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Abstract

The analysis of neural circuits can provide crucial insights into the mechanisms of 

neurodegeneration and dementias, and offer potential quantitative biological tools to assess novel 

therapeutics. Here we use behavioural variant frontotemporal dementia (bvFTD) as a model 

disease. We demonstrate that inversion of canonical microcircuit models to non-invasive human 

magnetoencephalography, using Dynamic causal modelling (DCM), can identify the regional- and 

laminar-specificity of bvFTD pathophysiology, and their parameters can accurately differentiate 

patients from matched healthy controls. Using such models, we show that changes in local 

coupling in frontotemporal dementia underlie the failure to adequately establish sensory 

predictions, leading to altered prediction error responses in a cortical information-processing 

hierarchy. Using machine learning, this model-based approach provided greater case-control 

classification accuracy than conventional evoked cortical responses. We suggest that this approach 

provides an in vivo platform for testing mechanistic hypotheses about disease progression and 

pharmacotherapeutics.

Introduction

The impairment of brain circuit physiology occurs early in neurodegeneration. For example, 

the loss of synapses, synaptic plasticity, and effective information processing in 

microcircuits precede the onset of atrophy and behavioural change in animal models of 

neurodegeneration (Rowan et al. 2003; Hof and Morrison 2004). New quantitative tools to 
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assay these early changes are a key goal for the development and monitoring of therapies to 

slow or prevent neurodegenerative disease.

There is strong preclinical evidence of functional impairment in neural circuits before cell 

death or atrophy, including the downstream effects of oligomeric modified and misfolded 

proteins on axonal transport, synapse density and plasticity (Wilcock et al. 2009; Castillo-

Carranza et al. 2015). In humans however, the equivalent physiological observations have 

been limited by the low resolution and indirect nature of brain imaging, such as structural 

and functional magnetic resonance imaging (MRI) (De Jong et al. 2008) and evoked 

responses in electroencephalography (EEG) or magnetoencephalography (MEG) (Stam 

2005, 2010; Hughes and Rowe 2013). Nonetheless, there is growing evidence for the 

reorganisation of brain networks, and change in the efficiency of information processing, in 

patients with Alzheimer’s disease (Zhou et al. 2010; Sami et al. 2018), Parkinson’s disease 

(Crossley et al. 2014), progressive supranucelar palsy (Rittman et al. 2016; Cope et al. 2018) 

and frontotemporal dementia (Hughes et al. 2013, 2018).

Recent advances in Dynamic Causal Modelling of human neural circuits offer new tools for 

in vivo assays of cortical function, with increasingly detailed anatomical and 

pharmacological specificity (Moran, Jung, et al. 2011; Moran, Symmonds, et al. 2011; 

Bastos et al. 2012). Neurophysiologically informed modelling using DCM goes beyond 

descriptive biomarkers by providing a mechanistic link to realistic microscopic processes 

embedded within the model. For example, the canonical microcircuit model (CMC) of 

cortical columns comprises layer-specific and inter-connected populations of pyramidal 

cells, stellate cells and inhibitory interneurons (Douglas and Martin 1991; Haeusler and 

Maass 2007), which link the dynamics of macroscopic brain activity to network parameters 

describing the interactions amongst subpopulations. In both human and animal brain 

imaging, it has been shown that the CMC model accurately recapitulates mechanisms known 

to be interrupted by distinct genetic (Gilbert et al. 2016) and disease (Hughes and Rowe 

2013; Cooray et al. 2015; Symmonds et al. 2018) loci. Moreover the model has been 

validated pharmacologically using modulators of AMPA, GABA and NMDA receptors to 

demonstrate veridical parameter recovery (Sc et al. 2010; Moran, Jung, et al. 2011; Moran et 

al. 2014; Muthukumaraswamy et al. 2015).

The inversion of such CMC models, constrained by empirical brain imaging data, has 

significant advantages over historical approaches to evoked and induced studies applied 

typically in the context of EEG and MEG. Evoked responses and spectral densities are 

limited in the biological information that they yield and lack the biological detail required to 

test mechanistic questions about disease or treatment. However this difference in feature 

space suggests that mechanisms must differ at a neuronal level. The outlined modelling 

approach takes advantage of this and so in contrast to data feature reporting, biological 

models such as the CMC attempt to explain differences in evoked responses or spectra 

giving insight from neurophysiological data in terms of the parameterised and biologically 

plausible circuits that can generate the observed invasive (LFP), scalp (EEG) or sensor 

