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Abstract

Motivation—High-throughput phenomic projects generate complex data from small treatment 

and large control groups that increase the power of the analyses but introduce variation over time. 

A method is needed to utlize a set of temporally local controls that maximizes analytic power 

while minimizing noise from unspecified environmental factors.

Results—Here we introduce 'soft windowing', a methodological approach that selects a window 

of time that includes the most appropriate controls for analysis. Using phenotype data from the 

International Mouse Phenotyping Consortium (IMPC), adaptive windows were applied such that 

control data collected proximally to mutants were assigned the maximal weight, while data 

collected earlier or later had less weight. We applied this method to IMPC data and compared the 

results with those obtained from a standard non-windowed approach. Validation was performed 

using a resampling approach in which we demonstrate a 10% reduction of false positives from 2.5 

million analyses. We applied the method to our production analysis pipeline that establishes 

genotype–phenotype associations by comparing mutant versus control data. We report an increase 

of 30% in significant P-values, as well as linkage to 106 versus 99 disease models via phenotype 

overlap with the soft-windowed and non-windowed approaches, respectively, from a set of 2082 

mutant mouse lines. Our method is generalizable and can benefit large-scale human phenomic 

projects such as the UK Biobank and the All of Us resources.

Availability and implementation—The method is freely available in the R package 

SmoothWin, available on CRAN http://CRAN.R-project.org/package=SmoothWin.

1 Introduction

High-throughput, large-scale phenotyping studies evaluate variables of an organism's 

biological systems to examine the contribution of genetic and environmental factors to 

phenotypes. Standardized phenotyping screens that cover a wide range of biological systems 

have made useful insights for identifying new genetic contributors to robust phenotypes 

when compared with more focussed studies that often target well-characterized genes with 

varying reproducibility (Begley and Ellis, 2012; Edwards et al., 2011; Freedman et al., 2015; 
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Prinz et al., 2011; Stoeger et al., 2018). Leveraging economies of scale and using 

standardized procedures, high-throughput phenotyping screens addresses these challenges 

and have been applied in biological screening of chemical compound libraries, agricultural 

evaluation of crop plants, genome-wide CRISPR-based mutagenic cell line screens and 

multi-centre phenotypic screening of mutated model organisms (Al-Tamimi et al., 2016; 

Dickinson et al., 2016; Flood et al., 2016; Friggens et al., 2011; Malinowska et al., 2017; 

Sun et al., 2017; Vitak et al., 2017; Viti et al., 2015). The continuous generation of large 

volumes of data introduces new challenges affecting automated approaches to statistical 

analysis that have to scale with increasing data and address the underlying complexity 

inherent in large projects (Kurbatova et al., 2015; Meyers et al., 2017; Vaas et al., 2013, 

2012).

The International Mouse Phenotyping Consortium (IMPC) is a G7 recognized global 

research infrastructure dedicated to generating and characterizing a knockout mouse line for 

every protein-coding gene (Bradley et al., 2012; Brown and Moore, 2012; Hrabĕ de Angelis 

et al., 2015). Currently, the IMPC has phenotyped over 148 000 knockouts and 43 000 

control mice (data release 9.2, January 2019) across 12 research centres in 9 countries. 

These centres adhere to a set of standardized phenotype assays defined in the International 

Mouse Phenotyping Resource of Standardised Screens (IMPReSS), and designed to measure 

over 200 parameters on each mouse. As part of these standardized operating procedures, 

critical factors that can impact data collection, such as reagent type or equipment, are 

reported as required metadata. Phenotype data are then centrally collected and quality 

controlled by trained professionals before being released for analysis. All phenotype data are 

processed by the statistical analysis package PhenStat—a freely available R package that 

provides a variety of statistical methods for the identification of genotype to phenotype 

associations by comparing mutant to control data that have the same critical attributes 

(Kurbatova et al., 2015). For quantitative data, linear mixed models are typically employed 

with several factors modelled in including genotype, sex, sex–genotype interaction, body 

weight and batch (i.e. phenotype measures collected on the same day). Mutant mouse lines 

found to have a significant deviation in phenotype measurements are assigned a phenotype 

term from the Mammalian Phenotype Ontology (Blake et al., 2017). These associations, as 

well as the raw data, are disseminated via the web portal (https://www.mousephenotype.org) 

using application programming interfaces and data downloads.

