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Abstract

The hippocampus is crucial for episodic memory, but it is also involved in online prediction. 

Evidence suggests that a unitary hippocampal code underlies both episodic memory and predictive 

processing, yet within a predictive coding framework the hippocampal-neocortical interactions 

that accompany these two phenomena are distinct and opposing. Namely, during episodic recall, 

the hippocampus is thought to exert an excitatory influence on the neocortex, to reinstate activity 

patterns across cortical circuits. This contrasts with empirical and theoretical work on predictive 

processing, where descending predictions suppress prediction errors to ‘explain away’ ascending 

inputs via cortical inhibition. In this hypothesis piece, we attempt to dissolve this previously 

overlooked dialectic. We consider how the hippocampus may facilitate both prediction and 

memory, respectively, by inhibiting neocortical prediction errors or increasing their gain. We 

propose that these distinct processing modes depend upon the neuromodulatory gain (or precision) 

ascribed to prediction error units. Within this framework, memory recall is cast as arising from 

fictive prediction errors that furnish training signals to optimise generative models of the world, in 

the absence of sensory data.
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1.1 Introduction

Anatomically, the hippocampus sits at the apex of a cortical processing hierarchy (Felleman 

and Van Essen, 1991). Inputs received by sensory cortices reach the hippocampus via the 

entorhinal cortex and other relay regions, which in turn, make widespread cortico-cortical 

connections that project the hippocampal output back to neocortex (Squire et al., 2004; 
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Witter, 1993; Witter et al., 1989). This reciprocal anatomical connectivity equips the 

hippocampus with the necessary architecture to coordinate activity in neocortical circuits 

(Lavenex and Amaral, 2000; Vogt and Miller, 1983).

However, the functional mechanisms that underpin hippocampal-neocortical interactions 

remain unclear. On the one hand, the hippocampus has long been considered crucial for 

recall of rich and detailed memory of past episodes (Scoville and Milner, 1957; Squire and 

Zola-Morgan, 1991). This vivid recall of past events involves mental time travel and 

transient disengagement from ongoing sensorimotor experience – a process thought to be 

accompanied by autonoetic consciousness (Rubin et al., 2003; Tulving, 2002). This complex 

cognitive process can be viewed as constructive (Hassabis and Maguire, 2007; Schacter et 

al., 1998), where the interaction between hippocampus and neocortex mediates integration 

and reinstatement of information stored across modality specific cortical areas (Rugg and 

Vilberg, 2013; Wheeler et al., 2000). Together with the known anatomy, this supports the 

idea that the hippocampus indexes neocortical activity relevant to a particular memory 

(Marr, 1971; Teyler and DiScenna, 1986; Teyler and Rudy, 2007; Tulving and Thomson, 

1973). In this manner, recall of rich and detailed memories involves a selective and 

facilitatory interaction between the hippocampus and neocortex.

On the other hand, the hippocampus shows a remarkable capacity to predict ongoing sensory 

experience in the moment (Lisman and Redish, 2009; Mehta et al., 1997; Skaggs et al., 

1996; Stachenfeld et al., 2017). This predictive activity suggests the hippocampus 

anticipates upcoming sensory information using recent sensory inputs together with 

internally generated sequences that draw upon stored memories (Lisman, 1999; Pezzulo et 

al., 2017). Again, together with the known anatomy, this predictive activity suggests the 

hippocampus is situated high within a hierarchical generative model.

A generative model can be defined as an internal model that the brain can use to generate 

consequences of a particular action or sensory encounter. In this manner, a generative model 

can provide predictions for ongoing sensory experience and anticipate the consequences of a 

particular action before sensorimotor feedback is available. In sensorimotor control, the 

notion of a generative model has emerged as an important theoretical concept (Heuer and 

Keele, 1996; Hinton and Ghahramani, 1997; Wolpert et al., 1995). In perceptual synthesis, 

generative models underwrite the Bayesian brain hypothesis (Dayan et al., 1995; Doya, 

2007; Knill and Pouget, 2004) and, in particular, predictive coding models that now 

dominate predictive processing accounts of perception (Bialek et al., 2001; Clark, 2013; 

Friston, 2005; Friston and Kiebel, 2009; Heeger, 2017; Hohwy, 2013; de Lange et al., 2018; 

Rao and Ballard, 1999; Spratling, 2008; Srinivasan et al., 1982; Wolpert et al., 1995).

On most accounts of predictive processing, cortical hierarchies are associated with 

hierarchical generative models. In this setting, higher levels are thought to generate 

descending predictions of lower-level (e.g. sensory) representations. These descending 

predictions are compared against ascending sensory representations, to form a mismatch or 

prediction error signal. This prediction error can be thought of as the ‘newsworthy’ 

information that is not predicted. As information ascends the cortical hierarchy, sensory 

information is therefore replaced by prediction error signals that carry the information that 
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has yet to be explained (Clark, 2013). The prediction errors drive representations in higher 

levels of the cortical hierarchy to provide better predictions – and thereby suppress 

prediction error signals in lower levels. In addition to this online evidence accumulation (i.e., 

perceptual inference), prediction error signals also drive associative plasticity to update the 

generative model; thereby, minimising prediction errors when a similar situation is 

encountered in the future (i.e. perceptual learning). Finally, the relative importance or 

‘newsworthiness’ of ascending prediction error signals is determined by their precision, 

which, as outlined below, selectively amplifies prediction error signals that convey more 

precise information.

To cancel or suppress the predicted component of a sensory representation, descending 

predictions must have a functionally inhibitory effect on neurons encoding sensory input, 

which at higher levels of the hierarchy corresponds to those neurons encoding prediction 

errors. In this manner, descending predictions – that originate in high levels of the cortical 

hierarchy – may be considered to resolve or ‘explain away’ ascending signals (Friston, 2005; 

Hinton and Ghahramani, 1997; de Lange et al., 2018). This predictive-coding framework is 

consistent with a large body of evidence in both humans and animals, where neuronal 

responses to predicted stimuli are attenuated relative to unpredicted stimuli (for example: 

Alink et al., 2010; Garrido et al., 2009a; Meyer and Olson, 2011; den Ouden et al., 2009). 

Although the precise interaction between hippocampus and neocortex during prediction 

remains unknown, according to the predictive coding framework, descending predictions 

from higher levels, such as the hippocampus, should have an inhibitory effect on neurons 

encoding prediction errors in lower levels of the cortical hierarchy.

This raises a potential dichotomy: as an organ of memory recall, the hippocampus excites 

neocortical representations to reinstate previous experience, but as an organ of prediction, 

the hippocampus should inhibit neocortical prediction errors. To unpack this apparent 

dichotomy, we first consider the functional dissociation between recall of past experience 

and ongoing sensory prediction. In line with previous proposals, we suggest that recall of the 

past and ongoing prediction rely on the same neural machinery in the hippocampus but 

reflect different processing modes. Using a predictive coding framework, we then 

characterise the hippocampal-neocortical interactions that may accompany these distinct 

processing modes, to consider how representations in the hippocampus exert opposing 

effects on neocortical circuits to instantiate both recall of rich and detailed memories and 

prediction of ongoing sensory experience.

In brief, we propose that during episodic recall and predictive processing distinct neocortical 

inhibitory interneurons differentially route information through the canonical neocortical 

microcircuit, to account for opposing hippocampal-neocortical interactions. Within a 

predictive coding framework, the inhibitory effect necessary for predictive ‘explaining-

away’ may use descending inhibition, while the facilitatory effect necessary to reinstate 

cortical representations may be mediated by disinhibition. These opposing excitatory-

inhibitory effects may be mapped onto (i) descending predictions – that drive inhibitory 

interneurons to inhibit ascending sensory input or prediction errors – and (ii) descending 

predictions of precision that modulate the gain of pyramidal neurons (or prediction error 

units) to reinstate cortical representations during recall. Reinstating a neocortical 
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representation during offline recall of past experience may therefore be considered similar to 

online sensory processing, except that during offline recall the reinstated representation is 

‘protected’ from ascending sensory input or prediction errors from lower hierarchical levels. 