(MEG) data (e.g. 19).
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We applied dynamic causal modelling to examine neurodegenerative disease, using the 

behavioural variant of frontotemporal dementia (bvFTD) as a demonstrator condition. We 

selected bvFTD as a human disease model because of its regional and laminar specificity 

within the cortex. Behavioural variant frontotemporal dementia (bvFTD) is a severe 

neurodegenerative disorder characterised by progressive deterioration of behaviour and 

personality (Bang et al. 2015), with heterogeneous molecular pathology involving 

misfolding and aggregation of either TAR DNA-binding protein 43 (TDP-43), microtubule 

associated protein Tau, or rarely fused-in-sarcoma protein (Neary et al. 2005). In addition, 

preclinical models demonstrate common downstream consequences including changes in 

synaptic morphology, signalling and density and cell death. Interestingly, in humans and 

transgenic models, cell death in frontal and temporal regions is most marked in superficial 

cortical layers (II-III) (Kersaitis et al. 2004), as well as in layer V in selective frontal regions 

(Kim et al. 2012; Santillo and Englund 2014), providing clear testable hypotheses for the 

inversion of CMC models.

To probe neural circuits in bvFTD, we studied patients during a passive auditory oddball 

paradigm. Auditory stimuli were either standard tones, or deviations in one of five 

dimensions (frequency, loudness, laterality, duration, or a central silent period). Evoked 

responses to deviant tones, and large-scale cortical interactions (Hughes and Rowe 2013) 

during such auditory oddball paradigms are grossly abnormal in bvFTD and related 

disorders. There is an extensive literature on the effects of neurological and psychiatric 

(Umbricht and Krljesb 2005) disease and ageing (Naatanen et al. 2011) on the ‘mismatch 

negativity response (MMN)’, to deviant vs. standard tones. The neural generators of the 

MMN have been successfully modelled in humans (Garrido et al. 2009; Hughes et al. 2013; 

Phillips et al. 2015a) and validated against invasive electro-corticography (ECog) (Phillips et 

al. 2016). These biophysically informed models consistently identify a bilateral network of 

generators including inferior frontal gyrus (IFG), superior temporal gyrus (STG) and 

primary auditory cortex (A1). In this architecture of the MMN network, the parameters of a 

biologically informed CMC model include the connection strengths, time constants and cell 

type contributions to the signal in specific regions and layers of cortex.

Previous studies have confirmed that patients with bvFTD can tolerate this paradigm 

(Hughes et al. 2013). We applied CMC models to MEG data, in a family of nested 

neuroanatomical models, using Dynamic Causal Modelling for evoked responses (Friston et 

al. 2003; Kiebel et al. 2008; Chen et al. 2012). We used the model-evidences, with Bayesian 

model selection, to identify the most likely model under conventional experimental 

conditions (standard and deviant tones).

Given an optimised model architecture, we predicted that the model parameters would differ 

between groups, in accordance with the known laminar- and regional-specificity of bvFTD. 

Specifically, we tested the hypotheses that (i) the contributions of layers II and V to the 

evoked response, but not layer IV, are reduced by bvFTD, and (ii) the parameters of 

connectivity within the regional CMC’s, including the gain of superficial pyramidal cells, 

accurately distinguish patients from controls. This gain is important because it plays an 

important role in predictive coding models of hierarchical neuronal message passing (see 

discussion).
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Methods

Participants

We recruited 44 patients with bvFTD meeting consensus diagnostic criteria (Rascovsky et al. 

2011) from the Cambridge Centre for Frontotemporal Dementia and Related Disorders. 

Forty-four healthy controls were recruited from the Medical Research Council Cognition 

and Brain Sciences Unit volunteer panel. We then subsampled the best age- and sex-matched 

groups, of 40 per group. The study was approved by the local Research Ethics Committee 

and all participants gave written informed consent before participation according to the 1991 

Declaration of Helsinki.

Cognitive Examination

All bvFTD patients completed the Addenbrookes Cognitive Examination (Revised) (ACE-

R) (Mioshi et al. 2006), which includes subscores for attention, memory, fluency, language 

and visuo-spatial ability; and the Mini Mental State Examination (MMSE). Patients were 

further characterised using the Cambridge Behavioural Inventory (CBI), a carer-based 

questionnaire developed for quantifying the symptom costellation and severity in FTD (Wear 

et al. 2008).

MEG Paradigm

Participants were tested on one session each, using a multiple deviant auditory mismatch 

negativity paradigm (Pakarinen et al. 2004; Hughes et al. 2013). Standard compound 

sinusoid tones lasted 75 ms duration, of 500, 1000 and 1500 Hz. Deviants differed in either 

frequency (550, 1100, 1650 Hz), intensity (+/- 6dB), duration (25 ms), laterality (missing 

left or right) or the middle 25ms was omitted (silent gap). Tone-onset-asynchrony was 500 

ms. Three blocks of 5 minutes presented a total of 900 standard and 900 deviant trial types.