A challenge with high-throughput phenotyping efforts is the small sample size for the 

experimental group (i.e. the knockout mice) that is produced to maximize the use of finite 

resources, considering biological relevance and power analysis (Charan and Kantharia, 

2013). All mice generated by the IMPC are on the inbred C57BL/6N strain. To reduce 

genetic drift, IMPC centers maintain wild-type C57BL/6N production colonies that are 

periodically rederived using commercial vendors (Dickinson et al., 2016; Kurbatova et al., 
2015). Mutant F0 mice are bred with wild-type mice from the production colonies to reduce 

the confounding effects of any de novo, non-targeted mutations. In addition, the IMPC 

centres are encouraged to measure these knockout mice in two or more batches, as this 

improves the false discovery rate by modelling in the random effect of day-to-day variation 

(Karp et al., 2014). In contrast, large control sample sizes accumulate as they provide a 

strong internal control of the pipeline and typically generated with every experimental batch. 
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Such large control groups represent a unique dataset that increase the power of the 

subsequent analyses and allow the construction of a robust baseline (Bradley et al., 2012). 

However, this can lead to the accumulation of heterogeneities including seasonal effects, 

changes in personnel and unknown time-dependent environmental factors (Karp et al., 
2014).

A simple approach to cope with heterogeneity in the data is to set explicit time boundaries 

(e.g. 1 year) before and after experimental collection dates. This 'hard windowing' approach 

will capture different time-frames depending on how much time elapses between the first 

and the last batch of experimental data measured. This approach is unsatisfactory for IMPC 

data as some mutant lines had enough experimental mice to measure in one batch, while 

others needed multiple batches over 18 months due to breeding difficulties or other factors. 

This variation in time-frames can lead to a widely different number of controls being applied 

to an analysis, making it challenging to explore correlations between mutant lines. Thus, 

more tuneable approaches were needed.

In this study, we address the complexity of the data collected over time by proposing a novel 

windowing strategy that we call 'soft windowing'. This approach utilizes a weighting 

function to assign flexible weights, ranging from 0 to 1, to the control data points. Controls 

that are collected on or near the date of mutants are assigned the maximal weights, whereas 

controls at earlier or later dates are assigned less weight. In contrast to the hard windowing, 

the weighting function in the soft windowing allows for different shapes and bandwidths by 

alternating the tuning parameters. In addition, we demonstrate how to tune parameters and 

demonstrate the implementation of the soft windowing on the IMPC data.

2 System and methods

In high-throughput projects, such as the IMPC, the model parameters may not stay constant 

over time that can lead to misleading inferences. For example, Figure 1 illustrates changes to 

the control group trend and/or variation over time for the Forelimb grip strength normalized 
against body weight and Mean cell volume. One approach widely used in signal processing 

(Ford, 2003; Kervrann, 2011; Lima et al., 2009; Poularikas, 2018) is to define a windowing 

function that includes the appropriate number of data points to capture the effect of interest 

while minimizing the noise. This is defined by

W x, l1, l2 =
f x l1 ≤ x ≤ l2
0 o . w

(1)

where setting f (x) to a constant, e.g. f (x) = 1, leads to hard windowing, while setting it to a 

smooth function results in the soft windowing. The same approach can be generalized to 

multiple signals (Huang et al., 2007; Li et al., 2007; Tang et al., 2009) or applied as a rolling 

window (Harel et al., 2008) in the presence of exogenous variables to account for time 

dependency in the regression coefficients (Brown et al., 2018). Alternatively, we propose a 

soft windowing approach for the regression methods by defining a weighting function that 

applies less weight to the residuals outside the window of interest. This leads to distinct 

advantages over the hard windowing. First, the entire dataset is included in the analysis in 

Haselimashhadi et al. Page 3

Bioinformatics. Author manuscript; available in PMC 2020 August 04.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



contrast to the limited data points in the hard windowing. Second, the windowing and the 

parameter estimation are coupled, which is a direct result of using the weighted least squares 

(WLS). Critically, by bounding the controls in a window, we freeze the analysis and 

abrogate the need for further analysis assuming no new experimental data are generated 

within the time window.

3 Algorithm

Our novel windowing strategy explicitly defines the weighting function and proposes a 

simple but effective set of criteria to estimate the minimal window for the noise-power trade 

off.

