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Abstract

Functional neuroimaging techniques are widely applied to investigations of human cognition and 

disease. The most commonly used among these is blood oxygen level-dependent (BOLD) 

functional magnetic resonance imaging (fMRI). The BOLD signal occurs because neural activity 

induces an increase in local blood supply to support the increased metabolism that occurs during 

activity. This supply usually outmatches demand, resulting in an increase in oxygenated blood in 

an active brain region, and a corresponding decrease in deoxygenated blood, which generates the 

BOLD signal. Hence, the BOLD response is shaped by an integration of local oxygen use, through 

metabolism, and supply, in the blood. To understand what information is carried in BOLD, we 

must understand how several cell types in the brain – local excitatory neurons, inhibitory neurons, 

astrocytes and vascular cells (pericytes, vascular smooth muscle, and endothelial cells), and their 

modulation by ascending projection neurons - contribute to both metabolism and haemodynamic 

changes. Here, we review the contributions of each cell type to the regulation of cerebral blood 

flow and metabolism, and discuss situations where a simplified interpretation of the BOLD 

response as reporting local excitatory activity may misrepresent important biological phenomena, 

for example with regards to arousal states, ageing and neurological disease.

Keywords

BOLD fMRI; neurovascular coupling; neurometabolic coupling; astrocyte; interneuron; 
endothelial propagation

The blood oxygen level-dependent (BOLD) signal in functional magnetic resonance imaging 

(fMRI) is used as a surrogate measure of neuronal activity. However, because it is not caused 
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directly by neuronal activity but by the disruption of the magnetic field by 

deoxyhaemoglobin in the blood, the BOLD signal is influenced by several factors beyond 

neuronal activity. These factors include the geometry of the vascular bed with respect to the 

magnetic field [1], the concentration of haemoglobin in the blood, blood volume, and the 

oxygenation state of the blood. While the oxygenation state of the blood can be altered by 

systemic factors such as cardiac rhythm and breathing [Das et al., this issue], oxygenation 

state within the brain is set by the balance between extraction of oxygen from the blood to 

fuel increased metabolism (neurometabolic coupling), and the supply of freshly oxygenated 

blood to an active brain region due to the dilation of local blood vessels (neurovascular 

coupling, producing functional hyperaemia). In this review, we examine the contribution of 

different cell types to these two processes and, therefore, to the BOLD signal to better 

understand what a regional change in BOLD reveals about underlying neuronal activity.

Part 1: Neurovascular coupling

Why does neurovascular coupling exist?

The brain is energetically expensive, accounting for 20% of the body’s resting energy 

consumption [2]. In the cerebral cortex, the largest component of this energy is used to fuel 

the sodium-potassium ATPase, which reverses passive ion fluxes during action and synaptic 

potentials to maintain ionic electrochemical gradients [3,4]. Despite this high demand, the 

brain stores very low levels of energy substrates, largely in the form of glycogen, required 

for ATP production. Compared to other organs, the brain’s glycogen storage capacity is 

approximately 1/10th of that of skeletal muscle and 1/30th that of liver (from values reported 

in [5–9]). Therefore, the brain requires a constant supply of oxygen and glucose to drive 

ATP production, mostly from oxidative phosphorylation [10]. Neurovascular coupling is 

assumed to be necessary to increase the supply of energy substrates (oxygen and glucose) in 

the blood, when neurons are active. In fact, the supply of oxygen during neurovascular 

coupling is substantially greater than that consumed by active brain regions (e.g., [11–14]), 

at least in neocortex, resulting in the decrease in deoxygenated haemoglobin that produces 

the positive BOLD signal commonly measured in fMRI studies [15]. The reason for this 

oversupply of oxygen remains unclear, but may involve a requirement for a large 

concentration gradient between the vessel and the tissue for adequate oxygen delivery [16], 

and the spread of hyperaemia (increased blood supply) to vessels in regions that are not 

themselves active but that surround and are upstream of active brain regions (see below). 

Alternatively, the main purpose of neurovascular coupling may not be to increase oxygen 

supply [17,18] but something else, such as the maintenance of stable tissue glucose 

concentrations to support aerobic glycolysis [19] (but also see [20], [21]), washout of waste 

products such as CO2 (but see [22]) and lactate (discussed in [23]), maintenance of 

appropriate tissue [O2]/[CO2] ratio [Buxton, this issue], or temperature regulation [24]. 