MEG pre-processing

All MEG data were collected using a 306-channel Vectorview system (Elekta NeuroMag, 

Helsinki, Finland) at the MRC Cognitiveion and Brain Sciences Unit with 102 

magnetometers, each coupled with 2 planar gradiometers. Data were sampled at 1 KHz and 

downsampled offline to 500 Hz. Signal separation was achieved using the standardised 

MaxFilter 2 algorithm (version 2.0, Elekta-Neuromag) prior to conversion to SPM12. Three 

anatomical fiducial points (the naison and bilateral pre-auricular points) were used for 

manual coregistration to a T1-weighted magnetic resonance image (individual where 

available, otherwise SPM template) for source localisation. Five head-position indicator 

coils and ~80 head points were generated using a 3D digitiser (Fastrak Polhemus Inc.). SPM 

was used for artifact rejection with thresholds of 2500 fT and 900 fT for magnetometers and 

gradiometers, respectively.

Data were epoched -100 to 300 ms around tone onset. Using SPM12, data were band pass 

filtered 1-40 Hz and a subtracted baseline applied to each trial (-100 to 0 ms). Source 

localisation was achieved using Smooth priors, a minimum norm solution that uses a smooth 

source covariance matrix with correlated adjacent sources. From the resultant images, time 

series were extracted from the 6 locations of interest using previously reported MNI 
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coordinates (Garrido et al. 2008; Phillips et al. 2015a): bilateral auditory cortex (MNI 

coordinates: [-42, -22, 7], [46, -14, 8]), bilateral STG (MNI: [-61, -32, 8], [59, -25, 8]) and 

bilateral IFG (MNI: [-46, 20, 8], [46, 20, 8]). We used these coordinates in the following 

way: for each individual, given subject specific source estimates, the local peak of source 

activity was identified within a 2 mm trap radius around these coordinates in template space. 

From here the six resulting source specific timeseries were extracted to form a pseudo-local 

field potential or virtual electrode response for subsequent DCM analysis. For standard 

ERP-based analysis of the MMN, average deviant and standard trials were created for each 

individual and peak amplitude and latency measures for the difference wave (the mismatch 

response) were extracted between 80 and 200 ms.

Neural model and connectivity analysis

Dynamic Causal Modelling (DCM) for evoked responses (Kiebel et al. 2008) was employed 

(SPM12, DCM10) utilising canonical microcircuit models (CMCs) (Douglas and Martin 

1991; Bastos et al. 2012) as generative models for each of the 6 regions. The DCM 

framework permits inversion of a model of data generation, coupling a generative model (f) 
and forward (or spatial, observation) model (g):

y = g(x, φ) + ε
x′ = f(x, u, θ)

The canonical microcircuit is a special case of convolution-based, mean-field neural mass 

model (Jansen and Rit 1995; David et al. 2005), comprising four neural populations 

(superficial layer pyramidal cells, SP; granular layer stellate cells, SS; deep layer pyramidal 

cells, DP; and inhibitory interneurons, II). Each of these populations is described in terms of 

it’s membrane voltage (xv) and current (xi), governed by sets of parameterised, multivariate 

first-order differential equations of the form:

xv′ = xi

xi′ = KU − 2Kxi − K2xv
U = Sd + H + E

where K is the rate-constant of the population, S is the extrinsic projections(s) to this layer, d 
= presynaptic firing (calculated using sigmoid activation function with mean field 

assumption that average input is distribution of membrane depolarization over the 

ensemble), H = the sum of postsynaptic-currents targeting this population (i.e. coupling with 

other populations within this CMC) and E = any external / exogenous inputs. The local 

coupling (G) parameters are depicted in figure 1, while the layer-specific equations of 

motion are in SupMat1.

The local-field potential (LFP) observation model comprises two parameters: an electrode-

gain (L) for each CMC (‘node’) in the model and a vector of contribution weights (J) for 

each element of the model state vector, x, such that the full model prediction, y, is given by:

y = LxJ + E
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In this expression, L is an electrode gain parameter for each source, x is a matrix of neuronal 

states arranged with a row for each source. Finally, J is a vector of contributions for each sort 

of neuronal state (taking nonzero values for population-specific depolarisation).

Priors on the contribution weights (J) were taken from the literature where only 3 weights 

per node were non-zero (and therefore contribute to the signal): SPV=0.8, SSV=0.2 and 

DPV=0.2. In the present model, we enforce symmetry across hemispheres in terms of the 

contributing states (e.g. L2/3 pyramidal populations of left and right IFG share the same 

contribution [J] value). Otherwise the model is as described in Shaw et al. (Shaw et al. 