3.1 Weight generating function

Let t = (t 1, t 2, … , tn) represent a set of n continuous time units, m = (m 1, m 2, … , mp) the 

time units when the treatments are measured (peaks in the windows), 1 = {(l 1L, l 1R), (l 2L, l 

2R), … , (l pL, l pR)} a set of p non-negative left and right bandwidths and k = {(k 1L, k 1R), 

(k 2L, k 2R), … , (k pL, k pR)} a set of p positive left and right shape parameters. We impose 

the continuity on the time to simplify the definition of a continuous function over the time 

units, e.g. by converting dates to UNIX timestamps. Furthermore, we introduce a peak 

generating function (PGF) of the form of ci = F(t; mi − liL, kiL) (1 − F(t; mi + liR, kiR)), i = 1, 

2, … , p where F(x; μ, σ) = PrX (X ≤ x|μ, σ) is selected from the family of cumulative 

distribution functions with location μ and scale σ. In this study, we select F from the family 

of continuous and symmetric distributions (such as the Logistic, Gaussian, Cauchy and 

Laplace distributions). Then, we propose a weight generating function (WGF) of the form of

W GF t, l, k, m = ∑
i = 1

p
ci* + ∑

i ≠ j ∈ 1, 2, …, p
∏
i, j

−ci*cj*

+ ∑
i ≠ j ≠ ℎ ∈ 1, 2, …, p

∏
i, j, ℎ

ci*cj*cℎ* − −1 p + 1∑c1*c2*…cp* , t, l, m ∈ ℝ, k ∈ ℝ+
(2)

where ci* =
ci

maxci
 denotes the normalized PGF. The first term on the right-hand side of 

Equation (2) produces the individual windows and the second term accounts for merging the 

intersections amongst the windows. Figure 2 shows the symmetric WGF (SWGF) that is l iR 

= l iL and k iR = k iL, i = 1, 2, … , p, for the different values of k ∈ [0.2, 50] coloured from 

blue (k = 50) to red (k = 0.2) and for the different values of l = 5, 10, 15. The vertical black 

dashed lines show the hard window corresponding to the value of l. From this plot, the 

function is capable of generating a range of windows from hard (blue) to soft (red). 

Furthermore, the weights lay in the (0, 1] interval for all values of time; however, they may 

not cover the entire (0, 1] spectrum in a bounded time domain. Then, the weights are 

normalized to be ranged in (0, 1] before inserting into the WGF as shown by ci* in Equation 

(2). Figure 3 shows the merge capability of the SWGF for the logistic F with m = 15, 35 and 

different values of k = 0.5, 1.5, 3 and l = 6, 8, 10, 12. From this figure, the function is 

capable of producing a range of flexible multimodal windows (top) as well as aggregated 
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windows (bottom) if |m 1 + l| > |m 2 − l| for all m 1 < m 2, l ∈ ℝ. In all cases, the weights lay 

in the (0, 1] interval.

3.2 Windowing regression

Let y = xβ + e denote a linear model, with y, x, β and e representing response, covariates, 

unknown parameters and independent random noise e ∽ N(0, σ 2 < ∞), respectively. 

Imposing the weights in Equation (2) on the residuals leads to the following WLS:

Q β = WGF t, l, k, m y − xβ 2
2

(3)

where ‖⋅‖2 denotes the second norm of a vector. Minimizing Q(β) with respect to β leads to 

β = x′wx −1x′wy, where w is a diagonal matrix of weights from WGF and (′) denotes the 

transpose of a matrix. Weighted linear regression (WLR), in the context of this study, is 

equivalent to imposing less weight on the off modal time points with respect to m. We 

illustrate this in Figure 4, where 60 observations are simulated from the following model:

yt = tβ1I t ≤ 20 + tβ2I 20 < t < 40 + tβ3I t ≥ 40 + e,

with t = 1, 2, … , 60, β 1 = 0, β 2 = 1, β 3 = 0, e ∼iid N 0, 1  and I is the indicator function,

I x ∈ a, b = 1 x ∈ a, b
0 o . w .

In other words, the model is piecewise linear and only significant in the t ∈ (20, 40) interval. 

