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Abstract

Several genetic discoveries robustly implicate five single nucleotide variants in the progression of 

non-alcoholic fatty liver disease to non-alcoholic steatohepatitis and fibrosis (NASH-fibrosis), 

including a recently identified variant in MTARC1. To better understand these variants as potential 

therapeutic targets, we aimed to characterize their impact on metabolism using comprehensive 

metabolomics data from two population-based studies. 9,135 participants from the Fenland Study 

and 9,902 participants from the EPIC-Norfolk cohort were included in the study. We identified 

individuals with risk alleles associated with NASH-fibrosis: rs738409C>G in PNPLA3, 

rs58542926C>T in TM6SF2, rs641738C>T near MBOAT7, rs72613567TA>T in HSD17B13, and 

rs2642438A>G in MTARC1. Circulating levels of 1449 metabolites were measured using targeted 

and untargeted metabolomics. Associations between NASH-fibrosis variants and metabolites were 

assessed using linear regression. The specificity of variant-metabolite associations was compared 

to metabolite associations with: ultrasound-defined steatosis, gene variants linked to liver fat (in 

GCKR, PPP1R3B, and LYPLAL1), and gene variants linked to cirrhosis (in HFE and 

SERPINA1). Each NASH-fibrosis variant demonstrated a specific metabolite profile with little 

overlap (8/97 metabolites) comprising diverse aspects of lipid metabolism. Risk alleles in 

PNPLA3 and HSD17B13 were both associated with higher 3-methylglutarylcarnitine and three 
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variants were associated with lower lysophosphatidylcholine C14:0. The risk allele in MTARC1 
was associated with higher levels of sphingomyelins. There was no overlap with metabolites that 

associated with HFE or SERPINA1 variants. Our results suggest a link between the NASH-

protective variant in MTARC1 to the metabolism of sphingomyelins and identify distinct 

molecular patterns associated with each of the NASH-fibrosis variants under investigation.

Introduction

Non-alcoholic steatohepatitis (NASH) is a common, multifactorial condition that may 

progress to cirrhosis, liver failure, and hepatocellular carcinoma(1). NASH affects 

approximately 20% of individuals with non-alcoholic fatty liver disease (NAFLD), which is 

strongly associated with obesity and insulin resistance(2). Certain single nucleotide 

polymorphisms (SNPs) have been linked with disease progression through development of 

NASH and fibrosis, apparently independent of insulin resistance(3).

A combination of exome-wide and genome-wide association studies (GWAS) have led to the 

identification of five loci (rs738409 in PNPLA3(4), rs58542926 near TM6SF2(5), 

rs72613567 in HSD17B13(6), rs641738 near TMC4-MBOAT7(7–9), and rs2642438 in 

MTARC1(10)) linked to non-alcoholic steatohepatitis (NASH)(11), fibrosis(12), and 

hepatocellular carcinoma (HCC)(13) in patients with NAFLD. Following in vitro and in vivo 
experiments, rs738409C>G (p.Ile148Met) in PNPLA3 has been identified as a regulator of 

hepatic lipolysis (14,15). However, the potential pathophysiological consequence of the 

other variants are less understood or entirely unknown, with respect to the MTARC1 
p.Thr165Ala variant (10).

Metabolite association studies are an established technique for exploring the role of gene 

variants(16–18). Serum metabolite and plasma lipid profiling has been used to investigate 

some of these NASH-fibrosis gene variants and to identify differences between healthy 

subjects and those with NAFLD (for example, higher alanine in patients with NAFLD)

(19,20). Metabolomics and lipidomics have also been used to differentiate NAFL from 

NASH (for example, higher phosphatidylcholine C32:0 in patients with NASH) in a selected 

cohort of adults who underwent liver biopsy (21).

We hypothesised that variants associated with NASH-fibrosis would be associated with 

perturbation of metabolic pathways among adults from population-based cohort studies. To 

study this, we examined the serum metabolite and lipid profile of five variants associated 

with NASH-fibrosis in two population-based cohorts. We aimed to discover novel gene-

metabolite associations that may be involved in the pathogenesis of NASH.

Results

Baseline participant characteristics

9,135 participants from the Fenland cohort study were included, where 2301 (25%) had 

ultrasound evidence of hepatic fat accumulation (Supplementary Table 2). Steatosis was 

associated with male sex, higher waist-to-hip ratio, lower HDL cholesterol, and higher 

fasting insulin (Supplementary Table 2).
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Metabolite profile of hepatic steatosis

We first aimed to describe how hepatic steatosis may have influenced circulating 

metabolites. The serum metabolite profile of steatosis showed increased branched chain 

amino acids and increased unsaturated short chain triglyceride species, similar to the pattern 

observed for insulin resistance and dyslipidaemia. (Supplementary figure 1 & 

Supplementary table 3). Adjusting for fasting insulin partially attenuated these changes 

(Supplementary figure 1).

NASH-fibrosis SNPs have specific metabolite profiles

We then proceeded to study the characteristics of individuals with risk alleles from the five 

NASH-fibrosis variants. None of the risk alleles for each SNP was associated with classical 

markers of insulin resistance (Supplementary Tables 4-8). For example, neither rs738409 

C>G in PNPLA3 nor rs58542926 C>T near TM6SF2 (risk alleles for type 2 diabetes (22)) 

were significantly associated with differences in fasting insulin, glucose, or HbA1c 

(Supplementary Tables 4 & 5). Two variants did, however, associate with differences in 

lipoproteins that would classically be associated with lower risk of atherosclerosis: lower 

LDL-cholesterol and total TG with rs58542926 C>T near TM6SF2 (Supplementary Table 5) 

& 5), and higher HDL-cholesterol with rs2642438 A>G in MTARC1 (Supplementary Table 

8).