Therefore, while the function of ascending prediction errors during ongoing sensory 

experience is to provide an online training signal, the function of memory recall can be cast 

as offline generation of fictive prediction errors that train the brain, so that it can generalize 

to new sensory input in the future. Below we outline the theoretical and empirical evidence 

that speak to this characterisation of hippocampal-neocortical interactions – and identify 

testable hypotheses for this model.

1.2 Hippocampal-neocortical interactions during memory recall

The hippocampus plays a crucial role in the recall of rich and detailed memories of past 

experience, otherwise termed episodic memories. This is evident in the dramatic amnesia 

observed in patients with bilateral hippocampal lesions (Scoville and Milner, 1957). In these 

patients, remote memory appears to be spared, leading to the suggestion that recall of remote 

episodic memory may be hippocampal-independent (Standard Model of Memory 

Consolidation) (McClelland et al., 1995; Squire and Alvarez, 1995). However, alternative 

models (such as Multiple Trace Theory) argue that the hippocampus is required for recall of 

rich and detailed memory in perpetuity (Nadel and Moscovitch, 1997, 1998). While 

empirical support for these competing theories has been discussed in detail elsewhere (Barry 

and Maguire, 2019; Frankland and Bontempi, 2005; Nadel and Hardt, 2011), here we distil 

the common ingredients that describe hippocampal-neocortical interactions during memory 

recall. Notably, these dominant theories agree that during recall of rich and detailed memory, 

the hippocampus mediates neocortical memory reinstatement, if only temporarily.

Memory recall can be defined as vivid recollection of past events, a process that involves 

mental time travel and imagery with transient disengagement from ongoing sensorimotor 

experience (Rubin et al., 2003; Tulving, 2002). Behaviourally, recall of past experience may 

provide a means to simulate and evaluate the hypothetical consequences of future decisions 

(Atance and O’Neill, 2001; Schacter et al., 2007; Szpunar, 2010), reducing the uncertainty 

inherent in deliberative behaviour. At the physiological level, memory recall is accompanied 

by reactivation of distributed activity patterns evinced during an original experience 

(McClelland et al., 1995). Mechanistically, this is thought to be achieved via interactions that 

span a neocortical-hippocampal-neocortical loop. Thus, during sensory experience, 

neocortical activity patterns are passed up the cortical hierarchy to the hippocampus 

(Merzenich et al., 1990), and during memory recall this interaction is thought to be inverted 

– with the hippocampus facilitating and coordinating activity, across distributed neocortical 

circuits (Fig. 1A). Data from both humans and rodents provide support for this view. For 

example, neocortical memory reinstatement can be observed in humans using functional 

Magnetic Resonance Imaging (fMRI) to decode memory-specific activity patterns 

(Baldassano et al., 2017; Chadwick et al., 2010; Staresina et al., 2012). Moreover, 

fluctuations in the hippocampal Blood Oxygen Level Dependent (BOLD) signal predict 

trial-by-trial measures of neocortical activity patterns (Bosch et al., 2014), suggesting 

evidence for a coordinated faciliatory interaction between hippocampus and neocortex 

during recall.
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Optogenetic manipulations in rodents further corroborate this picture. When memory-

specific neurons in hippocampus are tagged and selectively silenced in a contextual fear-

conditioning paradigm, reinstatement of neocortical memory traces and behavioural memory 

expression are impaired (Cowansage et al., 2014; Tanaka et al., 2014). However, even when 

the hippocampus is silenced, memory impairment can be mitigated if the neocortical 

memory trace is activated using optogenetic stimulation (Cowansage et al., 2014). This 

suggests that during recall, memory-specific neurons in the hippocampus reinstate selective 

representations in neocortex. Together these findings support a model whereby the 

hippocampus represents an ‘index’ (Teyler and DiScenna, 1985, 1986; Teyler and Rudy, 

2007) or ‘summary sketch’ of the neocortical representation. A sparse activity pattern in the 

hippocampus may represent the specific conjunction or combination of representations in 

neocortex that together give rise to the full activity pattern (McClelland et al., 1995). 

Therefore, even if the hippocampus receives an incomplete version of the activity pattern, 

the hippocampus can “pattern complete” to facilitate reinstatement of the entire activity 

pattern across neocortex (Rolls, 2013).

Physiologically, this hippocampal index may be attributed to pyramidal cells in the CA1 and 

CA3 regions of the hippocampus. Pyramidal cells in CA1 and CA3 are known to represent 

space (O’Keefe, 1976) and time (MacDonald et al., 2011; Pastalkova et al., 2008), but also 

contextual information (McKenzie et al., 2014). Together these ‘where’ and ‘when’ 

representations may constitute a neural code that describes the statistical regularities of 

space and time, capturing variance along two principal dimensions of everyday experience 

(Eichenbaum, 2017; Friston and Buzsáki, 2016; McKenzie et al., 2014; Schiller et al., 2015; 

Whittington et al., 2019). In addition, the contextual ‘what’ component of these 

hippocampal codes allows for translational invariance across space and time, to endow 

narratives with a particular kind of content. Pyramidal cells in the hippocampus thus provide 

the necessary building blocks for representing rich and detailed experience, either of the 

lived world, or of the past.

1.3 Predictive activity in the hippocampus

While the hippocampus is necessary for recall of episodic memories, the anatomical and 

functional architecture of the hippocampus suggests a cardinal role in the handling of 

abstract, high-level prediction errors. This can be seen in terms of its role as a comparator 

network: predictive sequences in CA3 are sent to area CA1 and compared with a second 

major input that conveys sensory information from neocortex (Hasselmo and Wyble, 1997; 

Lisman and Grace, 2005; Penny et al., 2013; Vinogradova, 1975, 2001). This comparator 

circuitry may account for predictive (‘match’) signals in the hippocampus (Brown and 

Aggleton, 2001; Hannula and Ranganath, 2008; Preston and Gabrieli, 2008), but also 

prediction error (‘mismatch’) signals that may mediate rapid novelty detection in both 

humans and animals (Chen et al., 2011; Duncan et al., 2012; Fyhn et al., 2002; Jenkins et al., 

2004; Kumaran and Maguire, 2006; Ruusuvirta et al., 1995).

During ongoing sensory experience, predictive activity can be observed in the hippocampus 

in the form of phase precession (O’Keefe and Recce, 1993; Skaggs et al., 1996). Phase 

precession is a phenomenon where the phase at which CA1 pyramidal cells fire in the theta 
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rhythm advances as an animal moves through the cells’ preferred place fields. In this 

manner, pyramidal cells show cued prediction of the sequence of upcoming positions 

(Jensen and Lisman, 1996; Tsodyks et al., 1996). This predictive activity is thought to be 

generated using incoming sensory information together with stored memory sequences in 

the CA3 region of the hippocampus (Lisman, 1999). At a choice point in a maze, where 

animals pause and show searching behaviour termed vicarious trial and error, this predictive 

activity can manifest as non-local activity that sweeps through the successive locations in the 

maze, thus spanning future possible trajectories (Johnson and Redish, 2007). Hippocampal 

phase precession can also be observed during theta oscillations in the non-spatial domain, 

during the delay period of a memory task, where environmental cues are kept constant 

(Pastalkova et al., 2008), or when a rat is removed from a ledge and required to jump to 

safety to avoid a shock (Lenck-Santini et al., 2008).

