMPK) [38,39] and MTOR1 [40], respectively.

4 PPARα and Hepatic Autophagy/Lipophagy

Several mechanisms are associated with the regulation of autophagy by PPARs. Notably, 

PPARγ is known to upregulate the expression of hypoxia-inducible factor 1 (HIF1), and 

BCL2 interacting protein 3 (BNIP3) to regulate autophagy in breast cancer cells [41]. 

Additionally, the regulation of AMPK, MTOR1, NEDD4, and uncoupling protein 2 (UCP2) 

by PPARγ also contributes to autophagy induction in mammalian cells [42–44]. However, 

direct transcriptional regulation of lipophagy has also been shown to be mediated by nuclear 

hormone receptors such the thyroid hormone receptors (THR) [37], cAMP responsive 

element binding protein (CREB) [45], farnesoid X receptor (FXR) [7], and PPARα [7]. The 

function of the liver in the fasted and fed states is strikingly divergent metabolically [1]. In 

the fed state, the liver switches to an anabolic mode and shuttles nutrients for storage, 

synthesizing both glycogen and FAs [46]. However, it initiates catabolic functions in the 

fasted state, including autophagy induction, oxidizing FAs, and synthesizing glucose for 
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utilization by other tissues [46]. FXR and PPARα serve as nutrient sensors which fine tune 

the transcriptional program under fed and fasted states [47]. Interestingly, in the liver, the 

increases in PPARα expression and transcriptional activity during starvation are closely 

related to the induction of autophagy [7]. Furthermore, in the experiments performed in wild 

type and FXR–/– and PPARα–/– mice treated with or without the FXR and PPARα agonists 

GW4064 and GW7467 showed that PPARα agonist could induce autophagy in wild type 

mice liver even in a fed state but not in PPARα–/– mice. Similarly, FXR agonist could also 

suppress autophagy in a fasted state in an FXR dependent manner. At the transcriptional 

level, this was associated with opposing effects on expression of a wide range of autophagy-

related genes, and genome-wide ChIP-Seq binding studies confirmed that such genes were 

highly enriched as apparent primary targets of both these nuclear receptors [7]. In addition to 

the general induction of autophagy, PPARα agonist also specifically induced lipid 

catabolism through lipophagy [7]. In addition to pharmacologic responses, the induction or 

repression of autophagy/lipophagy in mice liver was also dependent on the PPARα and FXR 

expression, respectively. Therefore, these results highlight the existence of a homeostatic 

role for each receptor in the normal nutrient regulation of the autophagy pathway.

PPARα directly increases the expression of several autophagy genes by directly binding to 

their promoters [7] (Figure 1A). Studies focusing on the mechanism of these counteracting 

effects between PPARα and FXR observed that both PPARα and FXR were capable of 

binding to the same DR-1 cognate sequence in the promoter of autophagy genes such as 

Lc3a and Lc3b. [7]. The binding of FXR/RXR heterodimers to this cognate PPRE sequence 

was associated with FXR agonist-dependent corepressor recruitment, in accordance with the 

observed transcriptional repression. Therefore, these results indicated that there was a 

competition between the PPARα/RXR and FXR/RXR heterodimers for the Lc3a and Lc3b 

promoter sites, with the presence of each agonist increasing the occupancy of its cognate 

receptor, while decreasing that of the other [7]. Additionally, direct binding to autophagy 

gene promoter, PPARα, also stimulates the gene expression of transcription factor EB 

(TFEB), a key regulator of autophagy and lysosome gene transcription to indirectly augment 

the expression of several autophagy and lysosomal genes involved in lipophagy [48,49] 

(Figure 1A). Interestingly, upstream energy sensing kinases through posttranslational 

modification of both PPARα and TFEB via phosphorylation can play a key role in the 

regulation of lipophagy [50,51]. Therefore, collectively, PPARα coordinates several aspects 

of lipid catabolism including the degradation of LDs/TGs into free fatty acids by lipophagy, 

followed by subsequent β-oxidation by peroxisomes and mitochondria (Figure 1A).