Next, we used targeted metabolite profiling (in 9,135 participants) and untargeted lipidomics 

(in 1,356 participants) from the Fenland cohort to test for SNP-metabolite associations. This 

analysis was complemented by a separate cohort of 9,902 participants from the EPIC-

Norfolk cohort(23) with untargeted metabolite profiling using a different platform for 

metabolomics measurements (Figure 1). Each NASH-fibrosis SNP was found to have a 

specific metabolite profile (Table 1 and Supplementary Table 3).

The strongest association for the rs738409 C>G in PNPLA3 variant was observed with N-

acetylmethionine (β= -.09, Q=5.7x10-5). The variant was further positively associated with 

plasma levels of TG and DG species carrying long-chain polyunsaturated fatty acids 

(Supplementary Figure 2), which was replicated in external datasets (Supplementary Table 

9). It was also positively associated with levels of 3-methylglutarylcarnitine (Figure 1).

rs72613567 TA>T in HSD17B13 was positively associated with long-chain diacylPC and 

negatively associated with short chain lysoPC (Supplementary Figure 3 & Supplementary 

Table 9). It was also positively associated with 3-methylglutarylcarnitine and pyroglutamine 

(Supplementary Table 3).

rs58542926C>T near TM6SF2 was inversely associated with plasma levels of several lipid 

classes, including: diacylPC, alkylacylPC, fatty acids, lysoPC, and sphingomyelins 

(Supplementary Figure 4). This was consistent across both cohorts and in external datasets 

(Supplementary Tables 3 & 9). The magnitude of these associations were attenuated when 

adjusting for total cholesterol and triglycerides (Supplementary Figure 5).

There was a trend towards lower TG and DG (in line with the main serum biochemistry 

results), though no individual species reached significance after adjusting for multiple 
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testing (Supplementary Figure 4E & 4F). A similar trend in inverse associations with TG 

species was found in publicly available datasets (Supplementary Figure 6 & Supplementary 

Table 9).

The rs2642438 A>G risk variant in MTARC1 was associated with higher sphingomyelins 

(Supplementary Figure 7), for example C20:2, (β= .02, Q=0.015). This finding was 

replicated across several sphingomyelin species in both cohorts and in external datasets 

(Supplementary Figures 3 & 6, and Supplementary Table 9). This variant was also 

associated with higher diacylPC (18:0/22:5), higher lysoPC (C14:0 and C15:0), and higher 

alkylacyl PC (C34:1 and C40:2, for example, Supplementary Figure 7). The magnitude of 

these associations were minimally affected by adjusting for HDL cholesterol 

(Supplementary Figure 5).

Finally, rs641738 C>T near MBOAT7 was found to have a strong association with 

phosphatidylinositols (PI), which was not replicated in any other NASH-fibrosis SNP (for 

example, PI C18:0/C20:4: β -0.2, Q=1.7x10-58, Figure 1). The variant was associated 

heterogeneously with species carrying omega-6 polyunsaturated fatty acids: for example, 

lower phosphatidylinositols (PI) with stearic acid and omega-6 polyunsaturated fatty acids 

(e.g. PI(18:0/20:4), β= -.24, Q=1.7x10-58); higher PI with stearic acid and linoleic acid (e.g. 

PI(18:0/18:2), β= .21, Q=1.1x10-50); and higher dihomo-gamma-linolenic acid (DHGL, 

Supplementary Figure 8). These findings were replicated in external datasets 

(Supplementary Table 9).

Overlap between metabolite profiles

We compared SNP-metabolite associations to assess whether there were clear trends that 

reflected steatosis, NASH, or fibrosis. Out of the 97 different metabolites significantly 

associated with at least one of the five NASH-fibrosis variants, only 8.2% (8/97) were 

associated with two or more variants (Supplementary Table 3). For all eight metabolites, the 

directions of the associations were consistent across SNPs effect (Figure 1). For example, 

risk alleles near or in TM6SF2, HSD17B13, and MTARC1 were all associated with lower 

plasma levels of lysoPC (C14:0, Figure 1). Similarly, higher levels of 3-

methylglutarylcarnitine were associated with risk alleles in PNPLA3 and HSD17B13 
(Figure 1).

Next, we assessed which of the five variants contributed most to the overall variation in 

these metabolites. In the Fenland cohort, rs738409 C>G in PNPLA3 accounted for the most 

variability (adjusted R2 5.8%) in the 41 significantly associated metabolites. Compared to 

3.4% for rs72613567 TA>T in HSD17B13, 3.2% for rs58542926C>T near TM6SF2, 1.1% 

for rs641738 C>T near MBOAT7, and 0.0% for rs2642438 A>G in MTARC1.

Comparison with HFE and SERPINA1 

To determine whether these results were specific to NASH-fibrosis or were more generally 

reflective of hepatocyte dysfunction, we compared associations from the five NASH-fibrosis 

variants with SNP-metabolite associations for HFE and SERPINA1 variants. 37 metabolites 

were associated with rs1800562 G>A in HFE (p.Cys282Tyr) or rs28929474 C>T in 

SERPINA1 (p.Glu366Lys), variants linked to metabolic cirrhosis (Supplementary Table 3). 
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There was no overlap between these 37 metabolites and the 97 associated with NASH-

fibrosis variants (Supplementary Table 3).