A related, but likely independent, phenomenon is experience-dependent asymmetric 

expansion of place fields (Blum and Abbott, 1996; Mehta et al., 1997). This can be observed 

when rodents repeatedly travel in a particular direction along a linear track. With experience 

of the track, hippocampal pyramidal cells start to fire before the animal visits the preferred 

spatial location of each cell. This anticipatory activity manifests as a backward skew in the 

spatial firing fields of pyramidal cells (Fig. 1B), which can be described computationally by 

the successor representation (Stachenfeld et al., 2017), and other generative models based on 

Markovian processes, where the probability of a future event depends only on the present 

state (Chen et al., 2014; Kaplan and Friston, 2018). Rather than representing explicit spatial 

or temporal information, the successor representation encodes the states of the environment 

in terms of their predictive relationships with other states, thus providing an efficient 

estimate of long-term future reward (Dayan, 1993; Gershman, 2018). In humans, the 

successor representation can explain the hippocampal BOLD signal, even when participants 

navigate through an abstract set of discrete stimulus associations (Garvert et al., 2017).

Here, we focus on hippocampal predictions that occur during ongoing sensory experience. 

However, predictive activity has also been reported in the hippocampus during ‘offline’ 

periods of rest or sleep, which can predict forthcoming behaviour in a manner consistent 

with model-based sequential planning (Pfeiffer and Foster, 2013; Singer et al., 2013) or 

‘preplay’ of future spatial trajectories (Dragoi and Tonegawa, 2011, 2013). These different 

types of predictive activity, ‘online’ versus ‘offline’, may reflect different processing modes 

in the hippocampus, characterised by distinct oscillatory patterns in the hippocampal local 

field potential that are dominated by a theta rhythm and sharp-wave ripple (SWR) events, 

respectively. Unlike, predictive activity during ongoing sensory experience, we propose that 

hippocampal-neocortical interactions that accompany ‘offline’ predictive activity may be 

analogous to interactions observed during recall of past experience and thus described as 

episodic simulation (Schacter et al., 2007). For the remainder of the article, we restrict the 

term prediction to refer to predictions of ongoing sensory experience, where the interaction 

between the hippocampus and neocortex may be interpreted within a predictive coding 

framework (as opposed to a simulation framework). Similarly, we reserve recall for 

mnemonic processes that are not contingent on current sensory input. These two processes, 

recall and prediction, may be considered two different aspects of ‘pattern completion’, and 

differ from new learning driven by prediction error signals (analogous to ‘pattern 
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separation’, Yassa and Stark, 2011). However, as discussed below, within a predictive coding 

framework, recall may be framed as a fictive prediction error.

1.4 Hippocampal-neocortical interactions during prediction

While the hippocampal-neocortical interactions that accompany recall are reasonably well 

established, the precise interactions that accompany prediction of ongoing sensory 

experience are less clear. To account for hippocampal-neocortical interactions during 

prediction, we appeal to theoretical and empirical work on predictive processing. From a 

predictive-coding perspective, and in virtue of its connections with the neocortex, the 

hippocampus can be regarded as a hub or centre of a deep or hierarchical generative model 

that reaches all the way out to sensory cortex (Liu et al., 2018; Mesulam, 2013). On this 

view, the hippocampus can be considered to play a central role in hierarchical predictive 

coding – a formulation of recurrent neuronal message passing, informed largely by studies 

of visual processing (Bastos et al., 2012; Heeger, 2017; Kok et al., 2012a, 2012b; Rao and 

Ballard, 1999; Shipp, 2016; Spratling, 2010). However, rather than generating predictions in 

a particular sensory modality, predictions generated in the hippocampus may underwrite 

multisensory integration (Kok and Turk-Browne, 2018), and furnish predictions that call on 

multimodal representations (Barron et al., 2013). In addition to this domain general aspect, 

predictive activity in the hippocampus should be endowed with a temporal depth. This 

follows because higher levels of the predictive coding hierarchy accumulate evidence for 

representations at progressively longer temporal scales (Kiebel et al., 2008). In other words, 

by being positioned at the apex of the cortical hierarchy, the hippocampus may generate 

multisensory predictions (i.e., ‘what’) with an ordinal aspect (i.e., ‘when’), because it 

accumulates evidence for trajectories or narratives that have a deeper reach into the future 

(and past).

Central to the predictive-coding formulation is the idea that the brain actively predicts 

upcoming sensory experience, to reduce or ‘explain away’ activity in lower-level areas. This 

provides an efficient processing hierarchy, where at each level only the discrepancy between 

the sensory input and the predictions received from higher-level brain areas are represented, 

as a prediction error signal (Bastos et al., 2012; Rao and Ballard, 1999; Shipp, 2016). 

Evidence from single-unit recordings in macaque inferotemporal cortex support this view, 

showing reduced responses to predicted sequences of natural images, when compared to 

unpredicted sequences (Meyer and Olson, 2011). Similarly, human imaging studies show 

reduced responses in sensory neocortex for predictable compared to unpredictable or deviant 

stimuli (Alink et al., 2010; Garrido et al., 2009a; Ouden et al., 2010; Todorovic et al., 2011), 

which cannot be accounted for by attentional effects (Alink et al., 2010).

However, while studies in both humans and non-human primates show robust evidence for 

reduced neural responses to predicted stimuli, this does not necessarily imply an inhibitory 

predictive signal. To reveal the precise mechanism that accounts for reduced neural 

responses to predicted stimuli, researchers have taken advantage of genetic tools available in 

mice. For example, by combining electrophysiology, calcium imaging and optogenetic 

manipulations, the attenuation of stimulus-evoked responses in excitatory cells of auditory 

cortex – during ongoing movement – can be attributed to postsynaptic inhibition (Schneider 

Barron et al. Page 7

Prog Neurobiol. Author manuscript; available in PMC 2020 September 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



et al., 2014). This inhibition implicates local parvalbumin-positive (PV+) interneurons, 

which receive excitatory signals from secondary motor cortex analogous to a corollary 

discharge; i.e., a prediction of sensory consequences (Schneider et al., 2014). In line with the 

interaction between secondary motor cortex and auditory cortex (Schneider et al., 2014), and 

the tenets of predictive coding (Jehee and Ballard, 2009; Rao and Ballard, 1999), this kind of 

result suggests that predictions that derive from higher-order brain regions, such as the 

hippocampus, should exert an inhibitory effect on neocortex, reducing sensory-bound 

responses. Indeed, in primary visual cortex (V1), experience-dependent changes in 

descending projections from the retrosplenial cortex – a brain region that receives input 

directly from the hippocampus – are thought to inhibit ascending sensory input (Makino and 

Komiyama, 2015).

While there are countless examples to suggest that predictions reduce neural activity1, the 

predictive-coding model has been challenged by evidence suggesting predictions can 

enhance rather than reduce neural activity (Chaumon et al., 2008; Doherty et al., 2005; 

Hindy et al., 2016). The usual explanation – for these seemingly contradictory findings – is 

that attention, which is known to enhance neural activity, effectively opposes the inhibitory 

effect of prediction by enhancing the precision of prediction error units (Auksztulewicz and 

Friston, 2015; Chennu et al., 2016; Smout et al., 2019). In line with this framework, fMRI 

measurements in humans show that attention boosts the neural responses to sensory 

evidence, such that it reverses the inhibitory effect of prediction (Kok et al., 2012a). 

Similarly, the precision of prediction errors is thought to gradually increase with learning 

(Friston, 2008; Garrido et al., 2009b; Moran et al., 2013): intuitively, in a familiar 

environment, even minor deviations from perceptual predictions may be deemed as 

"newsworthy". This speaks to the importance of precision or gain control in the mediation of 

enhanced neuronal responses.

1.5 Reinstatement or explaining away?

The hippocampus may thus be considered to have two cardinal functions, that involve 

episodic recall and prediction of ongoing experience. While this dual use of memory likely 

relies upon the same neural machinery within the hippocampus, from a predictive coding 

perspective recall and prediction should give rise to opposing interactions between the 

hippocampus and neocortex. Namely, during memory recall the hippocampus should 

selectively facilitate neocortical representations – by increasing the excitability of 

appropriate prediction error units – to reinstate previous experience. Conversely, during 

predictive coding, the hippocampus should inhibit prediction error units that are reporting 

unexplained sensory inputs.