2017).

Following Phillips et al. (Phillips et al. 2015a), 21 plausible model architectures were 

compared (figure 2). These models comprise forward, backward and lateral connections 

between each of the 6 CMCs. Forward projections originate from SP and target both DP and 

SS of the target regions whereas backward projections originate in DP and target both SP 

and II (Bastos et al. 2012; Shipp et al. 2013) (summarised figure 1b).

The posterior model parameters were estimated by inverting a parameterised full model 

(generative + forward model). This inversion method is referred to as variational bayes 

(Friston et al. 2003, 2007), which optimises log scaling parameters around static priors 

(Supplementary table 1).

SVM pipeline

Support vector machines (LIBSVM implemented in Python (Chang and Lin 2013)) were 

trained and tested using a permutation-based leave-one-out with replacement approach. The 

case excluded for each iteration was selected using the Matlab random integer generator. 

The SVM was trained and tested on 3 sets of data: 1) the generative model parameters in the 

form of effective connectivity strengths between nodes (c.f. generative embedding, see 

(Brodersen et al. 2011)). 2) The forward model parameters in the form of layer-by-node 

specific population contributions – that is, parameter J. and 3) the amplitudes of the MMN at 

each region.

Statistical analyses

Using DCM, we performed Bayesian model inversion and selection to identify the best 

explanation for subject-specific data, in terms of neuronal and biophysical parameters. We 

then used classical, frequentist statistical inference to test hypotheses about group 

differences – based on the DCM parameter estimates. Finally, to establish the out-of-sample 

effect size and predictive validity of these estimators, we used machine learning and 

classification accuracy. This allowed us to compare, quantitatively, the predictive validity of 

summary statistics based upon the data, relative to biophysically informed model 

parameters.

Results

Groups were matched by age (control mean 61.7 range: 45-75; bvFTD mean 60.7 range: 

42-78; n.s.) and sex (controls M:F 20:20; bvFTD M:F 21;19; n.s.). Patients were cognitively 
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impaired with average MMSE=23.5/30 (SE 1.0) and ACER-total=69.5/100 (SE 2.9), with 

typical deficits including severe non-fluency (mean 4.6/14), and milder deficits in attention 

(mean 14.6/18), memory (mean 15.2/26), language (mean 21.1/24) and visuospatial function 

(13.3/16) (Figure 3). Contemporary CBI scores were available for 29 patients, with a mean 

of 85 (+/- 50). These scores are qualitatively similar to those of the bvFTD cohort reported 

by Wear et al (Wear et al. 2008), and are higher than typical CBI scores in Parkinson’s 

disease, Huntington’s disease and Alzheimer’s disease. Two subjects were excluded 

retrospectively due to a change of diagnosis while 5 were excluded due to medication 

changes close to the time of scanning. This resulted in 33 patient datasets and 40 healthy 

control datasets taken forward for the principal analyses.

Since scanning, at least 15 individuals from the patient cohort have died. Five of these 

underwent confirmatory post-mortem pathological testing, revealing four cases with TDP43 

pathology and one FTLD-tau pathology. In addition, three underwent genetic testing, 

confirming two with likely TDP43 pathology (C9orf72 hexanucleatide expansions) and one 

with likely Tau pathology (MAPT mutation).

We confirmed the effect of bvFTD on the MMN event related field, first by averaging over 

the 6 sources’ timecourse (bilateral IFG, STG and A1) between 80 and 300 ms. A group by 

condition (2 x 2) analysis of variance (ANOVA) revealed a significant interaction effect for 

amplitude (F = 9.47, p = 0.002) but not latency (figure 4). Post hoc tests demonstrated that 

the bvFTD group did not establish an amplitude difference between standard and deviant 

stimuli (i.e. the mismatch) (p=>.05) whereas the control group did (t=-6.2, p<.001). I.e., the 

patient group demonstrated an attenuated mismatch negativity.

Following inversion of the 21 models in figure 2, group data were pooled for Bayesian 

Model Selection (BMS). BMS was run both with fixed effects and random effects, using a 

hierarchical family-wise approach. The 21 models were split at three levels (figure 5a), with 

comparisons performed at each level (RFX and FFX). To search this model space, we used a 

step down (greedy search) approach, with random and fixed effects model comparison using 

the following three steps:

1.) Step 1. Models with or without LIFG connectivity (models 7, 8, 10:13, 15, 16, 

18:21 vs. 1:6, 9, 14, 17). The family of models without LIFG won in both RFX 

and FFX analysis (exceedance probability [EP] = 0.89).