Comparison with steatosis and insulin resistance

Finally, we aimed to test whether the SNP-metabolite associations were indicative of 

steatosis or insulin resistance or both. In the Fenland cohort, out of 41 different metabolites 

associated with the five different NASH-fibrosis variants, 78% (32/41) were also 

significantly altered in steatosis (Supplementary Table 3). The majority (69%, 22/32) were 

PC species though the direction of change was not consistent (Supplementary Table 3). For 

example, several NASH-fibrosis variants were associated with lower levels of lysoPC 

(C14:0), whereas steatosis was associated with higher levels (β= .07, Q=7.7x10-8, 

Supplementary Figure 1 & Supplementary table 3).

Liver-fat related variants in GCKR, PPP1R3B, and LYPLAL1 were associated with the 

plasma levels of 281 metabolites. 52% (50/97) of metabolites associated with NASH-fibrosis 

variants were also associated with liver fat variants, again the majority (86%, 43/50) were 

PC species due to similarity between GCKR and TM6SF2 metabolite associations 

(Supplementary Table 3).

In order to determine whether these SNP-metabolite associations were indicative of insulin 

resistance or body composition we compared the metabolite associations of published 

genetic risk scores with those from NASH-fibrosis SNPs. There was some overlap between 

metabolites associated with NASH-fibrosis variants and genetic risk scores for BMI, BMI-

adjusted waist-to-hip ratio, body fat percentage, and insulin resistance. 24 out of 97 different 

metabolites (24.7%) were also associated with one of the four genetic risk scores 

(Supplementary table 3), most of which (54%, 13/24) were PC species, pointing to shared 

pathways between higher genetic susceptibility to adverse body composition or insulin 

resistance and NASH.

Discussion

There is strong human genetic evidence for five common variants in the pathogenesis of 

fibrotic NASH. To improve our understanding about functional consequences of these SNPs 

we used blood metabolite profiling in two large population cohorts. Metabolite profiles were 

found to be highly specific with only few metabolites significantly associated with more 

than one variant, such as 3-methylglutarylcarntine (PNPLA3 and HSD17B13) and lysoPC 

C14:0 (TM6SF2, HSD17B13, and MTARC1) that were not replicated in other variants 

associated with liver fat but not fibrosis (e.g. LYPLAL1) or fibrosis without steatosis (e.g. 

SERPINA1). The specific (lipid) profiles of each variant might be interpreted as distinct hits 

on lipid metabolism resulting in the same consequence, accelerating progression from 

NAFLD to NASH.

rs2642438 A>G in MTARC1 (p.Thr165Ala) has very recently been identified as a risk 

variant in NAFLD and all-cause cirrhosis(10). MTARC1 encodes for an outer mitochondrial 

membrane-bound molybdenum enzyme recognised to be involved in drug metabolism and 

has capacity for nitrite reduction. Its function in liver disease is largely unknown(24–27). We 
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found that this MTARC1 variant was associated with higher levels of a range of 

sphingomyelin species across all studied cohorts and our results are supported by previous 

studies(28,29). Sphingomyelins are primarily plasma membrane components that are 

synthesised from ceramides. Higher sphingomyelins have been implicated in the 

development of cirrhosis(30,31) as well as insulin resistance(32,33). Several members of the 

ceramide-sphingomyelin pathway have been linked to lipotoxicity and it is likely that 

perturbation of the balance in this metabolic pathway is harmful in liver disease from 

multiple aetiologies(34). How this variant relates to the sphingomyelin pathway is unclear 

and requires further investigation, particularly given that there are many variants that affect 

sphingomyelin levels and have no identified impact on NAFLD, for example variants in 

sphingosine-1-phosphate phosphatase 1 (SGPP1) (35).

Along with rs58542926 near TM6SF2, rs2642438 A>G in MTARC1 was found to be 

associated with changes in major classes of serum lipoparticles. Metabolite associations for 

rs2642438 A>G remained after adjusting for HDL cholesterol levels, however further 

refined studies (such as lipidomics separated by lipoparticles) are needed to give biological 

insight into these observations. Mechanistic studies, similar to those performed for 

TM6SF2(36), would help to identify the role MTARC1 plays in lipoparticle export and/or 

lipidation.

rs738409 C>G (p.Ile148Met) in PNPLA3 is the genetic variant most strongly associated 

with hepatic outcomes in NAFLD. Three recent studies have provided compelling evidence 

that PNPLA3 binds to ABHD5 (abhydrolase domain containing 5) and regulates ATGL 

(adipose triglyceride lipase)-mediated hydrolysis from lipid droplets(14,15,37). We found 

this variant to be associated with higher TG with long-chain polyunsaturated fatty acids, 

consistent with mouse data and other human studies(38–40). These have been classed as 

‘healthy lipids’(41) and are not associated with insulin resistance(42,43), despite this variant 

being positively associated with T2DM(22). These data suggest that length and saturation of 

TG fatty acids may influence or depend on the PNPLA3-ABHD5-ATGL interaction.

The TA-duplication allele of rs72613567 in HSD17B13 reduces the risk of NAFLD-

cirrhosis and mitigates the risk conferred by carriage of the G-allele in PNPLA3(44). Abul-

Husn et al. found that the encoded enzyme 17β-Hydroxysteroid dehydrogenase type 13 to 

have activity on several steroids and bioactive lipids and did not influence total hepatocyte 

TG in vitro, however, a mouse knockout did have increased hepatic steatosis(45). It has been 

recently reported to act as a hepatic retinol dehydrogenase(46), but we did not find an effect 

on plasma retinol levels. We also found lower circulating lysoPC species, which is consistent 

with the recent findings of Luukkonen et al. who analysed the hepatic lipid profile of 

NAFLD patients carrying the protective variant (rs72613567T>TA) and identified higher 

hepatic phospholipids(47).