Although it remains to be seen whether the same cells in hippocampus generate predictions 

and support memory recall, evidence from rodents shows that these two functions are likely 

1In this treatment, we are not concerned with how signed prediction errors are encoded neuronally. Although this is an interesting 
debate (Keller and Mrsic-Flogel, 2018), the encoding of signed prediction errors (required in predictive coding) with non-negative 
firing rates can be accounted for – in terms of neuronal implementation – by noting that signed prediction errors could be reported by 
the logarithm of unsigned firing rates – or deviations from baseline firing. In this treatment, we are concerned with the fluctuations in 
prediction errors (whether they are signed or unsigned).
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supported by the same hippocampal cell-type; namely, pyramidal cells. Indeed, prediction 

can be considered the necessary consequence of a conjunctive or relational code that 

formalises both spatial and abstract representations supported by hippocampal pyramidal 

cells (Eichenbaum, 2004). This means that during prediction, the hippocampus may be 

considered to hold a pointer to neocortical representations of a predicted sensory cue or 

state, directly analogous to a memory index.

However, if hippocampal cells provide a memory index for representations in sensory 

neocortex, while also generating predictions of those representations, what does this tell us 

about the interaction between the hippocampus and neocortex? Crucially, characterising the 

function of the hippocampus as a memory index that reactivates representations in neocortex 

is fundamentally at odds with the idea that the hippocampus provides descending predictions 

to explain away prediction errors at lower cortical levels. To spell out this apparent 

contradiction: within a predictive coding framework the role of a memory index is to 

increase neural activity to select a particular cortical representation, while the role of a 

prediction is to decrease cortical activity (Fig. 1C-D).

To reconcile this apparent contradiction, we appeal to a dual role of descending predictions 

in predictive coding to characterise the synaptic interactions that may underlie 

communication between the hippocampus and neocortex. We propose that the indexing or 

selection of cortical representations involves changing the relative influence of descending 

predictions from the hippocampus and ascending signals from lower cortical regions. This is 

achieved by increasing the precision of prediction errors in hippocampal targets. In 

predictive coding, precision describes the reliability or confidence ascribed to prediction 

errors at each level of the hierarchy. Heuristically, precision modulates the gain of ascending 

prediction errors to convey ‘newsworthy’ information; namely, things that were not 

predicted but are predictable (Clark, 2013). Therefore, in a noisy or volatile environment, 

precision at lower levels is reduced, so that sensory prediction errors are effectively ignored 

by reducing their influence on belief updating at higher levels. Conversely, increasing the 

precision of high-level prediction errors protects top-down predictions from revision by 

bottom-up prediction errors from lower levels. It is this mechanism we associate with the 

selection of high-level cortical representations by the hippocampus.

In engineering, predictive coding is known as Kalman filtering, where precision corresponds 

to the Kalman gain that controls the influence of prediction errors on state estimation. 

Psychologically, precision is associated with attentional gain or selection (Feldman and 

Friston, 2010). Physiologically, this gain control is thought to be mediated by disinhibiting 

neocortical superficial pyramidal cells that are thought to signal prediction errors (Bastos et 

al., 2012). Crucially, this disinhibition may involve fast synchronous interactions between 

superficial pyramidal cells and fast spiking inhibitory interneurons (Auksztulewicz and 

Friston, 2015; Fries, 2005; Kann et al., 2014; Sohal et al., 2009).

Here, we build on this proposal, to suggest that the effects of descending hippocampal 

projections – and subsequent processing throughout the cortical hierarchy – are determined 

by two factors: the dynamic mode of the hippocampus, and the subsequent routing of signals 

within the cortical microcircuit. In short, the dynamic mode of the hippocampus can be 
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characterised by hippocampal oscillations, which are dominated by the theta rhythm during 

ongoing sensory prediction in rodents (Pezzulo et al., 2017), and by sharp-wave ripple 

(SWR) events during episodic memory recall in humans (Norman et al., 2019; Wimmer et 

al., 2019). We propose the hippocampal oscillatory state sets the dynamic mode for 

hippocampal-neocortical communication. The effect of activity generated by the 

hippocampus is then determined by the precise routing within the neocortical microcircuit. 

During prediction, descending projections are mediated by direct inhibition of ascending 

cortical prediction errors encoded by cortical pyramidal cells, while recall is facilitated by 

modulatory disinhibition of the same cortical cells. Thus, one can map inhibition and 

disinhibition of cortical pyramidal cells onto two cardinal components of predictive coding, 

namely first-order predictions (of content) and second-order predictions (of precision) – as 

described in the context of visual processing (Kanai et al., 2015; Shipp, 2016). Below, we 

examine the empirical evidence in favour of these distinct mechanisms.

1.6 Inhibition versus disinhibition

A core feature of neocortex is its layered structure (Felleman and Van Essen, 1991). 

Pyramidal neurons in layer 2/3 receive both bottom-up sensory information from excitatory 

neurons in layer 4 and top-down inputs at their distal dendrites in superficial layer 1 (Zhang 

et al., 2014). Plasticity in layer 1 may therefore allow for dynamic changes to the weighting 

of descending relative to ascending inputs (Abs et al., 2018; Letzkus et al., 2015). In 

predictive coding descending predictions from higher cortical areas (here, ultimately from 

the hippocampus) are proposed to provide top-down inputs that suppress activity in lower 

areas of the cortical hierarchy, particularly in superficial layers (Bastos et al., 2012). Within 

this framework, descending projections that convey predictions must therefore either be 

inhibitory (e.g., long-range GABAergic projections) or target local inhibitory interneurons 

(e.g., in superficial cortical layers).

Although extrinsic corticocortical and allocortical-neocortical connections are 

predominantly excitatory (i.e., glutamatergic), and inhibition is mostly locally sourced in 

neocortex, mounting evidence suggests interregional long-range GABAergic connectivity is 

more prevalent than previously assumed (Caputi et al., 2013), including projections that 

originate in hippocampus and target neocortex. While the functional significance of these 

long-range GABAergic projections remains unclear, one intriguing possibility is that they 

carry predictions from the hippocampus to neocortical brain regions. The anatomical profile 

of long-range projecting GABAergic cells is consistent with this view; where anatomical, 

molecular and electrophysiological approaches have revealed long-range GABAergic 

connections from hippocampus to entorhinal cortex (Melzer et al., 2012) and to the 

retrosplenial cortex (Ferreira-Fernandes et al., 2019; Jinno et al., 2007; Miyashita and 

Rockland, 2007; Yamawaki et al., 2019a), notably two brain regions that provide a crucial 

gateway between the hippocampus and other cortical regions (Kaboodvand et al., 2018; 

Witter, 1993).

The postsynaptic target of these long-range projecting GABAergic cells may depend on the 

precise target region, with reported evidence for preferential targeting of both pyramidal 

neurons (Jinno et al., 2007; Yamawaki et al., 2019a) and inhibitory interneurons (Melzer et 
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al., 2012). Long range GABAergic projections from CA1 to retrosplenial cortex are reported 

to target apical dendrites in layer 1 of pyramidal neurons in deep layers (layer 5) (Yamawaki 

et al., 2019a). Interestingly, long-range projecting GABAergic cells originating in the 

hippocampus have larger axon diameter and a thicker myelin sheet than equivalent CA1 

pyramidal cells connecting to the same region (Jinno et al., 2007). This suggests that 

inhibition deriving from hippocampus arrives before excitatory afferents, providing the 

necessary properties for an inhibitory hippocampal-neocortical interaction with efficient 

temporal synchronisation across hippocampal-neocortical circuits (Buzsáki and Chrobak, 

1995). However, despite detailed neurochemical and anatomical characterisation of long-

range projecting GABAergic neurons (Jinno, 2009), their functional significance remains to 

be established. Future investigations are necessary to determine whether these projections 

carry descending predictions to ‘explain away’ activity in lower-level regions of the cortical 

hierarchy.