Whatever its purpose, the regional increase in oxygenated blood generated by neurovascular 

coupling is reliable enough, in healthy physiology, to generally allow an inference of 

increased neuronal activity from BOLD fMRI signals. However, an understanding of which 

cells drive the increase in cerebral blood flow (CBF, Figure 1) and which cells consume 

oxygen is required to fully and accurately interpret BOLD signals and to understand the 

limits of their utility.
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Neuronal subtypes

Neuronal activity is the initiator of the BOLD signal, which is often assumed to represent the 

aggregate activity of excitatory neurons in a brain region. Indeed, task-associated BOLD 

signals increase in areas of the brain where excitatory activity is expected to be increasing 

[25–28]. Furthermore, studies combining electrophysiological recordings or specific 

inhibitors of neural activity with BOLD signals [28] and haemodynamic increases [29,30] 

have directly demonstrated that these measures reflect an underlying increase in net neural 

activity. Conversely, negative BOLD responses in human subjects were observed in regions 

exhibiting increased GABAergic tone [31], and thus where neuronal activity may have 

decreased below baseline levels. The idea that increased inhibition, and thus lower net neural 

activity, underlies negative BOLD responses is further supported by experiments in primates 

[32] and rodents [33–36], which show that negative BOLD and haemodynamic signals occur 

in areas with decreased excitatory activity [37]. While this simple interpretation, that 

positive and negative BOLD signals reflect increases and decreases in net activity, lends 

itself easily to investigations of cognitive function in humans, it may not always hold true. 

Pharmacological studies blocking both glutamate and Y-aminobutyric acid (GABA) 

receptors have shown that both neurotransmitters are likely involved in neurovascular 

coupling [30,38,39]), suggesting that haemodynamic responses (and, therefore, the BOLD 

signal) are elicited by a combination of signals from excitatory and inhibitory neurons. 

Indeed, inhibitory interneurons may play a more important role in the production of BOLD 

signals than was previously appreciated. Many classes of interneurons have processes that 

directly target blood vessels [40] and can induce or modify neurovascular coupling [41]. 

Emerging evidence also indicates that inhibitory neurons can directly alter cerebral 

haemodynamics [42–46] in a manner that can be independent of net local activity [45,47]. In 

particular, using an optogenetic approach, Lee et al. [45] demonstrated that neuronal nitric 

oxide synthase (nNOS) expressing interneurons can drive increases in blood volume with 

minimal change in net neural activity. Activity in different interneuron populations might 

also generate the negative BOLD response: optogenetic activation of somatostatin [45] and 

parvalbumin [42,48] expressing interneurons can elicit “negative” haemodynamic responses. 

However, the contribution of these interneurons to the BOLD response is ambiguous, with 

studies reporting their ability to evoke positive [42,44,45], inverted [42,45,48], and delayed 

positive [44,46] haemodynamic responses. While the relative importance of individual 

subpopulations of inhibitory interneurons in shaping neurovascular coupling remains an 

open question, it is clear that these cells can directly modulate CBF and that BOLD signals 

reflect aspects of both excitatory and inhibitory neuronal activity. Therefore, although 

BOLD signals indicate changes in neural activity in specific brain regions, they cannot 

distinguish between increases in inhibitory and excitatory activity (see [49] for an in-depth 

discussion). Further, interneuron dysfunction is emerging as an important contributor to 

neurological and psychiatric diseases such as Alzheimer’s disease, epilepsy and 

schizophrenia (see [50–54]), which may alter neurovascular coupling and complicate 

interpretation of the BOLD response in these patient populations.

Task-induced activations may modulate subjects’ attention and arousal via the activity of 

subcortical projection neurons such as neuromodulatory volume transmission systems 

(noradrenaline, acetylcholine, dopamine, serotonin etc.), which also modulate neurovascular 
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coupling [55–57] and the BOLD signal [58–60]. These neuromodulatory systems can alter, 

independently, the activity of excitatory neurons, inhibitory interneurons, astrocytes, and 

even the vasculature itself, potentially complicating interpretation of BOLD signals during 

states of altered attention or arousal, or during diseases that affect these systems. A key 

question is whether the sensitivity of the vasculature to ongoing neural activity is altered by 

changes in neuromodulatory activity. This appears to be the case for the cholinergic system, 

as pharmacological or neurotoxic decreases in cholinergic tone weakened the correlation 

between sensory-evoked neuronal activity and the haemodynamic response [55]. Similar 

changes may contribute to the impaired neurovascular coupling [61] and BOLD signals [62–

64] in Alzheimer’s disease, a condition characterized by loss of cholinergic tone [65].

Astrocytes

Astrocytes are in contact with both neuronal synapses and blood vessels, ideally situating 

them to support neuronal energy demands: either directly through provision of metabolites 

such as lactate (reviewed by [66]; see below) or indirectly by involvement in neurovascular 

coupling (reviewed by [67]).