2.) Step 2. Within the model set without LIFG connectivity, we compared models 

with or without interhemispheric connections (9,17 vs. 1:6, 14). The family 

without interhemispheric connections won in both RFX and FFX analysis (EP = 

0.68).

3.) Step 3. Within the remaining model set, we compared models with or without a 

top-down (latent) input to rIFG (14 vs. 1:6). The family (model 14 only) with 

rIFG inputs won in both RFX and FFX analysis (EP = 0.81).

Bayesian model selection was repeated for all subjects (pooled control and FTD groups) 

over the 21 models (i.e. not family wise). This also converged on model 14 as most likely. 

We then undertook 1000 permutations of Bayesian model selection using leave-one-out with 
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replacement. As expected from the whole-group Bayesian model selection, model 14 was 

the lead model 88% of the time followed by model 6 in 12%, which is nested within model 

14. Model 14 was therefore taken forward for parameter analysis.

Having identified model 14 as the most likely model architecture, 2 further questions were 

addressed using the parameters from this model. First, we address the ability of the 

parameters controlling cortical layer-specific contributions to the MEG signal (‘J’) to 

differentiate between groups, given the known degenerative pathology in bvFTD (analysis 

A), based on the evidence of laminar specificity of cell loss in bvFTD. Second, having 

optimised these ‘contribution’ parameters for each subject, we reinvert the model to estimate 

local, ‘intrinsic’ coupling strengths between cell populations (analysis B).

Analysis A: Layer-by-node contributions

Layer-by-node contributions were analysed by ANOVA, which demonstrated a trend 

towards a group-by-layer interaction (F = 2.6, p = 0.071). Post-hoc independent t-tests 

revealed a significant reduction of L5/6 STG contribution to the LFP (t=2.8, p=0.005). The 

parameters did not correlate with ERF amplitudes for either group. No differences were 

found in the effective connectivity strengths between nodes between groups.

Although the ANOVA of individual layer-by-node contributions did not indicate a strong 

group difference, these values when taken as a set for classificaiton did separate the groups. 

Overall classification accuracy (true positive + true negative, table 1) was 99.6% using the 

layer-by-node population outputs (figure 7). In contrast, generative embedding, using 

effective connectivity strength between nodes, achieved only 60.7% accuracy, while 

classification by MMN amplitude was 59.8% accurate (versus 50% by chance).

Analysis B: Effective connectivity changes

Analysis of the posterior parameter estimates for intrinsic connectivity confirmed an 

increase in superficial layer (L2/3) pyramidal cell ‘inhibitory self gain’ (decay function) in 

the bvFTD group in the STG (p=.0257) along with a reduction in deep layer (L5/6) 

pyramidal cell self modulation in A1 (p=.0381) (Figure 8). Thus in effect superficial 

temporal regions exhibited hypoactive stimulus related activity while deep sensory regions 

exhibited a hyperactive sensory response.

Discussion

This neurophysiological study of behavioural variant frontotemporal dementia has three 

principal results that contribute to an understanding of the disease. First, we replicate the 

observation that bvFTD reduces the amplitude of the mismatch negativity (Hughes and 

Rowe 2013), with patients failing to either adapt to predictable events and react to the 

unexpected events, compared with healthy adults. Second, we confirmed the 

neurophysiological prediction arising from the hypothesis of laminar selectivity of 

frontotemporal lobar degeneration (Kersaitis et al. 2004; Kim et al. 2012; Santillo and 

Englund 2014), in that bvFTD significantly reduces the contribution to the local 

electromagnetic signal from deep pyramidal cells (figure 6) and demonstrates a clear trend 
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towards reduction in superficial layers, but not layer IV cells. Third, bvFTD causes faster 

decay of superficial layer pyramidal cells’ activity in superficial temporal areas and slower 

decay of deep-layer pyramidal cells in auditory cortex. We interpret these changes in terms 

of the way that sensory information is predicted in hierarchical frontotemporal networks: 

that the gain function of superficial pyramidal cells feeding prediction errors forward is 

reduced, with converse changes in the conditional expectations represented in lower level 

deep pyramidal populations.

The initial analysis of the event-related MMN replicates previous work in a smaller cohort 

(n=11) (Hughes and Rowe 2013). Such a global deficit in MMN generation is not unique to 

bvFTD, but has been reported in several neurological and psychiatric disorders (Mondragón-

Maya et al. 2011; Naatanen et al. 2011). However, patients with bvFTD are unusual in the 

reduction of MMN to all deviant types tested, at the group level. However, the typical 

parameters used to describe the evoked MMN response (magnitude and latency) proved 

insufficient to enable accurate classification.