Alternatively, hippocampal predictions may instantiate neocortical inhibition by locally 

sourced neocortical inhibitory cells, targeted by long-range excitatory projections. A suitable 

candidate population of inhibitory cells are found in superficial cortical layers (Abs et al., 

2018; Anderson and Martin, 2006; Shipp, 2007; Yamawaki et al., 2019b). Simultaneous 

whole-cell patch-clamp recordings show that inhibitory interneurons in layer 1 provide 

strong monosynaptic inhibition to layer 2/3 pyramidal cells, whose apical dendrites project 

to superficial layers (Chu et al., 2003; Wozny and Williams, 2011). Furthermore, stimulation 

of layer 1 barrel cortex in the rat results in powerful inhibitory effects on whisker-evoked 

responses (Shlosberg et al., 2006). Inhibitory cells in superficial cortical layers therefore 

constitute a suitable candidate for suppressing predicted neocortical activity by targeting 

pyramidal cells that represent prediction errors. In short, one possibility is that inhibitory 

cells in superficial layers of neocortex receive descending, first-order predictions from 

regions that reside at the apex of the cortical processing hierarchy (Fig. 3).

Evidence to support this architecture is beginning to emerge. For example, in superficial 

layers of primary visual cortex experience-dependent changes in top-down inputs that derive 

from the retrosplenial cortex are gated by somatostatin positive (SOM+) interneurons 

(Makino and Komiyama, 2015). In turn, retrosplenial cortex receives hippocampal 

projections that terminate in superficial layers (Sugar et al., 2011). A similar configuration is 

seen in somatosensory cortex, where apical dendrites in layer 1 receive descending 

projections from deep layers of the perirhinal cortex – the final outpost of the medial-

temporal loop (Doron et al., 2019). A notable exception to the rule can be observed in 

entorhinal cortex, where projections from the hippocampus terminate in deep layers (V or 

VI) (Burwell and Amaral, 1998; Suzuki and Amaral, 1994). While the entorhinal cortex may 

play a unique role at the interface between hippocampus and neocortex, beyond the medial-

temporal lobe current empirical evidence suggests inputs that derive from hippocampus 

target locally sources neocortical inhibitory cells that reside in superficial cortical layers.

Notably, the local cortical circuit motif that facilitates direct inhibition of ascending signals 

also has the capacity to mediate disinhibition – that is inhibition of inhibition. Disinhibition 

provides a mechanism to counter the inhibitory effect of descending first order predictions. 

Therefore, selective disinhibition can effectively reduce inhibition onto a target population to 
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selectively increase its expression, enabling particular cortical dynamics (and recurrent 

cortico-hippocampal exchanges) that would look exactly like hippocampal ‘indexing’. 

Compared to other mechanisms that increase excitatory drive to the target population via 

multiplicative or additive modulation of excitation (Carrasco, 2011; Reynolds and Heeger, 

2009), or via competitive inhibition (see Sridharan and Knudsen, 2015 for theoretical 

comparison of these mechanisms), disinhibitory mechanisms readily account for enhanced 

processing of a representation in the absence of sensory input. Relative to mechanisms that 

involve competitive inhibition, disinhibition releases cortical activity patterns in a manner 

that is independent of competing representations (or distractor representations, in the context 

of attentional mechanisms (Sridharan and Knudsen, 2015)). By isolating the neocortical 

target in this manner, correlated noise between the target and competing representations is 

reduced.

Evidence for circuit motifs that employ disinhibition have been identified across several 

cortical regions (Letzkus et al., 2015). Typically, vasoactive intestinal peptide positive (VIP

+) interneurons are thought to provide disinhibitory control, by targeting parvalbumin 

positive (PV+) and/or somatostatin positive (SOM+) interneurons that otherwise inhibit 

target excitatory neurons (Pfeffer et al., 2013; Pi et al., 2013) (Fig. 2A). Compared to other 

interneuron subtypes (PV+ and SOM+), VIP+ interneurons receive the largest proportion of 

cortical input, with distal cortical inputs projecting from deep cortical layers (Wall et al., 

2016). This suggests that VIP+ interneurons are well positioned to implement the effect of 

descending projections. In addition to VIP+ interneurons, layer 1 interneurons positive for 

neuron-derived neurotrophic factor (NDNF) have also been implicated in experience-

dependent disinhibition (Abs et al., 2018).

The functional importance of these disinhibitory circuit motifs is evident during learning, 

where transient reductions in the activity of PV+ interneurons are observed (Gambino and 

Holtmaat, 2012; Kuhlman et al., 2013; Wolff et al., 2014). Interestingly, transient inhibition 

of PV+ cells (i.e. disinhibition) also occurs in rodent dorsal medial prefrontal cortex 

(dmPFC) during exposure to a conditioned stimulus that triggers context-dependent memory 

retrieval (Courtin et al., 2014). Optogenetic inhibition of these dmPFC PV+ interneurons 

elicits retrieval of a fear response, suggesting that transient inhibition of selective PV+ 

interneurons is sufficient for memory recall (Courtin et al., 2014). In humans, parallel 

signatures of these disinhibitory effects can be observed when the concentration of GABA in 

the lateral occipital complex is reduced using brain stimulation, leading to an increase in the 

expression of neocortical memories (Barron et al., 2016; Koolschijn et al., 2019) (Fig. 2B-

E).

Within the cortical microcircuit, the diversity of inhibitory subtypes may therefore provide 

the necessary infrastructure for two principal modes of processing: one that silences cortical 

activity patterns via inhibition and another that amplifies cortical activity patterns via 

disinhibition. This perspective is supported by in silico simulations, which show that the 

weighted difference in inputs received by VIP+ neurons versus other inhibitory subtypes 

may determine the mode of cortical processing (Hertaeg and Sprekeler, 2018; Wong and 

Wang, 2006). These simulations suggest that descending projections received by the cortical 

microcircuit can determine the processing mode by varying the weighted input to different 
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interneuron subtypes. Optogenetic manipulations in rodents further corroborate this 

proposal: when descending projections from cingulate cortex to V1 are routed via SOM+ 

and PV+ interneurons, V1 pyramidal cells are inhibited. However, when these descending 

projections are routed via VIP+ interneurons, this inhibition is overwritten via disinhibition, 

selectively enhancing the response in V1 pyramidal cells (Zhang et al., 2014). Afferents 

from higher-level areas such as frontal cortex can therefore evoke localised inhibition or 

disinhibition in lower-level cortical areas, depending on the routing of inhibition within the 

cortical microcircuit. In an analogous manner, unitary representations in the hippocampus 

may also have the capacity to evoke decreases or increases in neocortical activity. 

Optogenetic tools now provide a means to directly test this hypothesis, to characterise and 

establish the functional significance of hippocampal projections to neocortical regions.

1.7 Differential processing modes: neuromodulation and precision

The diversity of interneurons within the cortical microcircuit appears to allow a single circuit 

motif to have two complementary functions (Fig. 3). When direct descending projections 

target PV+ or SOM+ interneurons, cortical representations are inhibited, providing a means 

for descending predictions to suppress or explain away prediction errors in lower levels of 

the cortical hierarchy. Alternatively, descending predictions can be routed via a disinhibitory 

pathway, where VIP+ interneurons target PV+ and SOM+ interneurons, to release excitatory 

pyramidal cells from inhibition. This facilitatory effect provides a mechanism for selective 
neocortical reinstatement that underlies memory recall. In terms of predictive coding, this 

selection corresponds to the same sort of process underlying attentional selection via the 

selective increase in the precision of particular prediction errors – based on so-called second-

order predictions (Kanai et al., 2015); i.e., predictions of precision. Concurrent, second-

order predictions (of precision) can selectively modulate the gain of prediction error units, 

thereby evincing a form of representational sharpeningKersten et al., 2004; Kok et al., 

2012a; Murray et al., 2002). Notably, in predictive coding, explicit changes in predictability 

are not necessary for predictions of precision to change, as both first and second-order 

predictions of content and context are continuously updated with learning (Garrido et al., 

2009b; Moran et al., 2013).