One metabolite of interest is 3-methylglutarylcarnitine, where lower levels were associated 

with HSD17B13 (protective) and higher levels were associated with PNPLA3 (harmful). 

This metabolite is typically elevated in 3-hydroxy-3-methylglutaryl-coenzyme A lyase 

deficiency(48), a Reye syndrome-like inborn error of metabolism that presents with 

microvesicular steatosis and liver failure. This enzyme is also necessary for metabolising β-
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hydroxy β-methylglutaryl-CoA towards ketogenesis and away from cholesterol 

synthesis(49). The consistent direction of association across two NASH-fibrosis variants 

with this pathway warrants further investigation. However, it should be noted that we were 

unable to validate this finding in any external cohort, therefore further replication is also 

needed.

rs641738C>T near TMC4-MBOAT7 was initially identified at genome-wide significance for 

alcoholic liver disease but a recent meta-analysis has demonstrated it to be associated with 

NASH, fibrosis, and HCC(9). Its function remains unclear as the variant lies within TMC4, a 

putative transmembrane transporter with no known role in the liver. It also lies close to 

MBOAT7, an acyltransferase that incorporates (very) long-chain polyunsaturated fatty acids 

into lysophosphatidylinositols(7,29,50–52) and rs641738C>T is reported to be associated 

with reduced liver expression of MBOAT7(7,53). We found this variant to be very strongly 

associated with greater DHGL or higher or lower phosphatidylinositols with different 

omega-6 fatty acids. These data suggest that rs641738C>T near TMC4-MBOAT7 results in 

reduced MBOAT7 activity, which lead to differential degrees of acylation of different 

omega-6 polyunsaturated fatty acids. Therefore, these metabolomics data provide evidence 

for MBOAT7 as the causal gene in this locus. Its underlying mechanism and clinical 

significance are unclear, but still implicative of its relevance to type 2 diabetes epidemics, in 

addition to NASH, because we previously found heterogeneous associations of omega-6 

fatty acids with type 2 diabetes incidence(54). Further mechanistic work is warranted to 

understand how this variant influences the development of NASH.

We found metabolite changes to be relatively specific to each variant, rather than common 

and reflect NASH or fibrogenesis. There was only 8% overlap in metabolites between the 

five NASH-fibrosis metabolites though where overlap did occur, the direction of association 

was consistent between SNP-metabolite pairs. No metabolite associations were shared with 

HFE or SERPINA1 variants, which suggests levels of serum metabolites reflect specific 

metabolic pathway perturbations, rather than a generic response to hepatocyte dysfunction. 

PC species were the most ubiquitously altered metabolites and accounted for the majority of 

overlap between steatosis and NASH-fibrosis variants. One might speculate that PC species 

are surrogate markers of lipoprotein metabolism reflecting the final effect of impaired liver 

function in the circulation due to intrahepatic deteriorations in lipid metabolism 

accumulating during lifetime in risk allele carriers. Other studies have shown that NAFLD is 

associated with non-specific changes in amino acids and phospholipids, which have also 

been linked to insulin resistance(55–63). These findings suggest common genetic variants 

influence the perturbation of different metabolic pathways, which may result in NASH being 

a metabolically heterogeneous disease.

There are four broad processes that can affect liver fat: de novo lipogenesis, import of lipids, 

export of lipids, and metabolic breakdown of lipids. It is likely that each of these plays some 

role in the development and progression of NAFLD. Each will also contribute to the serum 

metabolite profile in different ways and this may be reflected in our results. From this 

perspective it may not be surprising that there is minimal overlap in the serum metabolite 

profile associated with each variant.
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Two studied variants (rs738409C>G in PNPLA3 and rs58542926 near TM6SF2) are 

positively associated with type 2 diabetes through large GWAS(22) yet we found them not to 

be associated with fasting insulin or glucose. Detailed studies (including use of 

hyperinsulinaemic clamps) in smaller groups of individuals have yielded similar 

results(40,64,65). This observation could be explained if the development of hepatic 

steatosis in response to these variants was the intermediate causal step. Both of these 

variants are strongly associated with higher liver fat and steatosis itself may affect systemic 

insulin resistance(66,67). Experimentally dissecting these mechanisms is challenging as it 

would require sensitive measurements in individuals matched for adiposity and liver fat, yet 

stratified by genotype with sufficient power to demonstrate effects.

The main strength of this study is that it is based on two well-characterised, population-

based cohorts. Our study evaluated 19,037 in total whereas previous relevant work has 

analysed data from up to 1810 adults from population-based cohorts(20) or 695 biopsied 

NAFLD patients(68). For many lipid classes we were able to validate our results across 

multiple metabolomics platforms and independent cohorts, thought difference in the 

platforms may mean that the beta-regression coefficients are not directly comparable. This is 

also the first study to report characterisation of the MTARC1 variant in a population-based 

cohort. In addition, our conclusions should be free from potential selection bias of previous 

NAFLD or NASH cohorts or case-control studies (21,68,77–81,69–76).

A potential limitation of our study is the use of ultrasound for definition of steatosis, rather 

than quantitative magnetic resonance spectroscopy or proton density fat fraction. Ultrasound 

identification of hepatic steatosis was not available in the EPIC-Norfolk cohort. 