The model based approach taken using Dynamic Causal Modelling allows a richer 

parameterisation of the neurophysiologic response to standard and deviant tones, through 

generative networks in frontotemporal cortex. These parameters were optimised by inverting 

to the whole timeseries of the initial MMN (300ms), not merely the peak amplitude and 

latency. We built a moderately complex model that does not claim to include all regions in 

which a MMN is generated, but which includes six principal generators that have been most 

extensively studied by MEG, EEG and direct electrocorticography (Garrido et al. 2008, 

2009). Crucially, analysis of human MEG and electrocorticography confirms similar 

hierarchical network features. In this study however, we adopted the more complex and 

biologically informed canonical microcircuit model to examine the mechanism by which 

bvFTD alters the MMN.

With six principal regions in frontotemporal cortex, and possible modulation of feedforward 

and/or feedback connectivity by deviant versus standard stimuli, there are many possible 

models. We searched for the most likely model, from a principled set of 21 models, based on 

Phillips et al. (Phillips et al. 2015a), which includes the model sub-set studied by Garrdio et 
al. (Garrido et al. 2008). We used hierarchical Bayesian model selection, with both Fixed- 

and Random-effects models. FFX and RFX models differ in the interpretation of their 

posterior probabilities, sensitivity to outlying subjects, and whether they accommodate 

heterogeneity in generative models among a cohort. In this study, FFX and RFX were in 

accord, revealing model 14 as the most likely. Garrido and colleagues (Garrido et al. 2008) 

previously demonstrated a closely related models best fit in a ‘roving’ mismatch paradigm in 

healthy subjects, but they did not test an identical model. As in the winning model here 

(model 14), Phillips et al. (Phillips et al. 2015a), included models with top-down inputs to 

IFG, conveying high-level predictions or expectation of an event occurring, as opposed to 

low level predictions of stimulus features.

Model 14, identified by Bayesian model selection as most likely, included right but not left 

IFG. This frontal asymmetry featured in the most likely models for related auditory 

mismatch responses in young healthy adults (Garrido et al. 2008, 2009), which suggests that 
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the asymmetry in this study is not a result of ageing or FTD. However, the model had an 

additional feature whose importance was identified by Phillips et al (Phillips et al. 2015b, 

2016), in terms of an expectancy or pacemaker input onto IFG. The absence of left IFG from 

model 14 suggests that any potential contribution to model accuracy is not justifiable in 

terms of added model complexity, at least for these simple auditory stimuli. However, 

deviants that affect spoken word meaning and identity elicit strongly left lateralised 

responses (Holland et al. 2012), and there is a differential impact of left frontotemporal lobar 

degeneration on linguistic versus non-linguistic deviant responses (Cope et al. 2019).

In the next sections, we discuss the insights arising from the group differences in the most 

likely network model. Our primary hypothesis was that superficial and deep layers of the 

frontal cortex and temporal association cortex would show the largest reduction in their 

contribution to the regional electromagnetic signal. This prediction rests on the well-

characterised pathology of bvFTD, in which layers 2 and 3 contain early pathogenic protein 

aggregates and cell loss in human and animal models (Kersaitis et al. 2004). Moreover, 

selective loss from layer 5 of Von Economo, fork- and surrounding pyramidal neurons 

occurs in bvFTD (Kim et al. 2012), with an estimated 70% reduction in cell number post 
mortem (Seeley 2008). This L5 atrophy is a hallmark of bvFTD pathology.

Our finding demonstrates this reduction in vivo in bvFTD patients, with two crucial 

interpretations. First, in the context of bvFTD, neurophysiological evidence of L5 cell loss 

atrophy may be a biomarker specific to bvFTD, and preservation of layer 5 could be a 

priority for disease modifying treatments of bvFTD. Second, that the observation model 

contribution parameters (DCM parameter J) linked to generative models of cortical networks 

can capture the characteristics of disease specific neurodegeneration, and this that might be 

upheld in other human dementias and neurodegenerative disorders, for which in vivo 
neurophysiological assays are necessarily indirect.

The generative canonical microcircuit model, in contrast to the observation model, provides 

insights into the effect of bvFTD on intrinsic coupling connectivity within cortical regions. 

Two complementary changes were observed in bvFTD, compared with controls: (i) 

increased inhibitory auto-modulation of superficial layer pyramidal cells in STG, indicating 

a more rapid decay of activity in the absence of extrinsic driving inputs to the pyramidal cell 

population; and (ii) decreased auto-modulation of deep layer pyramidal cells in auditory 

cortex, indicating more stable firing rates of pyramidal cells here. These findings are 

particularly relevant because of the crucial roles that these parameters have for predictive 

coding of events.