5 Lysosomes Control PPARα Nuclear Action

Signaling from lysosomes to the nucleus is a relatively new area of signal transduction that 

is actively being investigated [52]. Therefore, departing from the classical view of lysosomes 

as merely degradative organelles, studies have now discovered signal transduction pathways 

which originate from lysosomes and effect nuclear transcriptional machinery [53]. This 

lysosome-to-nucleus signaling seems to be essential to govern lipid catabolic programs in 

the liver [54]. It examines the effects of nutrient availability on the transcriptional activity of 

genes during starvation, feeding, and basal conditions [55]. In this regard, a recent study 

using a transcriptomic approach has identified the important role(s) of lysosomes in 
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regulating transcription of target genes involved in peroxisomal biogenesis and lipid 

metabolism [8].

Peroxisomes are intimately associated with lipid droplets and mitochondria, and their ability 

to carry out fatty acid oxidation and lipid synthesis regards them as critical mediators of 

hepatic lipid metabolism [56]. The key physiological functions of peroxisomes in liver are 

the β-oxidation of very long chain fatty acids, α-oxidation of branched chain fatty acids, and 

synthesis of ether-linked phospholipids along with the synthesis of bile acids [57]. The 

proteins required for the formation of peroxisomes are known as peroxins, and together with 

the proteins and enzymes involved in peroxisomal lipid oxidation, are under the 

transcriptional control of PPARα and its coactivator, PGC1α [57].

Results by Tan et al. showed that both pharmacological inhibitors of lysosomal activity, as 

well as genetic knockdown of TFEB significantly suppressed the expression of genes 

involved in peroxisomal biogenesis and lipid oxidiation [8]. Furthermore, this study revealed 

that the loss of lysosomal functions leads to protein degradation of PGC1α which leads to 

decreased expression of several PPARα-regulated peroxisomal genes including PPARα 
itself [8]. Interestingly, the ectopic rescue via combined overexpression of both PPARα and 

PGC1α negates the effect of lysosomal inhibition on peroxisomal gene expression [8] 

(Figure 1B). These findings suggest that there is an important crosstalk between lysosome 

function and PPARα genes involved in autophagy and peroxisomal activity, and vice versa 

(Figure 1B). The novel connection between lysosomal function and peroxisomal gene 

transcription via PGC1α-PPARα nuclear receptor activity raises the possibility that 

peroxisomal activity can be enhanced by increasing lysosomal activity, especially in 

disorders linked to peroxisomal defects such as Neimann-Pick disease and X-linked adrenal 

leukodystrophy [58]. Finally, as PGC1α serves as a common coactivator for several other 

nuclear receptors involved in hepatic lipid metabolism, it is possible that lysosomal 

inhibition could modulate other cellular and metabolic pathways mediated by these other 

nuclear receptors [20].

The autophagy-lysosomal pathway also regulates the stability of NCoR1, a transcriptional 

corepressor associated with PPARα and inhibits its transcriptional activity [9]. Interestingly, 

the loss of hepatic autophagy in Atg5-null mice impairs the production of ketone bodies 

during fasting by reducing the expression of enzymes involved in β-oxidation through a 

NCORl-mediated mechanism [9]. NCoR1 interacts with PPARα to suppress PPARα-

mediated transactivation of these target genes. NCoR1 also binds to the autophagosomal 

resident gamma-aminobutyric acid receptor-associated protein (GABARAP) family of 

proteins and is degraded by autophagy. Thus, the loss of autophagy leads to an over-

accumulation of NCoR1, which then suppresses PPARα activity and results in further 

impairment of autophagy and lipid oxidation [9] (Figure 1B). Another study further 

supported the role of autophagy on PPARα action showing that hepatic expression of the 

class 3 PI3K is essential for metabolic adaptation to starvation in the liver through the 

control of PPARα transcriptional activity [59]. This study showed that the loss of hepatic 

expression of class 3 PI3K/Vps15 effected the levels of PPARα ligands, as well as PGC1α 
and NCoR1 levels [59].
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At the mechanistic level, this study showed that both NCoR1 and HDAC3 interacted with 

LC3 and are degraded through the autophagy-lysosomal pathway under fasting conditions. 