Neuronal activity can evoke an increase in astrocyte intracellular calcium, leading to release 

of vasoactive molecules, and altered haemodynamics [68–72]. Optogenetic stimulation of 

astrocytes can also increase BOLD without altering neuronal activity [73], indicating that 

astrocytes can act as a bridge between neuronal activity and blood flow. However, astrocytic 

calcium signals have been criticized as being too slow or infrequent to explain the dilations 

of arterioles that occur in response to neural activity [68,74–76]. Instead, these slow, usually 

somatic, increases in astrocyte calcium may: (a) contribute to arteriolar dilation only under 

conditions of sustained neuronal activity [75,77], (b) mediate vasoconstriction and the return 

to baseline tone after functional hyperaemia [78], and (c) modulate basal vessel tone 

[75,79,80]. Astrocytes may also facilitate neurovascular coupling, as slow increases in 

astrocyte calcium may produce longer duration [77] haemodynamic responses.

In contrast to these slow calcium signals, fast calcium signals associated with neural/

synaptic activity in (predominantly) astrocytic fine processes and endfeet are increasingly 

being reported [78,81–83]. These signals occur shortly after neural activity [84,85], precede 

arteriole and capillary dilation [86] and potentiate the increase in blood volume by almost 3-

fold [78]. These fast signals may be particularly important for controlling flow in the 

capillary bed, where (unlike in arterioles) astrocyte calcium signals were found to be 

necessary for neurovascular coupling [69,70].

In summary, astrocytes may drive neurovascular coupling in two ways: fast calcium signals 

that fine-tune the haemodynamic response by generating molecules that dilate capillaries, 

and slow calcium signals that modulate the size and shape of arterial dilations, and perhaps 

help terminate functional hyperaemia when neuronal activity ceases. The specific features of 

neuronal activity that drive these different astrocyte signals are currently unclear, and their 

discovery will be key for fully understanding what information haemodynamic and BOLD 

signals carry about neuronal activity changes. Furthermore, because spin echo signals reflect 

changes in capillaries more robustly than gradient echo signals, particularly at higher 

magnetic fields [87–89], and because capillary dilations depend on fast astrocyte signals, 
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fMRI experiments may differentially reflect certain aspects of neuronal and astrocyte 

activity depending on the methodology used.

Lastly, the role of astrocytes in shaping the BOLD signal in neurological diseases must also 

be considered. In Alzheimer’s disease and following ischemia, subarachnoid haemorrhage, 

and traumatic brain injury, impairments in neurovascular coupling and cerebral 

haemodynamics have been reported in both humans and animal models [90,91]. These same 

conditions are also characterized by reactive astrogliosis, a response of astrocytes to 

alterations in their microenvironment that includes changes in their morphology and gene 

expression. It is conceivable that reactive astrocytes are, at least in part, to blame for the 

neurovascular deficits in these conditions [90,92] and should be the focus of future research. 

For example, subarachnoid haemorrhage causes an inversion of neurovascular coupling, 

whereby increases in neural activity are coupled to a decrease in CBF, which are mediated 

by pathologically large calcium signals within astrocyte endfeet causing a large outflux of 

potassium, via BK channels, onto the vasculature [93]. Interpretation of the BOLD response 

from patient populations should therefore consider such astrocyte-mediated uncoupling 

between neural activity and CBF.

The vasculature

In addition to signals from neurons and astrocytes, properties of the vasculature itself shape 

the BOLD response in multiple ways. While anatomical differences in vascular beds 

(geometry relative to the magnetic field, vascular density, proportion of veins and 

capillaries) can alter the magnitude of the BOLD signal (see [1,16,94,95]), we focus here on 

the contributions of different cell types to the physiological processes that underpin BOLD.

Vascular mural cells: pericytes and smooth muscle cells

The cells that directly constrict and dilate blood vessels by contracting or relaxing in 

response to signals from the parenchyma, or the blood, are the contractile vascular mural 

cells: smooth muscle cells (SMCs) and pericytes. The definitions of these two types of cells 

have been hotly debated [96,97], but here we consider pericytes as mural cells with discrete 

soma and processes, and SMCs as cells with a banded and contiguous morphology [97]. 