Increasing evidence suggests that neuromodulation may encode precision (Friston, 2008). 

Neuromodulators increase the gain of cortical circuits by shifting the balance between 

excitation and inhibition (EI) via decreases in inhibition (Alkondon et al., 2000; Froemke, 

2015). For example, application of acetylcholine during whole-cell recording in rat visual 

cortex leads to attenuation of the inhibitory post-synaptic currents received by pyramidal 

cells (Fu et al., 2014; Pfeffer et al., 2013; Xiang et al., 1998). Similarly, when pairing a 

visual stimulus with in-vivo application of a cholinergic agonist, neuronal responses in V1 

increase, suggesting that application of acetylcholine mimics the effects of selective 

attention on V1 activity (Herrero et al., 2008; Kang et al., 2014). Interestingly, this 

acetylcholine dependent increase in cortical gain is mediated via disinhibition as inputs from 

the basal forebrain, the major source of acetylcholine for cortex, target cortical interneurons 

considered responsible for disinhibition, namely VIP+ interneurons (Alitto and Dan, 2013; 

Fu et al., 2014) and NDNF interneurons in layer 1 (Poorthuis et al., 2018). Acetylcholine 
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can therefore directly affect cortical gain by weighting the descending inputs received by 

different interneuron subtypes (Fig. 3).

Evidence in humans further suggests that acetylcholine mediates precision control. When 

humans are given a cholinesterase inhibitor to boost tonic levels of acetylcholine, cortical 

responses to unexpected or ‘deviant’ stimuli are enhanced (Moran et al., 2013). Applying 

biophysically plausible models to this data formalises the role of acetylcholine in 

modulating gain within the cortical microcircuit (Moran et al., 2013). In this manner, 

cholinergic inputs to the cortical microcircuit may reflect the precision of representations, 

which can be formalised as the predicted precision of prediction errors.

By influencing the precision ascribed to prediction errors, neuromodulators may determine 

the nature of hippocampal-neocortical interactions. But what mediates neuromodulator 

release? Intriguingly, the residual prediction error signals that ascend the cortical hierarchy – 

and generate a mismatch signal in the hippocampus – may determine cholinergic tone, 

which in turn affects both the hippocampal processing mode (Hasselmo, 2006; Hasselmo 

and Schnell, 1994) and ensuing hippocampal-neocortical interactions (Lisman and Grace, 

2005). In rodents, cholinergic terminals co-transmit acetylcholine and GABA, two 

neurotransmitters that influence whether the hippocampal processing mode is dominated by 

SWRs (low cholinergic tone) that support episodic recall (Vandecasteele et al., 2014), or by 

theta rhythms (high cholinergic tone) that support either predictive activity or promote 

plasticity to facilitate learning of new information (Hasselmo, 2006; Lisman and Grace, 

2005). Thus, hippocampal regulation of acetylcholine – together with the accompanying 

feedback loop – may exercise precision control to set the relative weighting of inhibitory and 

disinhibitory routing within the cortical microcircuit. Notably, similar mechanisms have also 

been proposed for other neuromodulators such as dopamine (Lisman and Grace, 2005) and 

norepinephrine (Vinogradova, 2001).

It is worth noting that – beyond adaptive gain control exerted by classical neuromodulators 

such as acetylcholine, dopamine, and norepinephrine – precision control may also be 

mediated by NMDA receptors (NMDARs). These two precision control mechanisms may 

differentially affect predictions of stimulus content (‘what’ predictions) and its timing 

(‘when’ predictions). For example, biophysical modelling of stimulus-evoked activity in 

human sensory cortex suggests that precision of ‘when’ predictions is best explained by 

classical neuromodulation of cortical gain (e.g., cholinergic and dopaminergic mechanisms), 

while precision of ‘what’ predictions is better explained by NMDAR-dependent plasticity in 

sensory regions (Auksztulewicz et al., 2018) (Fig. 2F). Crucially, voltage-dependent 

NMDARs are particularly abundant on PV+ interneurons (Cornford et al., 2019) that we 

associate with both the inhibitory and disinhibitory cortical microcircuit pathway. The 

emerging picture therefore suggests that a particular set of descending (precision predicting) 

projections modulate disinhibition to optimally regulate neocortical balance between 

excitation and inhibition, either di-synaptically via VIP+ interneurons that are equipped with 

nicotinic receptors, or directly via NMDARs on fast-spiking PV+ interneurons (Fig. 3).

In short, we propose that neuromodulators, such as acetylcholine, but also NMDAR 

mediated neuromodulation, may help determine whether descending projections that 
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originate in the hippocampus have an inhibitory or disinhibitory effect on cortical 

microcircuits (Fig. 3). The latitude for both driving and modulatory effects of descending 

projections on neocortical pyramidal cells may provide the necessary machinery for the 

hippocampus to play a dual role of generating (first-order) predictions and indexing memory 

via (second-order) predictions of precision. Notably, global neuromodulatory transmitter 

systems may determine the context (i.e., online versus off-line) of these complementary 

roles.

1.8 Updating a Bayesian model and structure learning

This formulation implicitly extends the predictive coding framework to suggest that 

precision also mediates cortical excitability when activity patterns are reinstated off-line, 

during memory retrieval. Thus, high precision increases the gain regardless of whether the 

cortical circuit receives unexpected input that generates prediction errors online, or reinstates 

activity patterns offline. This leads to the prediction that within the cortical microcircuit, 

cortical reinstatement manifests in exactly the same way as during the predictive processing 

of the sensorium. Computationally, this seems a natural generalisation of hierarchical 

inference processes associated with imagination and dreaming (Hinton et al., 1995; Hobson 

and Friston, 2012). In this setting, predictive coding hierarchies are released from sensory 

constraints by neuromodulatory suppression of low-level sensory precision; particularly 

involving cholinergic and noradrenergic neurotransmitter systems (Calvo et al., 1992; 

Stickgold and Hobson, 1995). This suppression is coupled with a relative increase in 

precision of prediction errors higher in the processing hierarchy (thought to be mediated by 

cholinergic afferents) that enable fictive, generative processes and preclude updating by 

prediction errors ascending from lower (e.g., sensory) levels. This is exactly the scenario that 

would be necessary for hippocampal-dependent recall and imagery. To illustrate this 

intuitively, we typically find it easier to imagine with our eyes closed, when the signal-to-

noise of the sensory input (or sensory precision) is attenuated. By closing our eyes, we 

effectively tip the weighting of precision in favour of top-down, prior beliefs, such that 

perceptual content is biased towards autonomous (e.g., recalled) experience rather than 

sensory evidence.

Having characterised memory retrieval within a predictive coding framework, the 

computational parallels between memory retrieval and prediction error signals become 

increasingly apparent. Prediction error signals arise through a mismatch between descending 

inhibitory predictions and ascending excitatory sensory input that manifest as prediction 

errors as they pass through the processing hierarchy. These prediction error signals are used 

to update representations to ensure better estimates for future experience. If cortical 

reinstatement during memory retrieval engages the same neuronal mechanisms, then, like 

prediction error signals, memory retrieval may provide a training signal that can be used to 

update our generative models. This is precisely the computational strategy used in machine 

learning schemes such as the wake-sleep algorithm (Hinton et al., 1995).