However, in autophagy deficient Vps15-deficient hepatocytes this process is impaired, 

leading to NCoR1 stabilization and inhibition of hepatic PPARα activity. [59]. Therefore, 

the authors proposed that the class 3 PI3K/VPS15 exerted a broad transcriptional control in 

the liver to match autophagic activity with mitochondrial metabolism during fasting, via 

regulation of nuclear receptor action [59]. Additionally, several autophagy proteins 

themselves could also regulate NCoR1 corepressor activity by a non-autophagy-mediated 

mechanism to modify PPARα activity [60,61]. Taken together, these foregoing studies 

suggest that autophagy-lysosomal activity contributes to PPARα activation during fasting, 

by promoting degradation of NCoR1 on the one hand, and stabilizing PGC1α on the other 

hand, to increase the production of lipolysis, β-oxidation, and ketone bodies. (Figure 1B).

6 Implication of PPARα-Lysosomal Crosstalk in NAFLD

NAFLD is a disease spectrum which is one of the most prevalent constituents of the 

metabolic syndrome in the world [62]. Its more concerning subtype, known as NASH, is 

accompanied by hepatic inflammation and eventually fibrosis. NASH can further progress to 

life-threatening cirrhosis and hepatocellular carcinoma, and as such, represents an emerging 

cause for liver transplantation [63]. It is projected that NAFLD could affect 33.5% of the 

adult population by 2030, out of which, 27% patients could develop NASH [62]. However, 

currently, no effective approved therapy other that lifestyle intervention exists for NASH, 

thereby demanding urgent development and newer treatment modalities for its treatment 

[64,65]. PPARs have gained attention for their possible anti-NASH action owing to their 

known anti-steatotic and anti-inflammatory activity in liver [64]. In mice, hepatic PPARα 
levels increase acutely upon challenge with a high-fat diet (HFD) as an adaptive response 

[66]; however, in chronic high fat diet (HFD) model, their levels decreased [67]. In humans, 

hepatic PPARα levels negatively correlated with NASH, and an increase in PPARα 
expression levels was associated with histological improvement after lifestyle intervention or 

bariatric surgery [68]. Similarly, PPARα–/– mice exhibited more hepatic triglycerides, 

oxidative stress, inflammation, and cell death with a significantly higher NAFLD activity 

score (NAS) when fed HFD as compared with the WT controls fed HFD [4,69]. These 

findings suggest that PPARα could be a potential therapeutic target for NASH. In this 

connection, the PPARα agonist, Wy-14643, prevented NASH-induced intrahepatic 

triglyceride accumulation and liver injury in wild type mice fed a methionine- and choline-

deficient diet, but had no effect on PPARα–/– mice fed with the same diet [70]. This study 

showed that PPARα activation prevents triglyceride accumulation in NASH by increasing 

fatty acid turnover and catabolism via induction of acyl-CoA oxidase, liver fatty acid 

binding protein, L-bifunctional enzyme, and peroxisomal ketothiolase gene expression [70]. 

Similarly, in a rodent G6Pase model of the glycogen storage disease, GSD1a, in which 

patients developed NASH and cirrhosis, the PPARα mixed agonist, bezafibrate, or selective 

PPARα agonist, fenefibrate, decreased hepatic triglycerides and increased β-oxidation of 

fatty acids with a concomitant increase in autophagy [71,72].

Unfortunately, the efficacy of PPARα agonist for the prevention or treatment of NASH 

found in rodents has not been observed in human trials. Small pilot studies of fibrates in 
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patients with NAFLD did not show any histological improvements in steatosis, 

inflammation, or fibrosis, nor a reduction in ALT, AST, GGT, bilirubin, or cholesterol, 

which has led to the discontinuation of its evaluation [73,74]. Yet another study involving 46 

patients with NASH demonstrated that four weeks of gemfibrozil treatment resulted in an 

improvement in serum ALT levels as compared with the non-placebo controls [75]. 

However, pemafibrate, a novel selective PPAR-α agonist, was shown to ameliorate liver 

dysfunction in type 2 diabetes patients [76]. Encouragingly, elafibranor a dual PPAR-α/δ 
agonist, has been shown to resolve NASH after a 52-week treatment indicated by reduced 

liver enzymes, steatosis, and markers of systemic inflammation and fibrosis [77]. Therefore, 

general trials with PPARα agonist alone have failed to produce optimal histological 

improvement of NASH in patients. This apparent discrepancy between the efficacies of 

PPARα agonist in rodent versus human NAFLD could be due to either a difference in 

PPARα tissue expression patterns or species-specific differences in PPARα biology [4]. 

Furthermore, resistance to PPARα activation in human NAFLD could be another possibility.

Both autophagy and lysosomal activity are impaired in human NAFLD and NASH [78,79]. 