SMCs on arterioles have long been known to be involved in mediating vascular dilations that 

underlie neurovascular coupling, whereas the role of pericytes on capillaries and precapillary 

arterioles has emerged more recently [70,98–100]. Pericyte morphology varies down the 

vascular bed, as has been elegantly described [101], from ensheathing pericytes, whose 

processes encircle the underlying vessel, to thin-strand pericytes in the middle of the 

capillary bed, with long processes that extend along but rarely around the vessel. It is now 

well-established that ensheathing pericytes express smooth muscle actin and can actively 

constrict and dilate in response to neuronal activity [96,99,101,102]. More controversial is 

whether mesh and thin strand pericytes on smaller capillaries can regulate vessel diameter. 

Although some groups find they do not [96,103], neuronal activation causes calcium to drop 

in these cells [102], and we and others have observed capillary dilations in response to 

neuronal activity (up to 4th branching order, ≤ 5 μm [70,99,100,102,104]), and two recent 

papers report constriction of mid-capillary pericytes in response to optogenetic stimulation 

[105,106]. We suspect that the imaging resolution, sampling rate and smoothing may be key 
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factors in whether these small fluctuations in diameter in the mid-capillary bed can be 

detected. The evolutionary reason for such local regulation of blood flow is unclear. Perhaps 

active neurons’ oxygen requirements are best matched by very local modulation of blood 

flow, or perhaps local regulation is simply a consequence of local production of vasoactive 

signalling molecules with a limited diffusional spread. Alternatively, capillary-level 

regulation of flow could optimise tissue oxygenation by allowing the increase in 

homogeneity of red blood cell flux in different capillaries that happens during functional 

activation [107,108], which maximises oxygen extraction [109,110].

The responses of all of these different types of pericytes are important for shaping the 

increase in CBF that occurs following neuronal activity. Because capillaries represent a 

higher resistance to flow than arterioles or venules [111], their dilation produces a larger 

decrease in resistance than does arteriole dilation. Therefore, relaxation of capillary 

pericytes mediates a larger component of the functional hyperaemia response (capillary 

dilation contributes to 50-84% of the overall change in CBF, while arteriole dilation 

contributes < 25% [99,102]). The speed at which different types of pericytes respond to 

neuronal activation varies, with ensheathing pericytes on the first and second branches off an 

arteriole dilating before downstream mid-capillary pericytes [99,102,112]. The relative 

response times of first order branches compared to upstream arterioles is less clear, with 

different studies reporting that first order branches dilate earlier than [99,112], concurrently 

with [102] or following [113,114] the upstream arterioles. Regardless of timing, these 

dilations are functionally important: using a compartmentalized computational model, 

Rungta et al. [102] demonstrated that the absence of dilation by either ensheathing or mid-

capillary pericytes profoundly attenuates evoked increases in CBF. Thus, the BOLD signal is 

shaped in different ways by ensheathing pericytes - the likely initiators of capillary dilation - 

and mid-capillary thin strand pericytes, whose dilation mediates the majority of the increase 

in flow.

These vascular mural cells might also be differentially sensitive to disease. For example, in 

Alzheimer’s disease, soluble Aβ constricts pericytes [115], whereas its effect on smooth 

muscle cells is more debated [115–117]. Cerebral amyloid angiopathy, on the other hand, in 

which Aβ aggregates deposit on vessels, preferentially occurs around the smooth muscle 

cells of larger arterioles [118] and restricts their function [119]. Thus, BOLD signals in 

patients with Alzheimer’s disease might be compromised differently depending on the 

disease state, due initially to effects on pericytes by soluble Aβ, and later on smooth muscle 

cells by aggregates of Aβ that form around arterioles.

Endothelial cells

The best-established role of endothelial cells in shaping the vascular response to neuronal 

activity, and therefore the BOLD signal, is to propagate vasodilatory signals along the 

vasculature, thus amplifying the haemodynamic response by dilating blood vessels upstream 

of local neural activity. Such long-range propagation and modulation of blood flow has long 

been known to occur in peripheral vascular beds [120,121], the retina [122], and the brain 

[123], although the mechanisms that underlie this propagation and how this shapes 

neurovascular coupling have only recently been appreciated [124,125]. Vasodilation arising 
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from neuronal activity local to the mid-capillary bed can be communicated to upstream 

vessels by a regenerating hyperpolarising current that is mediated by Kir2.1 channels [103] 

and propagated between endothelial cells via connexin-40 containing gap junctions [126], 

which couple more efficiently and preferentially towards upstream vessels during functional 

activation [127]. Activation of endothelial NMDA receptors and endothelial NOS (eNOS) 

can also evoke dilation in adjacent vascular mural cells [128,129]. Given the evidence 

discussed in previous sections, it is likely that these signals first produce vasodilation in 

ensheathing pericytes of small arterioles or first capillary branches before being propagated 

upstream to dilate larger penetrating and pial arterioles. Whether dilation of mid-capillary 

pericytes occurs as a slowly developing response to the same vasoactive signal that generates 

a propagating hyperpolarisation of endothelial cells, or as a secondary passive response to 

the upstream dilation remains to be seen.