It may seem odd to suggest that retrieving old experiences – or constructing new ones – can 

improve a model in the absence of new sensory evidence. However, this is exactly how many 

computational schemes minimize statistical complexity and preclude overfitting; i.e., 
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removing redundant components to ensure the model generalizes to new data. Technically, 

this can be viewed as a process of Bayesian model learning, based upon the maximization of 

Bayesian model evidence. Mathematically, model evidence is the difference between the 

accuracy and complexity of a model’s predictions of (sensory) data (see Box 1). This means 

that model evidence can be increased by reducing complexity in the absence of any new 

data. In summary, the generation of fictive (offline) prediction errors is an essential part of 

machine learning schemes (Hinton et al., 1995) and has been proposed as the basis of 

synaptic homoeostasis (Gilestro et al., 2009; Tononi and Cirelli, 2006) These purely 

theoretical considerations seem to be particularly prescient for the role of the hippocampus 

in sleep (Buckner, 2010; Buzsaki, 1998). Furthermore, they speak to the mechanisms that 

may underwrite more general structure learning in finessing our generative models of the 

world (Gershman, 2017; Tenenbaum et al., 2011; Tervo et al., 2016).

1.9 Conclusion

In this hypothesis piece, we asked how the hippocampus furnishes both an index for cortical 

memory recall, and predictions of cortical representations during sensory experience. We 

use a predictive coding framework to explore how this dual aspect hippocampal function 

may have opposing effects on cortical processing, despite a seemingly unitary hippocampal 

code. To dissolve this dialectic, we use theoretical constraints and empirical evidence to 

characterise hippocampal-neocortical interactions, and generate a number of testable 

predictions (Box 2). The picture that emerges suggests a special role for neocortical 

inhibitory interneurons in determining hippocampal-neocortical interactions. Crucially, the 

diversity of inhibitory interneurons appears to mediate both direct (driving) inhibition and 

disinhibitory (modulatory) mechanisms, which allows for both inhibitory (prediction) and 

facilitatory (recall) hippocampal-neocortical interactions. Furthermore, we propose that 

precision, as defined in predictive coding and implemented by neuromodulation, provides 

the computational formalism to disambiguate these two modes of constructive processing. 

Finally, within this framework, cortical reinstatement during memory recall may underwrite 

our remarkable capacity to improve generative models of the world; even in the absence of 

new data. Recent advances in genetic techniques provide an exciting opportunity to test 

these predictions, which sit at the heart of learning, memory and sentience.
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Box 1

Glossary of terms

Memory index: During memory recall, the hippocampal index facilitates neocortical 

reinstatement of selective activity patterns to recapitulate previous experience. The 

memory index thus represents a unique identifier for experiential events represented 

across distributed neocortical networks.

Reinstatement: A neural activity pattern observed during memory recall that was present 

during a previous experience.

System-level consolidation theory: Proposes that episodic memories are stored in 

progressively strengthened cortico-cortical connections that become independent of the 

hippocampal memory trace with time.

Multiple-Trace theory: Each reactivation of an episodic memory results in a different 

trace in the hippocampus; hippocampal ensembles are always involved in storage and 

retrieval of episodic information.

Generative Model: Generates predictions about incoming sensory input. To better 

predict future sensory input, the generative model is updated by the mismatch between 

the generated prediction and the received sensory input, otherwise termed the prediction 

error signal.

Prediction error: A quantity used in predictive coding to denote the difference between 

an observation, point estimate, or sensory input and its predicted value. Prediction error 

signals carry the only information yet to be explained.

Precision: reflects the reliability or inverse variability of a variable. The precision of a 

prediction error describes the reliability of the prediction error; i.e., the weight afforded 

to a prediction error when revising or updating state estimates or representations (a.k.a. 

Bayesian belief updating).

Disinhibition: involves relieving excitatory neurons from ongoing inhibition to favour 

excitation and thereby enhance their responsiveness. Disinhibition may be achieved by 

inhibiting inhibitory interneurons that directly target excitatory cells.

PV+: Parvalbumin positive interneurons are the largest category of inhibitory cells. They 

are found throughout cortical layers 2-6, are typically fast-spiking and predominantly 

target the perisomatic region of excitatory principal cells (and other PV+ cells).

SOM+: Somatostatin positive interneurons are a diverse subset of inhibitory cells that 

predominantly target the dendrites of excitatory principal cells.

VIP+: Vasoactive intestinal peptide positive interneurons primarily synapse onto other 

GABAergic interneurons, providing inhibition to PV+ and particularly SOM+ 

interneurons. VIP+ interneurons thus play a role in disinhibiting cortical circuits.

Bayesian beliefs: non-propositional probabilistic beliefs that correspond to posterior 

probability distributions (whose sufficient statistics are) encoded by neuronal activity and 

connectivity.
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Bayesian belief updating: the process of updating (the sufficient statistics) of Bayesian 

beliefs about the causes of (sensory) data. There are many particular schemes that 

implement Bayesian belief updating; for example, belief propagation, variational 

message passing, and predictive coding have all been proposed as formal descriptions of 

neuronal dynamics or message passing.

Bayesian model evidence: also known as integrated or marginal likelihood is the 

likelihood that some data were generated by a particular model. It can always be 

decomposed into accuracy (the probability of the data expected under some model 

parameters) and complexity (the number of parameters needed to provide an accurate 

explanation of the data).

Bayesian model learning: a.k.a. Bayesian model selection, updating or structure 

learning. The process of updating the generative model that underwrites Bayesian belief 

updating. This would normally involve removing redundant parameters; e.g., pruning 

redundant synaptic connections. This is a slower process that tries to optimise Bayesian 

belief updating by a generative model that is sufficiently complex to provide an accurate 

account of (sensory) data as simply as possible.
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Box 2

Testable Predictions

1. During ongoing sensory experience, descending predictions generated by the 

hippocampus should elicit cortical inhibition. This may be achieved either by 

(1) excitatory hippocampal projections that target local inhibitory 

interneurons in the neocortical circuits; (2) long-range GABAergic 

projections from hippocampus to excitatory pyramidal cells in neocortex.

2. During memory recall, the hippocampus should reinstate neocortical activity 

patterns via a disinhibitory mechanism that involves either recruiting VIP+ 

neocortical interneurons, or NMDA receptor dependent modulation of fast-

spiking PV+ neocortical interneurons.

3. Memory recall should be accompanied by an increase in precision of 

prediction errors high in the processing hierarchy – that may be sensitive to 

cholinergic manipulations. While online prediction errors can be measured as 

sensory mismatch responses, offline (fictive) prediction errors can be 

indirectly measured as neural responses evoked by noise bursts presented 

during memory recall (Wolff et al., 2017). Increasing the level of 

acetylcholine using Galantamine (a cholinesterase inhibitor) should increase 

the amplitude of these evoked responses at late latencies and in extrasensory 

regions. These amplitude modulations should be explained by increased gain 

of pyramidal cells in extrasensory regions (Moran et al., 2013).

4. Within the cortical microcircuit, two distinct influences of hippocampal 

projections should be discernible: via a direct inhibitory or indirect 

disinhibitory pathway. By identifying neocortical targets of descending 

projections from the hippocampus in mice (Testable Prediction 1), 

optogenetic manipulations may be able to characterise the effect of 

descending hippocampal projections on different inhibitory subtypes, with 

and without stimulation of cholinergic afferents.

5. If memory recall provides a fictive prediction error signal, offline 

reinstatement in low levels of the cortical hierarchy should update 

representations in higher levels of the cortical hierarchy, including in the 

hippocampus. In other words, the fictive prediction error signal should 

provide a training signal that is used to update the generative model. By 

combining representational fMRI with a careful experimental design, it may 

be possible to test this prediction by asking how memory recall in lower levels 

of the cortical hierarchy updates representations in higher levels of the 

cortical hierarchy, including in the hippocampus.
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Figure 1. The hippocampus as both a memory index and a generative model
A) Schematic illustrating the hippocampus as a memory index: During memory recall, 

activity patterns across neocortex are reinstated to recapitulate previous sensory experience 

(shown in red, distributed across the neocortical hierarchy). The hippocampus (shown in 

blue), which is anatomically situated at the top of a cortical processing hierarchy, is thought 

to orchestrate this reinstatement by binding and linking activity patterns stored across 

distributed neocortical networks. B) When rodents repeatedly navigate on a one-dimensional 

track (shown in grey), spatially tuned principal cells in the hippocampus (shown in red) 

show a backward skew in their firing rate (filled line) relative to the first run on the linear 

track (dotted line) (schematic adapted from Mehta et al., 1997). This backward skew can be 

explained by a Successor Representation (Stachenfeld et al., 2017) where the hippocampus 

represents upcoming locations or states that are reliably predicted from the current location 

or state. C-D) Schematic showing neocortex at an intermediary level in the cortical 

hierarchy. Within a predictive coding framework, the dual aspect role of the hippocampus 

gives rise to two complementary hippocampal-neocortical interactions. Descending inputs 

from the hippocampus are shown in blue. An example subset of cells in the neocortex are 

shown in the black box with low firing rate indicated in pale pink and high firing rate 

indicated in red. Ascending sensory input (or prediction error signals) are shown in green. 