The impairment of autophagy by saturated fatty acids is considered to be due to impaired 

fusion of autophagosomes with lysosomes [80,81]. Extended exposure to high lipid 

concentrations alters the lipid composition of membranes or vesicular compartment 

impairing their fusion [80,81]. Furthermore, high-fat diet also upregulates the expression of 

vesicular fusion proteins leading to a block in autophagic flux and can explain the altered 

autophagy after prolonged fatty diets [79]. Attenuation of chaperone-mediated autophagy 

(CMA) was also observed after lipid challenge [82]. Other reports have demonstrated a 

decrease in the clearance of autophagosomes attributed to a disturbed acidification of 

lysosomal compartments or downregulated cathepsin expression as a contributor of 

autophagy-lysosomal impairment in NAFLD and NASH [83–85].

Intriguingly, autophagy induction in NAFLD and NASH has been seriously considered as a 

key treatment regimen [86]. Already, caloric restriction, time-restricted feeding [87], and 

exercise which are known autophagic stimuli, at least in part, underlie some of their 

beneficial consequences in liver dysfunction and steatosis [88,89]. Similarly, enhancing 

autophagy through drugs metformin or the disaccharide trehalose, thyromimetics, green tea 

and caffeine to enhance lipophagy and beta-oxidation have also shown promising anti-

steatogenic effects [36,88,90,91]. In addition, the use of TFEB agonists has recently been the 

focus of a study based on the demonstration that TFEB overexpression in hepatocytes 

protects against steatosis and insulin resistance via autophagy in mice fed on a high-fat diet 

[92]. Consistent with these reports, the activation of TFEB by ezetimibe, an inhibitor of 

NPC1L1-dependent cholesterol transport, also protects against steatosis and hepatocyte 

injury [93]. Interestingly, some of these autophagy inducing drugs are already FDA-

approved, and ezetimibe has been evaluated in clinical trials for patients with NASH [94], 

although conclusive results require larger studies.

Intriguingly, the increased incidence of NAFLD in aged population [95] could also be 

related to observed reduction in both PPARα [96] and autophagy with aging [97]. Consistent 

with this, lifestyle modifications such as calorie restriction and exercise which increase 
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autophagy during aging are also known inducers of PPARα and hepatic lipid catabolism 

[96,97].

Given the role of the autophagy-lysosomal pathway in regulating PPARα levels and 

transcriptional activity, it is possible that the PPARα activity induced by fibrates could be 

suboptimal in NAFLD patients due to this accompanying autophagy/lysosomal defect. It is, 

therefore, intriguing to speculate that induction of autophagy/lysosomal activity in 

combination with PPARα agonist therapy could yield better results in patients with NAFLD/

NASH. In agreement with this notion, autophagy inducers in rodents have been effective in 

resolving NAFLD and are associated with a corresponding induction of PPARα signaling 

[36,54].

7 Conclusions

The recent discoveries relating to mutual regulation autophagy-lysosomal activity and 

PPARα signaling show that their interactions play important roles in hepatic lipid 

homeostasis. Further studies are needed to explore the full potential of PPARα agonists as 

primary or combination therapy with autophagy/lysosomal activators for NAFLD/NASH in 

humans. Given the importance of these findings that relate to hepatic lipid metabolism, it 

would be worthwhile to investigate similar crosstalk between the autophagy-lysosomal 

pathway and other nuclear receptors.
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Figure 1. 
Reciprocal regulation of PPARα and autophagy-lysosomal signaling. (A) Induction of 

PPARα leads to increased transcription of autophagy (Atg) genes through either direct 

binding of PPARα to their promoter or through secondary regulation of TFEB levels. 

Induction of autophagy genes leads to engulfment of intrahepatic lipid droplets by 

autophagosomes and their eventual hydrolysis in lysosomal compartment termed as 

"lipophagy". The free fatty acids released from lysosomes serve as substrate for 

mitochondrial β-oxidation further induced by PPARα leading to energy generation; (B) 

Impairment of autophagy-lysosomal activity leads to increased stability of PPARα 
corepressor NCoR1 as well as decreased stability of PPARα soactivator PGC1α leading to 
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suppression of PPARα tansactivation activity and reduced lipid catabolism in liver cells. The 

dotted up and down arrows denotes increase or decrease in levels.
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