To understand the clinical consequences of these observations we interpret our findings 

within the predictive coding hypothesis (Rao and Ballard 1999; Friston 2005; Bastos et al. 

2012), in which information about expectations (beliefs) and observed states (sensory 

inputs) are represented in a cortical hierarchy. Although the information content becomes 

more abstract and temporally extended in higher levels, the asymmetry between forward and 

backward flow of information is analogous between hierarchical levels. Specifically, stellate 

cells in layer 4 receive forward connections that encode the prediction errors on the hidden 

causes of the level below. Superficial pyramidal cells encode and feed forward these 
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prediction errors on hidden causes, whereas deep pyramidal cells encode the conditional 

expectations or belief, so as to elaborate backward predictions to lower levels. Within our 

hierarchical model of bvFTD, the superficial temporal cortex are proposed to process 

changes in the physical properties of the tones in terms of the five variable dimensions of 

frequency, duration, amplitude, laterality, and temporal profile. In contrast, auditory cortex 

combines the predictions passed down from STG with the ‘raw’ sensory stream entering 

auditory layer 4.

The two parameter differences we see in the bvFTD group may therefore reflect one – single 

- integrated deficit; namely, a lack of precision in the encoding of prediction errors. This 

discrepancy in prediction subsequently propagates, leading to errors in the encoding of 

‘conditional expectation’ in lower portions of the hierarchy (L5/6 encoding reduction in A1), 

which are observed macroscopically as a failure to generate a mismatch response.

We also tested whether the parameters of the generative model, in terms of extrinsic 

coupling between regions, would provide a better biomarker of disease than the more typical 

summary features of the evoked mismatch response (amplitude and/or latency). This 

heuristic approach could be useful in determining whether model parameters offer robust 

biomarkers for stratification or outcome measures in future experimental medicine studies, 

using cohorts of a mixed pathology (Tau vs. TDP43) that is realistic for early phase trials.

The data clearly show that simple machine learning using a support vector machine provides 

highly accurate classification with model parameters of extrinsic coupling. This contrasts 

with the lower accuracy using MMN amplitude. The latter method supported above-chance 

classification, but the actual accuracy level (~60%) would not be useful in a trials context, 

and suggests that these parameters are not sufficiently sensitive either as a diagnostic or 

prognostic biomarker of bvFTD. The sensitivity and specificity of the Layer-by-node 

parameters in classification were 99.2 and 100%, respectively, making this a strong 

candidate marker. This finding has an added advantage over many imaging biomarkers in 

that the physical basis of the parameter is not merely an indirect correlate of the disease 

process, but rather reflects a component of the disease process itself – namely the reduction 

in the laminar output due to cell dysfunction and death.

The weaker classification accuracy using the between-region connectivity strengths 

(effective connectivity) was surprising in light of the findings of Brodersen et al. (Brodersen 

et al. 2011), who used a similar ‘generative embedding’ approach to distinguish between 

healthy and aphasic patients. However, they used a conceptually analogous but 

mechanistically distinct version of Dynamic Causal Modelling, for functional magnetic 

resonance imaging data. It is also possible that classification would have been higher if 

model selection was performed on each group separately, and subsequent models used for 

classification. However, such an approach is arguably biased towards a group difference in 

parameters, and we selected the model which best captured the pooled population rather 

than individual groups.

Future studies could extend our approach to include more biologically detailed generative 

models in experimental medicine studies and early phase trials. For example, a NMDA-
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receptor furnished conductance based model has been successfully used to model 

channelopathies in individual cases (Gilbert et al. 2016), and the effects of dopamine on 

working memory systems in the frontal cortex (Moran, Symmonds, et al. 2011). This would 

be especially relevant to the use-assessment of target engagement of candidate therapies 

(Moran et al. 2013).

Dynamic Causal Models can in principle also incorporate pathological and structural 

anatomical information. For example, post mortem or selective PET-ligand data may 

separate cases with Tau pathology from TDP43 pathology, which are expected to be in 

roughly equal numbers in a bvFTD cohort. However, the current PET ligands lack 

demonstration of selectivity between Tau and TDP43 pathology, despite being sensitive to 

the burden and distribution of Tau pathology in FTD, progressive supranuclear palsy and 

Alzheimer’s disease (Bevan-Jones et al. 2017; Passamonti et al. 2017). The post mortem 
approach also requires time, to classify patients post hoc. From our cohort of 40 patients, 15 

have died, and 5 underwent post mortem examination and three others have had genetic 

testing to indicate the molecular pathology.