Furthermore, we did not have complete overlap of metabolomics between Fenland and 

EPIC-Norfolk cohorts, which reduced the power for identifying associations in those 

analyses. This meant we were unable to explore some specific steatosis-metabolite 

associations, for example phosphatidylinositols, which were only covered by untargeted 

profiling in the EPIC-Norfolk cohort. In addition, we did not have detailed data on liver 

related outcomes (for example, progression of fibrosis or development of NASH) or 

aspartate aminotransferase, therefore were unable to calculate non-invasive scores of hepatic 

fibrosis. Because of our cross-sectional design, we could not determine the causality whether 

metabolites affected hepatic steatosis or vice versa, whereas gene-metabolite associations 

should be free from the concern. As population-based cohorts comprised of healthy 

individuals, this study did not have liver biopsy data. Therefore, we were unable to correlate 

metabolite changes to histological stage of disease or assess for effect on the hepatic 

metabolite profile. These would be important future studies to validate these findings.

It should be noted that other variants in (or near) the five studied genes show strong variant-

metabolite associations, though have not been associated with liver disease to date. For 

example, Draisma et al. found rs2576452C>T near MBOAT7 was negatively associated with 

1-arachidonoylglycerophosphoinositol, p=8.8x10-18 (28). We selected these five variants for 

inclusion based on their clear and replicated associations with NASH-fibrosis however 

studying other variant-metabolite associations in PNPLA3, TM6SF2, MBOAT7, MTARC1, 

and HSD17B13 may reveal additional insights into the function of these genes.
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There are some limitations of the techniques used for metabolite profiling in this study. 

There is a risk of misidentification of species from untargeted metabolomics, which is most 

relevant for some metabolites where we were unable to validate trends using targeted 

metabolomics from the Fenland (or an external) cohort, for example 3-

methylglutarylcarnitine. In addition, the platform used with the EPIC-Norfolk cohort has a 

preference towards hydrophilic metabolites and may be less accurate with more hydrophobic 

metabolites. Data on triglycerides and diglycerides were only available from the Fenland 

cohort and in a small number of individuals (1356), which limited power for detecting 

associations and performing replication, particularly for TM6SF2. Though reassuringly, our 

results for rs738409C>G in PNPLA3 are consistent with previous reports(40,64,82).

In conclusion, metabolite profiling from two large cohort studies demonstrates a specific 

signature of pathway perturbation associated with five NASH-fibrosis variants. For example, 

MTARC1 p.Thr165Ala is associated with higher sphingomyelin species. These findings 

suggest that common genetic variants may influence different pathophysiologic pathways in 

the development of NAFLD.

Materials and Methods

Fenland study cohort

The Fenland study is a population-based cohort of 12,435 individuals recruited in 2005-2015 

from general practice lists from Cambridgeshire, England. The study and its methods were 

described in detail previously(83). Briefly, the study aimed to examine genetic, metabolic, 

lifestyle, and societal determinants for the development of type 2 diabetes and related 

metabolic disorders. Therefore, all the participants were eligible if they were free from type 

2 diabetes prior to the first study visit. Participants underwent detailed metabolic 

phenotyping, genome-wide genotyping, and serum metabolomic profiling. For inclusion in 

the current analysis, participants must have had an abdominal ultrasound scan (US) for 

determination of hepatic steatosis, densely imputed genotype data for the SNPs of interest 

(as described below), and body composition analysed by either dual energy X-ray 

absorptiometry (DXA) or bioelectrical Impedance analysis (BIA). Furthermore, participants 

were excluded if: no genotype data were available, related individuals, genetic ancestry 

outliers. Applying those criteria left 9,135 participants to be included in statistical analyses. 

The study was approved by the Cambridge Local Research Ethics Committee (ref: 04/

Q0108/19) and all participants provided written informed consent to participate in the study. 

Sociodemographic factors (e.g. ethnicity, sex) and alcohol use were extracted from the 

Fenland General Questionnaire.

Measures of body composition – Fenland cohort

Anthropometric measures and DXA were described in detail elsewhere(83). In brief, 

participants’ height, weight, waist- and hip- circumferences were measured. Body mass 

index (BMI) was calculated by weight (kg) divided by squared height (m2). DXA (Lunar 

Prodigy Advanced fan beam scanner, GE Healthcare, Hatfield, UK) estimated lean and fat 

mass with their relative distributions using the GE software (version no. 14; GE Healthcare). 

BIA was performed using TANITA BC-418 MA body fat monitor (Tanita, Tokyo, Japan) to 
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estimate total body fat percentage. Body fat percentage was used from DXA where available 

and from BIA if unavailable. All measurements were performed by trained operators.

Abdominal ultrasound scan (US) – Fenland cohort

Liver US images were taken for the Fenland cohort as described elsewhere(84). The images 

were recorded and scored retrospectively by two operators who were blinded to all other 

study measures. The ultrasound images were acquired using the LOGIQ Book and Logic GE 

Healthcare ultrasound systems with 3C MHz-RS and 2-5 MHz 3C-RC curved array 

transducers respectively, and were qualitatively scored according to standardised criteria(85–

88). The hepatic steatosis scoring criteria were: Criterion 1, increased echo reflectivity of the 

liver parenchyma (bright liver in comparison with the kidney); Criterion 2, decreased 

visualisation of the intra-hepatic vasculature; Criterion 3, attenuation of ultrasound beam. 

Each criterion was scored on a 4-point scale (i.e. as 1, 2, 3 or 4) and summed, resulting in 

cumulative liver fat score (range: 3 to 12). A score of ≤4 was classified as normal liver and 

≥5 was classified as steatosis.