Vasoactive signals propagated through the endothelium shape functional hyperaemia, and 

therefore BOLD signals. The haemodynamic response to neural activity (particularly in the 

first 10 s of a 12 s hindpaw stimulation) was reduced when endothelial signalling and, 

therefore, propagation of vasodilation, was prevented by light-dye treatment of pial arteries 

[130]. Endothelial propagation also gives rise to another interesting phenomenon: once 

vasodilation has spread upstream to pial arteries, it can then propagate down other vessel 

branches that feed nearby brain regions that do not themselves harbour any change in 

neuronal activity [131,132], leading to two important features of the BOLD signal. First, the 

early haemodynamic response (<2 s) is more spatially confined to the active region of the 

brain compared to the later component, as the signal has not had time to propagate outside 

the active region [133]. Second, the propagated increase in blood flow is likely to be a major 

reason why the positive BOLD signal exists: inactive tissue near activated regions 

experiences an increase in blood supply without any oxygen consumption, allowing the 

oxygenated haemoglobin levels to increase and deoxyhaemoglobin levels to fall, thereby 

generating the positive BOLD signal. This idea is supported by optical intrinsic imaging and 

spectroscopic studies that identified a small region of tissue hypoxia and increased oxygen 

consumption in the active region, immediately before oxygenated blood volume increased in 

the surrounding area spanning several millimeters [134,135]. This localized increase in 

oxygen consumption prior to the CBF increase gives rise to the 'initial dip’ sometimes 

observed in the BOLD signal with a similar spatial and temporal pattern [133,136–138].

BOLD signals can also be shaped by multiple factors that modulate endothelial propagation 

of vasodilation. In the retina, endothelial conduction is dramatically reduced by the 

vasoconstricting hormone angiotensin II [139], and facilitated by nitric oxide (NO) [127]. In 

the cortex, neurovascular coupling depends on arterial endothelial cell caveolae, which may 

be required to cluster the ion channels required for propagation [140]. Endothelial 

propagation may also be modulated by changes in levels of the membrane phospholipid 

PIP2 which, when depleted by activation of Gq-coupled receptors, reduce activity of Kir2.1 

and impair propagation of vasodilation [141]. Many of these pathways are modified by 

disease. Loss of endothelial or pericyte-endothelial gap junction coupling is observed in 

diabetes [122,127,142], while angiotensin II levels are raised in hypertension [139] and 

angiotensin II synthesis and its receptor are primary targets of hypertension treatment [143]. 

These pathologies, or treatments thereof, are likely to regulate endothelial cell coupling and 
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thus the spread of dilation through the vascular network, ultimately influencing the size and 

shape of the BOLD response. Consideration of impaired functioning of pericytes, smooth 

muscle cells and endothelial cells is therefore critical when conducting BOLD experiments 

in ageing and patient populations.

Part 2 Contributions of Metabolism to BOLD

As discussed above, the increase in CBF that irrigates active brain regions occurs in 

response to concerted signalling from several cell types including excitatory neurons, 

inhibitory neurons and astrocytes. Haemodynamic responses are further shaped by 

modulation from subcortical structures, and endothelial propagation along the vascular tree. 

However, the BOLD response represents not only the increase in oxygenated blood but its 

balance with the rate of oxygen consumption by nearby cells. Therefore, it is important to 

consider the oxygen consumption of different cell types in the brain to determine their 

relative impact on the BOLD signal. Neglecting any roles in increasing blood flow, highly 

oxygen-consuming cells will reduce blood oxygenation and the positive BOLD signal, so 

using positive BOLD as a readout of neuronal activity will underrepresent these signals 

compared to active, but less oxygen-consuming cells. These cells’ activity will be better 

detected using calibrated BOLD methods, which allow the calculation of regional oxygen 

consumption rates by disambiguating changes in CBF from the BOLD response [144].

Oxygen consumption by different cell types

Excitatory neurons—Energy budgets of neuronal transmission, which calculate the 

expected ATP use of different cellular processes based on membrane conductances, firing 

rates and sizes of different cell types, initially suggested that action potentials accounted for 

the majority of signalling energy use within rodent cortical grey matter [3]. However, 

incorporating energetically efficient action potentials [145,146] into such calculations results 

in excitatory synapses being the most energetically expensive component of neuronal 

signalling [4]. This is because of the relatively large ion fluxes that drive excitatory 

postsynaptic potentials (EPSPs) compared to action potentials, which then need to be 

reversed by action of the sodium-potassium ATPase. The proportion of energy use 

associated with various cortical signalling processes has been suggested to be consistent 

across mammalian species and activity levels, with post-synaptic processes being the largest 

consumers of neuronal ATP in both rodents (47-53%) and humans (42-59%) [147]. These 

findings support the use of rodent models in fMRI studies informing our knowledge of 

human brain function. Careful cross-species approaches will allow more reliable translation 

of findings between preclinical and human fMRI studies [Barron et al., this issue].