Such models can also assess the generators of magneto- and electroencephalography signals 

at rest and in more complex task (Moran, Symmonds, et al. 2011), optimised by inverting to 

evoked responses as we did in this study, or the spectral density (Moran et al. 2009; Moran, 

Stephan, et al. 2011). However, the cognitive processes underlying variation at ‘rest’ are 

obscure, which confounds the interpretation of group differences in resting state data. 

Conversely, more complex tasks of social, economic, linguistic, mnemonic, affective or 

motor systems are of immediate relevance to the phenomenology of frontotemporal 

dementia (Hughes et al. 2011), but would require additional training and are subject to 

performance confounds. The MMN paradigm achieves a good compromise, of minimal set 

up and no training, while preserving a clear neurocognitive interpretation.

In conclusion, the inversion of generative models of cortical microcircuits, including laminar 

weighting of the regional observation model to magnetoencephalography sensors, provides 

not only evidence of abnormal MMN responses in bvFTD, but also reveals two mechanisms 

by which the observed physiological response differs. Increasing the sophistication of 

human neurophysiological insights from MEG and EEG can provide heuristic biomarkers, 

but also facilitates cross-species comparisons between the physiology of transgenic models 

of frontotemporal lobar degeneration and their human disorders. We suggest that early phase 

clinical trials and experimental medicines studies consider integrating model based analysis 

of MEG and/or EEG, to understand the efficacy and mechanism of emerging candidate 

therapies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Left: The canonical microcircuit with excitatory (green) and inhibitory (red) cell populations 

including pyramidal (triangle) and smooth / stellate (round) cell types. Blue and red arrows 

depict intrinsic excitatory and inhibitory connections, respectively. Middle left: histologic 

depiction of prefrontal cortex cytoarchtecture. Middle Right: Two microcircuits showing 

extrinsic, layer-specific forward (green) and backward (orange) connections. Right: 

Template MRI image with red dots marking MNI coordinates for [right] IFG (top), A1 and 

STG (bottom).
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Figure 2. 
Adjacency matrices showing the 21 model architectures tested, as per Phillips et al. 2015. 

Green, orange and blue blocks represent the presence of forward, backward and lateral (or 

self) connections modulating the mismatch effect, respectively. L/R-IFG = Left/Right-

Inferior frontal gyrus. Inputs are exogenous for sensory regions or endogenous for non-

sensory regions. All driving inputs arrive in layer 4 of target regions. Model 14 (depicted 

right) was the overall winning model, in line with the results of Phillips et al (2015).
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Figure 3. 
Violin plots of the clinical features from the subsections of ACE-R cognitive examination 

for the FTD group. Maximum scores are attention, 18, fluency, 14, language, 26, Memory, 

26, visuospatial, 16.
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Figure 4. 
Group changes in amplitude (left) and latency (right) for each condition, averaged over IFG, 

STG and A1 bilaterally.
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Figure 5. 
a. Hierarchical families tested using BMS. Step 1: Models without left IFG perform better 

than those with (both fixed and random FX). Step 2: Of these models, those without lateral 

connections perform better than those with (both fixed and random FX). Step 3: Of the 

remaining 7 models, the model with top-down input performed better than those without 

(both fixed and random FX).

b. Fixed and Random effects Bayesian Model Selection converge on model 14 as the winnig 

model, followed by its nested model, model 6.
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Figure 6. 
Right: Bar chart with error bars demonstrating the layer contributions per node (with 

enforced symmetry). Blue and red bars depict controls and bvFTD groups, respectively. 

Left: Scatter demonstrating layer 5/6 STG reduction in bvFTD compared with controls (red) 

and the trend in layer 2/3 IFG (blue).
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Figure 7. 
MMN-amplitude and model based classification. Histograms showing overall accuracy over 

5000 permutations with leave-one-out. Note that for J the mean accuracy is 99.6%.
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Figure 8. 
Local (intrinsic) parameter differences between bvFTD and controls. bvFTD show increases 

in L2/3 SP self-modulation in temporal areas (STG) and reductions in L5/6 SP self-

modulation in sensory areas (A1).
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Table 1
Accuracies (%) and predictive values for the SVM performance across the 3 data.

Parameters Description Correct 
(%)

TP 
(%)

TN 
(%)

FP 
(%)

FN 
(%)

PPV 
(%)

NPV 
(%)

Sens 
(%)

Spec(%)

Max 
100%

Max 50% Max 100%

V Connectivity 
strengths between 
nodes

60.7 40 20 29 10 58 66 80 41

J Layer- and node-
specific population 
contributions

99.6 49 48.2 0 0.37 100 99.2 99.2 100

ERF Amp Amplitudes of 
deviant & standard 
tones

59.8 34 26 24 16 61 61 68 52

Mean over permutations
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