EPIC-Norfolk study cohort

The EPIC-Norfolk study is a prospective population cohort of over 25,000 individuals aged 

40-79 years at recruitment living in Norfolk, England (baseline years=1993-1997) (89), 

nested within the European Prospective Investigation into Cancer and Nutrition (EPIC). The 

study was approved by the Norfolk Research Ethics Committee (ref. 05/Q0101/191) and all 

participants gave their written consent on entering the study. Metabolomics, genotyping, and 

clinical outcome data were available for 9,902 participants. No liver imaging (for 

identification of steatosis) was available in this cohort.

Genotyping data – Fenland and EPIC-Norfolk Cohorts

Participants were genotyped using Affymetrix Axiom UKBiobank, Affymetrix 500K Array 

Set, and Illumina Infinium Core Exome 24v1 arrays. Results were imputed to the HRC and 

UK10k panels, followed by combination of imputation results.

Genotype was extracted for five SNPs associated with NASH-cirrhosis: rs738409C>G in 

PNPLA3 (NC_000022.11:g.43928847C>G / NP_079501.2:p.Ile148Met), rs58542926C>T 

near TM6SF2 (NC_000019.10:g.19268740C>T / NP_001001524.2:p.Glu167Lys), 

rs641738C>T near TMC4-MBOAT7 (NC_000019.10:g.54173068T>C / 

NP_001138775.2:p.Glu17Gly, referred to as ‘MBOAT7’), rs72613567TA>T in HSD17B13 
(NC_000004.12:g.87310241dup), and rs2642438A>G in MTARC1 
(NC_000001.11:g.220796686A>G / NP_073583.3:p.Thr165Ala). Call rate was >98% for all 

variants.

In addition, genotype was extracted for three variants at genome-wide significance for liver 

fat (rs780094C>T in GCKR (NC_000002.12:g.27518370C>T), rs4240624G>A near 

PPP1R3B (NC_000008.11:g.9326721G>A), rs12137855T>C in LYPLAL1 
(NC_000001.11:g.219275036C>T)) and variants associated with haemochromatosis 

(rs1800562G>A in HFE (NC_000006.12:g.26092913G>A / NP_000401.1:p.Cys282Tyr)) 

and alpha-1-antitrypsin deficiency (rs28929474C>T in SERPINA1 
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(NC_000014.9:g.94378610C>G / NP_001002236.1:p.Glu366Lys). These three variants in 

or near GCKR, PPP1R3B, and LYPLAL1 are well established determinants of liver fat but 

do not appear to associated with cirrhosis, therefore were included for comparison against 

the NASH-fibrosis variants(10,90) as ‘steatosis only’ variants. Whilst the variants in HFE 
and SERPINA1 are associated with cirrhosis but not liver fat by reasonably well-established 

metabolic pathways. These were included for comparison against NASH-fibrosis variants to 

assess whether metabolite associations were variant-specific or whether they non-

specifically reflected hepatic fibrosis. A summary of the evidence for inclusion of variants in 

the analysis is presented in Supplementary Table 1. Finally, genotyping data were used to 

calculate previously published SNP scores for metabolic traits: BMI(91), BMI-adjusted 

waist-to-hip ratio(92), body fat percentage(93), and insulin resistance(94).

Metabolomics profiling and gas chromatography of fatty acids – Fenland cohort

Fasting serum was used for targeted metabolomics using AbsoluteIDQ p180 kit 

(BIOCRATES Life Sciences AG, Innsbruck, Austria), which includes: 24 amino acids, 10 

amines, 40 carinitines, 14 lysophosphatidylcholines (lyso-PC), 37 

diacylphosphatidylcholines (diacyl-PC), 37 alkylacylphosphatidylcholines (alkylacyl-PC), 

11 sphingomyelins (SM), and the sum of hexoses(95). The panel was measured using 

ABSciex 5500 Qtrap with a Waters Acquity UPLC as described elsewhere(63,95). In 

addition, 37 fatty acids were measured using an automated, high-throughput gas 

chromatography method in a subset (n=4266), as described previously(96). In short, the 

plasma phospholipid fraction was obtained using solid phase extraction and hydrolysed. 

Isolated fatty acids were then methylated, yielding fatty acid methyl esters (FAME), and 

separated by gas chromatography (J&W HP-88, 30 m length) equipped with flame 

ionisation detection (7890N GC Agilent Technologies, United States). Samples were 

processed in a random order, and laboratory staff was blinded to any participant 

characteristics. Fatty acids were identified by their retention times compared with those of 

commercial standards and expressed as percent of total phospholipid fatty acids (mol%). All 

assays were performed according to the manufacturers’ instructions.

Lipidomics – Fenland cohort

Untargeted lipidomic measurement was performed on fasting serum for a subset of 

participants (n=1356), as previously described(77). Briefly, samples were diluted with 100 μl 

of MilliQ H2O in a well of a glass-coated 2.4 ml deep well plate (Plate+TM, Esslab, 

Hadleigh, UK), then 250 μl of MeOH was added. Lipids were partitioned into 500 μl of 

Methyl-tertiary-butyl ether. After centrifugation, the organic layer was concentrated and 

used for lipid analysis. Samples were infused into a Thermo Exactive benchtop orbitrap 

(Hemel Hampstead, England), using an Advion Triversa Nanomate (Ithaca, United States) 

and data acquired in both positive (+1.2 kV) and negative (−1.5 kV) mode voltages. All 

experiments were run with blank controls and two different quality control samples. In total, 

218 lipid signals were detected and annotated as described previously(77) based on the 

identification at level 2 of the Metabolomics Standards Initiative. Identified lipid species 

included: 8 alkenylphosphatidylcholines (alkenyl-PC), 11 alkylacylphosphatidylcholines 

(alkylacyl-PC), 10 cholesterol esters (CE), 32 diacylphosphatidylcholines (diacyl-PC), 9 

Mann et al. Page 11

Hum Mol Genet. Author manuscript; available in PMC 2021 June 18.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



lysophosphatidylcholines (lyso-PC), 10 phosphoethanolamines (PE), 19 sphingomyelins 

(SM), 32 diacylglycerols (DG), and 41 triacylglycerols (TG).