ATP at synapses is proposed to be glycolytically generated [148], and therefore not to 

consume oxygen or influence the BOLD signal. However, measurements of oxygen 

concentrations during inhibition of glutamatergic synapses showed that most oxygen was 

consumed by EPSPs at synapses, followed by action potentials [10], and that correlations 

between LFP size and cerebral metabolic rate of O2 (CMRO2) [149,150] support excitatory 

synapses as a crucial determinant of CMRO2. Because there are nine times more excitatory 

than inhibitory neurons in the cerebral cortex [151] and because excitatory neurons have 
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more excitatory synapses than do interneurons [152], much of the oxygen consumed by 

EPSPs and action potentials will be used by excitatory cells. Hence, it follows that excitatory 

neurons are a major consumer of tissue oxygen.

Inhibitory neurons—While fewer in number, inhibitory neurons may still contribute to 

brain oxygen consumption in two substantial ways; first, by increasing the energetic cost of 

excitation and second, by being, on average, more metabolically active than excitatory 

neurons [153].

Inhibitory inputs can increase the energetic costs of excitatory cells’ firing. Reversal of 

chloride fluxes at inhibitory synapses is, in itself, not expected to be energetically expensive 

as the reversal potential for chloride is near the resting membrane potential of the cell. 

However, the co-occurrence of excitation and inhibition may increase the energetic cost of 

excitation in at least two ways. Firstly, inhibition increases the metabolic cost of excitatory 

synapses: by holding the membrane at more hyperpolarised potentials, inhibition increases 

the driving force and inward flux of sodium ions, which then require more ATP to reverse 

these ion fluxes [154]. Secondly, in the presence of inhibition, more excitatory inputs are 

required for a cell to reach its threshold for firing an action potential. This happens because 

excitation needs to counter both hyperpolarisation of the membrane and shunting inhibition -

the increased membrane conductance caused by opening of chloride or potassium channels 

that impairs the spread of EPSPs to the axon hillock. The increased sodium driving force and 

requirement for more synaptic inputs both critically depend on the timing of inhibitory 

inputs, with increased temporal overlap between inhibitory and excitatory inputs to a single 

cell predicted to dramatically impact the energy cost of neuronal transmission [154]. In fact, 

inhibitory and excitatory inputs to hippocampal and cortical neurons are often near-

synchronous during fast sharp wave ripple [155,156], theta-like [157] and slow (<1 Hz) 

oscillations [158], suggesting that inhibition is likely to increase the energy used to fuel 

excitatory neurons in these conditions. This “tight balance” of excitation and marginally 

delayed inhibition to individual principal neurons is a common (though not universal) 

feature of neural networks, which increases the precision of spike timing and makes coding 

more efficient by reducing the number of spikes needed to accurately represent information 

at the population level [159]. Thus, brain networks may offset increased synaptic energy use 

caused by concurrent excitation and inhibition with resultant decreased energy spent on 

spiking per unit of information transmitted.

The degree of overlap of excitation and inhibition is not constant at a synapse, suggesting 

that the metabolic cost of inhibition will also vary. At CA3-CA1 synapses, Bhatia et al. 

found no overlap between EPSCs and IPSCs in response to activation of only a few 

synapses, while stronger stimuli evoked faster IPSCs that overlapped with EPSCs [160]. 

Therefore inhibition is expected to disproportionately increase synaptic energy use for 

stronger stimuli in this network, potentially reducing the size of the positive BOLD response 

to such stimuli (which would be better represented by CMRO2 measurements from 

calibrated BOLD). Factors that alter inhibition, such as alterations in brain state and the 

neuromodulators acetylcholine and noradrenaline [161,162], are also likely to affect the 

degree of overlap of inhibitory and excitatory currents, and therefore the synaptic energy 

use. The contribution of inhibitory currents to excitatory synaptic energy use is therefore 
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likely to be quite variable and altered in different arousal states or disease, but requires 

quantification before it is possible to estimate its effect on net CMRO2 or BOLD.