Figure 4 (top) shows the global estimation of the linear regression from the entire data 

(dotted black line) and the WLR by WGF(t, 9, 5, 30) (dashed blue line) as well as weights 

from the WGF on the bottom. This plot shows that the non-WLR leads to a horizontal line, 

where no significant gradient is detected, whereas the WLR tends to model the significant 

section of the data that leads to fitting the true line. Figure 4 compares the effect of 

windowing versus considering the entire dataset, showing the different conclusions.

3.3 Selection of the tuning parameters

Selection of the tuning parameters k and l to define the soft window has a strong impact on 

the final estimations and consequently on the inferences that are made from the statistical 

results. Indeed, a wide or over-smooth window can lead to the inclusion of too much noise, 

whereas a small window can result in low power in the analysis. An additional challenge is 

the direct linear correlation between increasing the number of peaks, m, and to the total 

number of the parameters for the windows (l, k) that results in significant growth in the 

computational complexity of the final fitting. This is due to tuning the window in the general 

form of WLS in Equation (3) requires 2p dimensions in space to search for the optimal l and 

k. To cope with this complexity, we propose to fix l and k so all windows are symmetric and 

have the same shape and bandwidth. We then select the tuning parameters by searching the 

space on the grid of (l, k) values and look for the most significant change in mean and/or 

variation of the residuals/predictions. The grid is searched by generating a series of scores 
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from applying t-test (to detect changes in mean) and F-test (to detect change in variation) to 

the consecutive residuals/predictions at each step of expanding (l → l + λ, λ > 0) and/or 

reshaping (k → k + α, α > 0) the windows. This technique is based on the assumption that 

the mean and the variation of the residuals/predictions should remain unchanged in different 

time periods (St. Laurent, 1994).

To gain the necessary power in the analysis, we apply the statistical tests to the values of l 
that correspond to a minimum T observations in the windows. Then one can define the 

quantity of T(l) that is the total number of observations that is included in the hard window 

corresponding to l. We should stress that the definition of T(l) in the soft windowing can be 

challenging because the WGF assigns weights to the entire dataset in the final fitting. To 

address this complexity, we propose the Sum of Weights Score by 

SWS k, l = ∑i = 1
n WGF ti, k, , l, m , that is the summation of weights from WGF for specific l 

and k. Note that SWS(l, k) ≥ T(l) with the equality for sufficiently large k. Because l is 

generally unknown, a value of T(l) = T independent of l needs to be decided before the 

analysis. Our experiments, inspired by the z-test minimal sample size (n > 30), show that 

setting SWS ≥ T with

T ≈ max(35, nπ2) Single peak
35p Multiple peaks

provides sufficient statistical power and precision for the analysis of each sex-parameter in 

IMPC.

Once the bandwidth, l, is selected, the shape parameter, k, can be optimized on a grid of 

values similar to l.

This algorithm is implemented for a broad range of models in the R package SmoothWin 

that is available from https://cran.r-project.org/package=SmoothWin. The main function of 

the package, SmoothWin(…), allows an initial model for the input and, given a range of 

values for the bandwidth and shape, it performs soft windowing on the input model. 

Furthermore, it allows plotting of the results for diagnostics and further inspections. One 

also can generate the weights from SWGF using the expWeigh(…) function.

4 Implementation

4.1 Sensitivity analysis

The sensitivity of the soft windowing to the tuning parameters in particular, the minimum 

observation required in the window (T), is tested on the two IMPC examples introduced in 

Figure 1 for Mean cell volume and Forelimb grip strength normalized against body weight. 
To this end, the tuning parameters l, k and T are set to

l The total range of the experiment time divided into 500 logarithmic distanced 

values;

k the values in [0.5, 10] interval divided into 50 logarithmic distanced values;
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T the values from 14 to the n divided into 25 logarithmic distanced values

where n is the total observation in the dataset. We should stress that l and k are selected to 

cover the entire experiment range and avoid bias by selecting the incomplete ranges. Then 

we only study the effect of T on the final fittings.

Figure 5 shows the sensitivity of the P-values to the change in the minimum observation 

required for the soft windowing, T. The left plots show the change in the P-value 

corresponded to the genotype effect in the linear mixed model (with genotype, sex, 

genotype–sex interaction and body weight in the fixed effect term and the batch in the 

random effect) for different values of T. The dashed blue vertical lines show the maximum 

toleration of T before a step-change in the P-values being observed. The right-hand side 

plots show the final fitting of the windowed model. The controls (triangles) weight are 

colour coded on a spectrum of green–purple, inside the window (green), on the border (grey) 

and outside the window (purple). Figure 5 shows the sensitive of soft windowing to the T, 

for instance, selection of a high value for T could lead to including too much noise in the 

final fitting.