Untargeted metabolomics – EPIC-Norfolk cohort

Untargeted metabolomics were measured using the DiscoveryHD4® platform(97) 

(Metabolon, Inc., Durham, USA), which uses a Hydrophilic Interaction Liquid 

Chromatographic (HILIC) method in non-fasted citrated plasma samples, in two quasi-

randomly selected substudies. Metabolite levels were median-normalized across rundays and 

no imputation of missing values was performed. All the analyses were performed for each 

dataset separately. The reported analyses included 9,902 individuals with full covariate 

information and plasma levels of 977 metabolites. Fixed-effects meta-analysis was used to 

combine the metabolite results from the two datasets.

Statistics

In both cohorts, anthropometry, body composition measurements, metabolomics, and 

lipidomics variables were transformed logarithmically. Metabolite levels were further 

winsorised (to 5 sd) and standardised (μ=0, sd=1) using statistics specific to each dataset.

In the Fenland study cohort, characteristics of participants with and without hepatic steatosis 

were compared using linear regression for continuous variables and logistic regression for 

categorical variables, adjusting for age, sex, and BMI. NAFLD-associated genotypes were 

assessed for associations with anthropometric and metabolic traits using linear regression 

(coding effect allele dosage as 0, 1, and 2) adjusting for age, sex, and the first ten principal 

components from a principal component analyses on the genetic data to account for 

population stratification, as has been used previously by our group(63,98,99).

Targeted metabolomic and untargeted lipidomic profiles were compared between 

participants with and without hepatic steatosis. The semi-quantitative score of the degree of 

steatosis was analysed as an ordinal variable in secondary analysis. Associations between 

metabolites and steatosis were first assessed using logistic regression corrected for age, sex, 

and population stratification. Each metabolite was used as a dependent variable and either 

steatosis status (yes/no) or steatosis score (3 to 12 points) was used as the independent 

variables. To illustrate the effect of insulin resistance on these associations, the analysis was 

repeated additionally correcting for BMI and fasting insulin.

Associations of metabolite levels with SNP effect alleles were assessed using linear 

regression adjusted for age, sex, and population stratification, for all SNPs. Each metabolite 

was used as a dependent variable and number of risk alleles (0, 1, or 2) was used as the 

independent variable.

Variants in rs58542926C>T near TM6SF2 and rs2642438A>G in MTARC1 were found to 

influence total serum lipids and lipoprotein levels. Therefore, regression analyses were 

repeated for these variants additionally adjusting for: total cholesterol and total triglycerides 

for rs58542926C>T near TM6SF2; and, HDL cholesterol for rs2642438A>G in MTARC1.
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To provide further confidence of the validity of our results, we tested metabolite-variant 

associations in random subgroups of the cohorts. The Fenland cohort was randomly divided 

into two groups (g1 & g2) and regression analyses were repeated. The EPIC-Norfolk cohort 

was already comprised of two substudies (g1 & g2). Metabolite-variant associations were 

considered significant where: overall Q-value<0.05 and there was a directionally consistent 

beta-regression co-efficient across g1, g2, and the overall cohort. Next, we examined classes 

of metabolites (e.g. triglycerides, diacylphosphatidylcholines (diacylPC)) for consistent 

trends in variant-metabolite associations across different analysis platforms and cohorts. 

Beta-regression co-efficients were plotted against number of carbons and/or double-bounds 

in lipid chains. Simple linear regression was performed on these plots, as a form of meta-

regression, separately for each cohort (and metabolomics platform).

For external validation of our results, we compared our results against publicly available 

datasets, where possible(17,28,29,100–103). These were examined for directionally 

consistent associations across classes of metabolites.

In order to determine which of the five NASH-fibrosis variants was most informative in the 

variation of relevant metabolites we performed multiple linear regression in the Fenland 

cohort. Each of the 41 metabolites associated with at least one of the variants were included 

as dependent variables and number of risk alleles (0, 1, or 2) was used as the independent 

variable. Adjusted R2 was recorded as a measure of relative contribution to the variation in 

the included metabolites.

Benjamini-Hochberg correction for multiple testing was used throughout with Q-value<0.05 

considered significant.

Statistical analyses were conducted using Stata v14.1 (StataCorp), GraphPad Prism (v8.0 for 

Mac, GraphPad Software, La Jolla California, USA) and R 3.5.1.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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BIA bioelectrical Impedance analysis

BMI body mass index

DG diacylglycerol

DHGL dihomo-gamma-linolenic acid

DXA dual energy X-ray absorptiometry

NAFLD non-alcoholic fatty liver disease

NASH non-alcoholic steatohepatitis

SNP single nucleotide polymorphism

TG triacylglycerol

US ultrasound

VLDL very-low density lipoprotein
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Figure 1. 
Associations of metabolites with NASH-fibrosis variants in the Fenland and EPIC-Norfolk 

cohort. Metabolites are arranged by class and annotated whether they were obtained by 

untargeted or targeted methods. β ±standard error (SE) per allele from linear regression 

models are presented, adjusted for age, sex and the first ten genetic principal components 

and after standardization of each metabolite. Only metabolites significantly associated with 

at least one variant of interest (Q<0.05) are presented and marked in black. MG, 

monoglyceride; PC, phosphatidylcholine; PI, phosphatidylinositol; SM, sphingomyelin.
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Table 1

Top associations between metabolites and NASH-fibrosis variants in the EPIC-Norfolk and Fenland cohorts. 