In addition to the impact of inhibition on the metabolic cost of excitatory synaptic inputs, 

increased energy use due to inhibition may occur due to oxygen consumption by inhibitory 

interneurons themselves. Fast-spiking parvalbumin interneurons are probably the main 

contributor to increased energy metabolism during inhibition. They are relatively numerous 

(around 40% of GABAergic cells in neocortex, for example [163]) and relative to other 

interneurons, they have higher levels of cytochrome c oxidase, more mitochondria, a higher 

density of excitatory inputs and adaptations such as increased sodium channel density, which 

allows an extremely fast firing rate but decreases the energy efficiency of action potential 

firing [164–166]. The contribution of other interneuron types to net CMRO2 is less studied, 

but may also be significant (although see [167]), as their firing rates and cytochrome c 

oxidase levels can be higher than those in pyramidal cells [164,165]. In contrast to excitatory 

neurons, interneurons are generally expected to consume more oxygen to fuel action 

potentials than synaptic potentials, because of their lower dendritic complexity but increased 

axonal length and branching [168] (but also see [147]). Notably, the populations of 

interneurons that are likely to make the largest contribution to brain oxygen consumption 

may not be the same as those that control blood flow: Fast spiking parvalbumin cells are 

very metabolically active, but may not play a major role in control of blood flow, while 

nNOS-positive interneurons can control blood flow but make up only 20% of all 

interneurons [40] and 2% of all neurons [169], and hence are likely to be relatively 

underrepresented in CMRO2. Therefore, positive BOLD and calibrated BOLD 

measurements provide very different information about which types of inhibitory cells are 

active.

Experimentally, inhibition has been shown to have a significant energetic cost. 2-

deoxyglucose uptake (and by extrapolation, metabolism) was more correlated with the 

degree of inhibition than pyramidal cell firing after electrical stimulation of hippocampal 

inputs in rats [170]. Similarly, in rat dentate gyrus, low frequency stimulation of the 

perforant path decreased EPSP slope and population spike latency (suggesting increased 

inhibitory tone), and decreased BOLD, but CBV was relatively preserved. This indicated 

that CMRO2 was elevated by the increased inhibition [171]. These studies therefore suggest 

that CMRO2 is not necessarily a good indicator of principal (excitatory) neuron activity, but 

also represents inhibitory tone, be it altering the metabolic cost of information transmission 

within excitatory cells and/or the firing of inhibitory neurons themselves.

The impact of inhibition on CMRO2 should make us reconsider the meaning of “activation” 

of a brain region. As discussed above, a key function of inhibition is thought to be to 

increase precision of spike timing, and it may not necessarily alter the net firing rate of a 

neuron. Therefore, fluctuations in inhibition during a cognitive process may alter coding and 

oxygen use in a brain region without altering the firing rate of principal neurons. From a 

computational perspective, this brain region is therefore involved in the cognitive process but 

its “activity” in classic terms of the level of excitatory input or output has not changed. 

Maybe, then, it would be better to consider our aim with functional imaging to detect 

regions of altered processing, rather than of activation? In this example, where inhibition 
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alters spike timing but not spike rate, CMRO2 measurements would allow us to detect the 

changes in processing. However, blood flow may not change (depending on whether the 

interneurons mediating inhibition can dilate vessels) and positive BOLD could be increased, 

decreased or unchanged, depending on the level of any increased energy use and any 

increase (or not) in CBF.

Glial cells—Metabolism in astrocytes, oligodendrocytes, or vascular cells might also be 

expected to vary with neuronal activity, but, in fact, they probably do not contribute much to 

the corresponding fluctuations in CMRO2. Astrocytes contain mitochondria and consume 

oxygen when depolarised optogenetically [73]. However, their metabolism is thought to be 

predominantly glycolytic [172], and blocking astrocytic oxidative phosphorylation does not 

affect net CMRO2 [173]. Indeed, active neurons may actually trigger increased glycolytic 

ATP production in astrocytes to a degree that inhibits astrocytic oxidative phosphorylation, 

in order to boost oxygen availability for neurons [174]. Lactate produced by glycolysis in 

astrocytes may then be shuttled to neurons to support their oxidative metabolism [172]. The 

degree of contribution of this astrocyte-neuron lactate shuttle in fuelling the increased 

neuronal activity remains controversial [175], however, in part because astrocytic glycolysis 

occurs after neuronal oxidative phosphorylation [176].

Mature oligodendrocytes consume very little oxygen as their metabolism is predominantly 

glycolytic, while oligodendrocyte precursor cells (OPCs) produce ATP predominantly via 

oxidative phosphorylation [177]. However, oxygen use by OPCs associated with increased 

neuronal activity is likely minimal. Although their resting energy consumption in white 

matter is similar to that in the grey matter, their activity-dependent ATP use (synaptic 

connections from axons to OPCs) is <1% of the total cost of neuronal signalling in grey 

matter [178].