4.2 Simulation study

To assess the performance of the soft windowing method, we implemented a resampling 

approach to construct a sample of artificial mutants from the IMPC control data by 

relabelling some controls as mutant. We then examined the difference in the number of false 

positives that were detected by the standard (non-windowed) analysis versus the soft-

windowed approach. Since the resampling is only performed on the controls, we expect less 

false positives from the soft-windowed results.

Mutant data in the IMPC have a special structure, resulting from mice being born in the 

same litters and being phenotyped closely together in time (batch effect), which must be 

replicated in the resampling approach. We address this by utilizing structured resampling 
that replaces the mutants with the closest random controls in time. We create artificial 

mutant groups by randomly sliding the true mutant structure over the time domain of 

controls, collecting as many controls as there were mutants in the original set and repeating 

this procedure five times per dataset (Supplementary Fig. S1 shows an illustration of three 

iterations of the structured resampling on the Bone Mineral Content parameter).

For non-windowed and soft-windowed analyses, the same statistical model is fitted. That is 

the linear mixed model implemented in the R package PhenStat with genotype, sex, 

genotype–sex interactions and body weight for the fixed effect terms and the batch in the 

random effect. This setup implies that the difference in the results is a direct consequence of 

the control selection strategy by soft windowing. The outcome of the simulation study 

consists of 18 IMPC procedures across 11 centres and over 2.5 million analyses and P-

values. Comparing the results from the IMPC standard and soft-windowed analyses on 

resampled data, we detect an overall of 14 201 and 12 716 false positives (FP), respectively, 

at the signficance level used by the IMPC, 0.0001. This constitutes more than a 10% relative 

improvement in FPs when the soft-windowed method is applied. Table 1 shows the top 10 

IMPC procedures with the significant changes in the FPs. From this table, the procedures 
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Body Composition, Open Field, Urinalysis, Heart Weight, Acoustic Startle and Pre-pulse 
Inhibition account for the highest relative reduction of 68% in FPs, whereas the Clinical 
Blood Chemistry, X-Ray, Insulin Blood Levels, Electrocardiogram and Eye Morphology 
account for the maximum increase of 32% in FPs. Supplementary Figure S2 shows 

parameters from the Body Composition and Clinical Blood Chemistry procudures that 

showed the biggest loss and gain in false positives for assocaited data parameters, 

respectively. This plot shows an improvement in decreasing FPs in all IMPC_DXA 

parameters, which contrasts with an increase in the FPs for IMPC_CBC parameters. We 

further examined the top two IMPC_CBC parameters, Alanine aminotransferase 
(IMPC_CBC_013) and Aspartate aminotransferase (IMPC_CBC_012) in Supplementary 

Figure S3, and noted a high level of randomly deviated points from the mean of controls that 

can bias the outcome of the structured resampling.

4.3 Soft windowing as part of the IMPC statistics pipeline

We next show the performance of the soft windowing approach on IMPC data by integrating 

it into the standard IMPC statistics pipeline in PhenStat (Kurbatova et al., 2016). To this end, 

each dataset is processed by the PhenStat for the initial estimation of a fully saturated linear 

mixed model including genotype, sex, genotype–sex interaction and body weight in the fixed 

effect term and the batch in the random effect. The resulting fit is then passed into the soft 

windowing algorithm in the R package SmoothWin for the determination of the optimal 

windowing weights. After determining the optimal weights, the final model is fitted using a 

weighted linear mixed model and utilizing a backward elimination approach to optimize the 

final model.