Beta represents the change in 1 normalised standard deviation of each metabolite per effect allele 

(Supplementary Table 8 for a full list of significant associations, Q<0.05). DG, diacylglycerol; GPC, 

glycerophosphatidylcholine; GPI, glycerophosphatidylinositol; PC, phosphatidylcholine; Q, Q-value (false 

discovery rate-corrected P-value); SM, sphingomyelin; SMOH, sphingomyelin hydroxide; TG, triacylglycerol.

Group Metabolite Beta (SE) p q n Cohort Method

rs72613567TA>T in HSD17B13

Amino acid 3-methylglutarylcarnitine .05 (.02) 5.3E-04 0.024 9756 EPIC Untargeted

Phosphatidylcholines LysoPC (C14:0) -.02 (.01) 1.3E-04 0.006 9317 Fenland Targeted

Phosphatidylcholines LysoPC (C20:3) -.02 (.01) 2.9E-04 0.012 9317 Fenland Targeted

Phosphatidylcholines DiacylPC (C40:6) .05 (.02) 6.3E-04 0.028 9902 EPIC Untargeted

rs641738C>T near MBOAT7

Fatty acid Fatty acid (C20:3n6) .04 (.01) 2.5E-04 0.010 4279 Fenland Targeted

Lysolipid LysoPI (C20:4) -.18 (.01) 9.3E-38 3.0E-34 9902 EPIC Untargeted

Lysolipid LysoPI (C18:2) .17 (.01) 2.1E-34 5.2E-31 9902 EPIC Untargeted

Phosphatidylcholines DiacylPC (C26:0) -.02 (.01) 0.001 0.037 9317 Fenland Targeted

Phosphatidylinositol PI (C38:4) -.24 (.01) 1.8E-62 1.7E-58 9902 EPIC Untargeted

Phosphatidylinositol PI (C36:2) .21 (.01) 1.1E-50 5.4E-47 9902 EPIC Untargeted

rs2642438A>G in MTARC1

Lysolipid LysoPC (C22:5) .06 (.02) 6.5E-05 0.005 9858 EPIC Untargeted

Lysolipid LysoPC (C15:0) .05 (.02) 6.1E-04 0.028 9901 EPIC Untargeted

Lysolipid LysoPC (C14:0) .05 (.02) 0.001 0.039 9901 EPIC Untargeted

Phosphatidylcholines DiacylPC (C40:5) .07 (.02) 7.5E-06 8.6E-04 9901 EPIC Untargeted

Phosphatidylcholines Alkylacyl PC (C34:1) .02 (.01) 8.6E-04 0.026 9317 Fenland Targeted

Sphingomyelin SM (C20:2) .02 (.01) 3.9E-04 0.015 9317 Fenland Targeted

Sphingomyelin SMOH (C22:2) .02 (.01) 5.4E-04 0.019 9317 Fenland Targeted

Sphingomyelin SM (C32:2) .05 (.01) 3.9E-04 0.019 9901 EPIC Untargeted

rs738409C>G in PNPLA3

Amino acid N-acetylmethionine -.09 (.02) 3.6E-07 5.8E-05 9893 EPIC Untargeted

Amino acid Tyrosine .02 (.01) 1.3E-04 0.006 9317 Fenland Targeted

Amino acid 3-methylglutarylcarnitine .06 (.02) 1.2E-04 0.008 9756 EPIC Untargeted

Fatty acid Fatty acid (C20:4n6) -.03 (.01) 0.001 0.037 4279 Fenland Targeted

Triacylglyceride TG (C56:6) .07 (.02) 7.3E-05 0.004 1356 Fenland Untargeted

Triacylglyceride TG (C56:5) .06 (.02) 2.6E-04 0.011 1356 Fenland Untargeted

Triacylglyceride TG (C59:7) .06 (.02) 5.6E-04 0.019 1356 Fenland Untargeted

rs58542926C>T in TM6SF2

Fatty acid Fatty acid (C20:4n6) -.03 (.01) 1.9E-05 0.001 4279 Fenland Targeted

Fatty acid Fatty acid (C20:3n6) -.09 (.03) 3.7E-04 0.019 9891 EPIC Untargeted

Lysolipid LysoPC (C14:0) -.1 (.03) 1.7E-04 0.010 9901 EPIC Untargeted
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Group Metabolite Beta (SE) p q n Cohort Method

Phosphatidylcholines DiacylPC (C34:4) -.03 (.004) 2.0E-10 7.8E-08 9317 Fenland Targeted

Phosphatidylcholines DiacylPC (C34:4) -.15 (.03) 1.0E-08 2.5E-06 9900 EPIC Untargeted

Phosphatidylcholines Alkylacyl PC (C40:5) -.02 (.004) 1.0E-07 2.3E-05 9317 Fenland Targeted

Phosphatidylcholines DiacylPC (C34:4) -.15 (.03) 1.7E-07 3.0E-05 7991 EPIC Untargeted

Phosphatidylcholines Alkylacyl PC (C38:0) -.02 (.004) 1.8E-07 3.2E-05 9317 Fenland Targeted

Sphingomyelin SMOH (C22:1) -.01 (.004) 7.3E-04 0.023 9317 Fenland Targeted

Sphingomyelin SMOH (C14:1) -.01 (.004) 0.001 0.038 9317 Fenland Targeted
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