C) As a generator of predictions, or generative model, the hippocampus accumulates 

ascending prediction errors from neocortical neurons lower in the hierarchy (not shown) and 

responds with descending predictions to neocortex that inhibit the neocortical prediction 

error signals. Left-hand panel: When the sensory input is unexpected, the resulting 

prediction errors are represented in the neocortical hierarchy. Right-hand panel: With 

learning, the hippocampal generative model is updated until the hippocampal predictions 
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‘explain away’ prediction errors by suppressing neocortical activity. D) As a memory index, 

the hippocampus provides descending input to the neocortex to selectively reinstate activity 

patterns that recapitulate previous sensory experience. The hippocampal memory index can 

thus facilitate neocortical activity, even in the absence of sensory input.
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Figure 2. Inhibition and disinhibition within the canonical neocortical circuit motif
A) Schematic showing a circuit motif that employs disinhibition (i.e. inhibition of 

inhibition). Typically, VIP+ interneurons provide disinhibitory control by targeting PV+ 

and/or SOM+ interneurons that otherwise inhibit the target excitatory principal neurons. 

VIP, PV and SOM refer to VIP+, PV+ and SOM+ respectively. Interneurons are shown in 

grey. Pyramidal cells are shown in red. B-E) Disinhibition of human neocortex leads to re-

expression of associative memories formed between visual stimuli that are rotationally 

invariant. Furthermore, for two overlapping memories, disinhibition in human neocortex 

increases memory interference. Adapted from Koolschijn et al., 2019. B) Schematic showing 

how transient disinhibition of human neocortex can be achieved using unilateral anodal 

transcranial direct current stimulation (tDCS), with the anodal electrode positioned above a 

target region, the anterior lateral occipital cortex (LOC), which has previously been shown to 

encode associations between visual stimuli that are rotationally invariant (Barron et al., 

2016). The cathodal electrode was positioned over the contralateral supraorbital ridge. 

C)When tDCS is applied for 20 minutes using the configuration shown in B, a reduction in 

the concentration of neocortical GABA is observed in anterior LOC, measured with 

Magnetic Resonance Spectroscopy (MRS). D) Left: average position of the anodal tDCS 

electrode, projected into the brain (red-yellow, with group average in yellow) and average 

position of the MRS voxel (blue) from which the change in concentration of GABA was 

measured. Right: for 24 hour-old associative memories formed between rotationally 

invariant visual stimuli, functional Magnetic Resonance Imaging (fMRI) ‘on’ minus ‘off’ 

brain stimulation reveals re-expression of associative memories and an increase in memory 

interference in the brain region underneath the anodal electrode. E) Underneath the anodal 

electrode, an increase in associative memory expression measured with fMRI can be 
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observed during application of tDCS (providing effective disinhibition), suggesting that 

expression of associative memories is otherwise quenched by cortical inhibition. F) 
Prediction signalling in different domains affects the gain in sensory cortical regions, 

expressed as interactions between ensembles of superficial pyramidal cells (SP) and 

inhibitory interneurons (IN). However, the exact neuromodulatory mechanisms are domain-

specific: ‘what’-predictions are mediated by NMDAR-dependent short-term plasticity 

contingent on the postsynaptic effects of descending connections from deep pyramidal cells 

(DP) of higher-order regions, such as the hippocampus, on SP of lower-order regions; 

‘when’-predictions are instead subserved by classical (e.g., dopaminergic, DA, or 

cholinergic, ACh) modulation of postsynaptic gain in lower-order sensory regions. When 

interacting together, these temporal predictions could be specific to a particular stimulus 

content (Auksztulewicz et al., 2018).
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Figure 3. Schematic showing the proposed neuronal architecture underlying inhibitory and 
facilitatory hippocampal-neocortical interactions
Within the neocortical hierarchy, message passing is orchestrated by a canonical 

microcircuit that includes both excitatory (red and black) and inhibitory (beige) cells. In the 

superficial layers of each cortical level, superficial pyramidal cells (red) compare the activity 

of representational units (black) with top-down predictions relayed via SOM+ inhibitory 

interneurons (SOM). These interneurons are targeted by descending prediction signals that 

originate in deep pyramidal cells (black) from the level above. The mismatch between 

representations and descending predictions (black lines) constitutes a prediction error. This 
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prediction error signal (red lines) is passed back up the cortical hierarchy and is received by 

prediction units (black) that drive responses in higher representational units, or, at the apex 

of the processing hierarchy, in the hippocampus. Therefore, as information moves up the 

cortical processing hierarchy, sensory input is replaced by prediction error signals that 

convey the only information yet to be explained. These prediction error signals drive 

representations in higher levels of the cortical hierarchy to provide better predictions, but 

also drive associative plasticity to update internally generated predictions that in the 

hippocampus draw on memory. The output from the hippocampus targets neocortex via 

glutamatergic projections to deep pyramidal cells (black, e.g. in the entorhinal cortex), or via 

long-range GABAergic projections to superficial cells (e.g. in retrosplenial cortex Yamawaki 

et al., 2019a; not shown here). Using a predictive coding framework, we propose that the 

hippocampus uses a unitary code with a dual aspect function. This dual aspect function can 

be characterised as follows: During prediction, the hippocampus can provide multi-sensory 

predictions to ‘explain away’ prediction errors at lower levels of the cortical hierarchy. This 

manifests as an inhibitory hippocampal-neocortical interaction – here mediated by SOM+ 

inhibitory interneurons. During memory recall, the hippocampus can provide a memory 

index to neocortex, to selectively reinstate activity patterns across distributed neocortical 

networks, which manifests as a facilitatory hippocampal-neocortical interaction – here 

mediated polysynaptically via VIP+ and SOM+/PV+ inhibitory interneurons. We propose 

that the diversity of inhibitory interneurons – and their selective responses to classical 

neuromodulators or NMDAR-mediated stimulation– provide the necessary machinery for 

complementary inhibitory and facilitatory hippocampal-neocortical interactions. 

Computationally, the facilitatory (disinhibitory) effect of hippocampal projections would, in 

this scheme, encode the precision of prediction error units by modulating their postsynaptic 

excitability. For simplicity, we have omitted many connections and cell types in the 

canonical microcircuit (e.g., spiny stellate cells in layer 4) and in the hippocampus. 

Furthermore, we have omitted descending projections directly to PV+ interneurons. 

Excitatory synapses are denoted with lines ending in a circle, while inhibitory synapses are 

denoted by a diamond. Note that superficial pyramidal cells receive excitatory and inhibitory 

influences that underwrite a prediction error, while the precision of the encoded prediction 

error is controlled by modulatory (orange) interactions with VIP+ inhibitory interneurons. 

ACh refers to acetylcholine. PV, SOM and VIP refer to PV+, SOM+ and VIP+ interneurons. 

DG refers to the dentate gyrus, Sub refers to subiculum, which together with CA1 and CA3 

constitute subfields of the hippocampus that reside along the performant pathway; ‘n’ refers 

to the level in the cortical hierarchy.
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