Using data release 9.2 (January 2019), we re-analysed 14 million+ data points from which 

10 million+ are mutant animals across the range of IMPC phenotyping procedures. The 

original IMPC standard analysis that did not apply the soft windowing approach to select the 

control data encompassed 403 000+analyses and P-values. This analysis led to 12 728 

significant P-values (<0.0001), compared with 16 415 significant P-values when the soft 

windowing was applied, an increase of 30% in total significant P-values. The IMPC assigns 

mouse lines with phenotype terms from the Mouse Phenotype Ontology (MPO) when a 

significant deviation from the control data is detected for a given data parameter (Meehan et 
al., 2017). Our windowing approach led to 17 391 MPO associations gained and 15 996 

associations lost. To explore these differences further, we created an online tool that displays 

the entire control dataset for a given mouse line-parameter assay with the statistical 

summaries for both the non-windowed methodology and the soft-windowed approach. Users 

may filter on a number of attributes, arrange filter order, zoom in on data visualization or 

navigate directly to the results (https://wwwdev.ebi.ac.uk/mi/impc/dev/phenotype-archive/

media/images/windowing/).

Figure 6 shows the corresponding visualization on the IMPC website for the complete 

dataset (including males and females) previously shown for males only in Figure 1 (top) for 

the Forelimb grip strength normalized against body weight parameter from the IMPC Grip 

Strength procedure. The soft window is indicated, as well as changes in the total number of 

controls (here 1, 572 fewer after soft windowing—counting soft windowing weights >10−7). 
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Furthermore, the P-value corresponding to the genotype effect shows a significant change in 

magnitude, from 2.05 × 10−4 to 6.75 × 10−18 after applying the soft windowing. We then 

tested if our soft-windowed analysis changed our human disease model discovery rate. We 

have previously described the IMPC Phenodigm translational pipeline that automatically 

detects phenotypic similarities between the IMPC strains and over 7 000 rare diseases 

described in the Online Mendelian Inheritance in Man (OMIM), Orphanet and the 

Deciphering Developmental Disorders (DDD) databases (Meehan et al., 2017). This pipeline 

generates qualitative scores on how well a mouse line's associated phenotypes overlap with 

the phenotypes of the human rare disease populations (Akawi et al., 2015; Firth et al., 2009; 

Meehan et al., 2017; Mungall et al., 2015; OMIM Browser, 2017; Rath et al., 2012). By 

comparing the disease model resulting from our soft-windowed analysis versus non-

windowed analysis for IMPC data release 9:2, we find a slight increase in the number of 

disease models (106 versus 99 models using a threshold of 50% phenotype overlap from a 

set of 2082 mouse lines that contain mutations—Supplementary File SI).

5 Discussion

High-throughput phenomics is a powerful tool for the discovery of new genotype–phenotype 

associations and there is an increasing need for innovative analyses that make effective use 

of the voluminous data being generated. Batch effects are inevitable when a large amount of 

data is collected at different times and/or sites and, therefore, need to be accounted for in the 

statistical analysis. In this study, we developed a novel 'soft windowing' method that selects a 

window of time to include controls that are locally selected with respect to experimental 

animals, thus reducing the noise level in the data collected over long periods of time (years). 

Soft windowing has notable advantages over a more traditional hard windowing approach. In 

contrast to the limited data points included in the hard windowing method, the entire dataset 

is considered for the analysis. To this end, we engineered a weighting function to produce 

weights in the form of a window of time. Control data collected proximally to mutants were 

assigned the maximal weight, while data collected earlier or later had less weight. This 

method has the capability of producing indivdual windows as well as merging intersected 

ones. Moreover, the method was implemented to automatically select window size and 

shape.

The performance of the method was shown on a simulated scenario that uses real control 

data collected by the IMPC high-throughput pipelines to assess detection of false positives. 

We also showed the enhancements to the IMPC statistical pipeline that establishes 

genotype–phenotype associations by comparing mutants versus control data using our soft-

windowed approach.

There are two known conditions that affect the method: (i) the WGF can be slow when there 

are too many (>20) distinct windows, however, we have optimized the algorithm to be fast 

enough for the typical IMPC number of peaks (≈3s for 1500 samples and 16 peaks under k 
= 1 and l = 30); and (ii) our resampling scenario indiciated that our soft windowing approach 

is sensitive to the data that have a high level of outliers or random deviation from the mean. 