Vasculature—The amount of oxygen consumed by the brain’s vasculature (endothelial 

cells, smooth muscle cells and pericytes) itself is a question that deserves further study. The 

maintenance of resting vascular tone, as well as changes therein during neurovascular 

coupling, are enacted by the movement of ions, particularly calcium and potassium, across 

the membrane of these vascular cells. ATP is required to re-establish these ionic gradients 

and, therefore, vascular activity is expected to increase metabolism. Experiments performed 

outside the nervous system suggest that these cells are highly energy consumptive. Sizeable 

drops in oxygen concentration have been recorded across the vessel wall of mesenteric and 

pial arteries, and models suggest this reflects significant oxygen consumption by smooth 

muscle and endothelial cells rather than just the existence of a diffusion barrier [179,180]. 

Studies in dog and pig aorta have found a significantly higher rate of oxygen consumption at 

the luminal/endothelial surface compared to the abluminal surface (0.36 mM/min vs. 0.016 

mM/min [181]), indicating that endothelial cells contribute significantly to vascular 

consumption rates. The drop in oxygen concentration across the vessel wall also increases 

with increased wall thickness, or decreasing branching order of the vessel, suggesting that 

the number of layers of vascular mural cells also play a role [180]. At 1-5 mM/min O2, net 

CMRO2 of the brain [182,183] is much higher than the oxygen consumption rate of the 

vasculature measured by some groups [181], though others find higher values (up to 10 
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mM/min [179]). However, because the volume fraction of the brain’s vasculature is only 

1-3% [184], the contribution of vascular cells to net CMRO2 is likely minimal compared to 

that of neurons, though it may significantly affect O2 concentrations close to vessels.

In summary, brain oxygen consumption is predominantly due to excitatory and inhibitory 

neuronal activity, although glial and vascular cells also contribute. Oxygen consumption by 

active neurons reduces positive BOLD signals, confounding the accuracy of positive BOLD 

as a readout of neuronal activity. CMRO2 measurements from calibrated BOLD studies may 

be a more accurate read out of the level of net neuronal activity than positive BOLD, as they 

are more spatially localised to active brain regions. However, because the cells that are the 

most metabolically active (excitatory neurons or parvalbumin interneurons) are likely not the 

same cells that signal to blood vessels to dilate (likely nNOS-positive inhibitory neurons or 

astrocytes), CMRO2 signals carry different information about which cells are active than do 

positive BOLD signals.

Conclusion

BOLD signals are shaped by the balance between oxygen supply and its consumption. 

Extracting the maximum amount of accurate information from BOLD signals will require 

understanding which cells’ activity shapes these two processes, especially as the same cells 

are not equally responsible for both processes. For example, active nNOS-positive 

interneurons can dilate the vasculature, but are unlikely to contribute substantially to oxygen 

consumption, while parvalbumin interneurons contribute much more to oxygen consumption 

but are less likely to drive increases in CBF. Astrocytes can initiate vascular responses at 

smaller vessels while modulating the response of arterioles, and vascular mural and 

endothelial cells detect and propagate these signals to amplify the haemodynamic response 

ultimately measured by BOLD, without contributing as much to oxygen consumption. A 

nuanced understanding of how alterations in excitatory-inhibitory balance and different 

interneuron populations affect oxygen supply and consumption is key to discovering how 

BOLD signals relate to circuit activity. Furthermore, future interpretation of BOLD signals 

should also reflect our increasing understanding of how neurons, astrocytes and vascular 

cells can be differentially affected by disease states, and have correspondingly different 

effects on BOLD.
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Figure 1. Multicellular contributions to neurovascular coupling.
Activation of excitatory neurons in the brain is believed to initiate the neurovascular signals 

that cause increases in cerebral blood flow (CBF). However, inhibitory interneuron activity 

almost invariably occurs in parallel with excitatory activity and signals from these 

interneurons appear to be the stronger regulators of cerebral blood flow. Neural activity also 

stimulates astrocytes, which can regulate capillary diameter and modulate overall changes in 

CBF. Ascending projection systems can further tune the locally generated vasoactive signals, 

or may directly modulate the vasculature. Once the vascular pericytes or endothelial cells 

have sensed vasoactive signals from the surrounding tissue, these signals propagate through 

the endothelium to contractile pericytes and smooth muscle cells on upstream vessels and 

their branches, which may not themselves feed active tissue. Created with BioRender.com.
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