This may result from a bias in the design of the resampling but may also indicate that using 

all available controls may be appropriate for the cases with extreme variability.
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Our soft windowing approach addresses the scaling issues associated with analysing an ever-

increasing set of control data in long-term projects by eliminating controls with weights 

sufficiently close to zero from future analysis. In the case of the IMPC, once a window of 

control data is determined for a dataset, there would be no further requirement to re-analyse 

the dataset with each subsequent data release. This will reduce the computational resources 

needed with the resulting gene-phenotype associations remaining stable, greatly facilitating 

data exchange with research groups trying to functionally validate genes and their disease 

variants. Our findings also have important implications for such efforts as the UK BioBank 

and the All of Us initiatives where large cohort sizes coupled with mobile medical sensors 

are generating phenotype data at an unprecedented rate (Sankar and Parker, 2017; Sudlow et 
al., 2015). Researchers performing restrospective analysis to analyse exposures for a defined 

outcome group (e.g. metabolic disease) are challenged by the variability and longitudinal 

characteristics associated with these datasets. The methods described here can be used with 

these human health resources to maximize analytical power and help researchers find the 

genetic and environmental contributers to human diseases.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Examples of longitudinal data from the IMPC selected for high variance in control 

population. Scatter plot of the Forelimb grip strength normalized against body weight (top) 

and mean cell volume (bottom) from the IMPC Grip Strength and Haematology procedures, 

respectively. The dashed black lines represent the overall trend of the controls (dark green). 

Mutant mice are in orange
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Fig. 2. 
Behaviour of the symmetric weight generating function (SWGF) for a spectrum of values for 

the shape parameter, k, ranging from k = 50 (blue) to k = 0.2 (red), in intervals of t = 1, 2, 

… , 70, and for the different values of the bandwith l = 5, 10, 15 (left to right). The black 

dashed lines show the hard windows corresponding to l. The grey dotted vertical lines show 

the window peaks. These plots show the capability of the WGF to generate different forms 

of the window
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Fig. 3. 
Merging behaviour of the SWGF for different values of the shape parameter k = 0.5, 1.5, 3 

and the bandwidth l = 6, 8, 10, 12 on a sequence of time points t = 1, 2, … , 60. The vertical 

dashed grey lines show the corresponding hard windows to l. This plot shows the capability 

of SWGF to generate multimodal windows as well as merging individual windows
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Fig. 4. 
(Left) Comparison between the inferences from the windowed linear regression on the 

simulated data (blue dashed line) and without windowing (dotted black line). (Right) The 

corresponding weights from WGF centred on m = 30. With windowing, we attempt to model 

the effective section of the data (blue dots)
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Fig. 5. 
The sensitivity analysis of the soft windowing approach to the minimum observation 

required in the window. The left plots show the variation of the final Genotype P-values with 

different values of T. The vertical dashed blue lines show the maximum toleration of the 

algorithm before including too much noise in the final fittings. The right plots show the 

optimal soft-windowed linear mixed model fitted to the data. The controls (triangles) weight 

are colour coded from green (inside the windows) to grey (on the window borders) and 

purple (outside the window). The mutants are shown with the black plus (+) on the plots
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Fig. 6. 
The soft windowing visualization in the IMPC website for the Forelimb grip strength 
normalized against body weight from the IMPC Grip Strength procedure. The plot shows the 

response over time as well as the fitted soft windows. The tables underneath show the 

comparison between the descriptive statistics obtained from the standard (non-windowed) 

analysis on the left and the soft-windowed approach on the right. The P-values correspond to 

the genotype effect after applying the statistical analyses taking the corresponding controls 

based on the non-window and soft-windowed approaches, respectively
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Table 1
Top 10 IMPC procedures with the highest change in the total number of false positives

Procedure name No. P-values
a

NFP
b

WFP
c

Relative change
d

Body composition(IMPC_DXA) 167 789 3809 2293 37.58

Clinical blood chemistry (IMPC_CBC) 320 949 1472 2414 62.12

Open field (IMPC_OFD) 182 894 1507 830 35.52

Haematology (IMPC_HEM) 243 640 3125 2746 46.77

Heart weight (IMPC_HWT) 16 236 553 409 42.52

Acoustic startle and pre-pulse inhibition(IMPC_ACS) 73 177 352 243 40.84

X-ray (IMPC_XRY) 7016 27 135 83.33

Insulin blood level(IMPC_INS) 9465 63 164 72.25

Electrocardiogram (IMPC_ECG) 122 257 378 471 55.48

Eye morphology (IMPC_EYE) 15 739 86 153 64.02

a
Total number of the analysis and P-values.

b
False positives from the non-windowed results.

c
False positives from the soft-windowed results.

d
Relative percentage change of the false positives ((WFP/(NFP + WFP))%).
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