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Abstract

Distributed data networks enable large-scale epidemiologic studies but protecting privacy while
adequately adjusting for a large number of covariates continues to pose methodological
challenges. Using two empirical examples within a three-site distributed data network, we tested
combinations of three aggregate-level data-sharing approaches (risk-set, summary-table, effect-
estimate), four confounding adjustment methods (matching, stratification, inverse probability
weighting, matching weighting), and two summary scores (propensity score, disease risk score)
for binary and time-to-event outcomes. We assessed the performance of these data-sharing and
adjustment method combinations by comparing their results against the results from the
corresponding pooled individual-level data analysis (reference). For both outcome types, the
method combinations examined yielded identical or comparable results to the reference in most
scenarios. Within each data-sharing approach, comparability between aggregate- and individual-
level data analysis depended on adjustment method, e.g., risk-set data sharing with matched or
stratified analysis of summary scores produced identical results, while weighted analysis showed
some discrepancies. Across adjustment methods examined, risk-set data sharing generally
performed better while summary-table and effect-estimate data sharing more often produced
discrepancies in settings of rare outcome and small sample size. Valid multivariable-adjusted
analysis can be performed in distributed data networks without sharing individual-level data.
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METHODS

Multi-center distributed data networks support rapid evidence generation in large and diverse
populations, assessment of treatment effect heterogeneity, and evaluation of rare exposures
or outcomes (1-3). Existing large-scale networks include the Sentinel System (4, 5), the
Health Care Systems Research Collaboratory (6), and the National Patient-Centered Clinical
Research Network (7). However, efficient and privacy-protecting data sharing remains a
challenge in distributed data network studies. To maximize analytical validity, researchers
have traditionally requested detailed individual-level data to control for confounding and
other biases. However, sharing detailed data about patients raises concerns about privacy.
Even when participating organizations are open to sharing individual-level data, the required
legal and contractual agreements and ethical reviews are often labor-intensive and time-
consuming, making a study less efficient or even unachievable.

Privacy-protecting analytical methods can help address this challenge (8-11). The
theoretical properties of these methods have been previously explored (12). Using only
aggregate-level information, these methods can produce results consistent with those from
the pooled individual-level data analysis, but evidence supporting their validity is limited in
epidemiologic research. Prior empirical examinations showed that propensity score (PS)-
stratified analysis of risk-set data and meta-analysis of site-specific effect-estimate data can
achieve similar levels of statistical sophistication as their corresponding pooled individual-
level analyses (13, 14); but simulation studies also suggested that these methods could
produce different results with sparse data (14). Using two empirical examples from a
distributed data network, we assessed the performance of different combinations of data-
sharing approaches and confounding adjustment methods across a range of scenarios that
researchers could encounter in real-world studies.

This study focused on the statistical performance of various combinations of data-sharing
approaches and confounding adjustment methods for binary and time-to-event outcomes as
evaluated by the concordance between their results and those from the corresponding pooled
individual-level data analyses, which served as the reference of our assessment (Table 1).
The two empirical examples were comparative effectiveness and safety research topics on
obesity and rheumatoid arthritis. The clinical contexts of these examples have been explored
elsewhere (15-19). Both examples drew data from three integrated health care delivery
systems, organized as a three-site distributed data network: Kaiser Permanente Colorado,
Kaiser Permanente Northern California, and Kaiser Permanente Washington. These systems
have previously transformed their electronic health data into research-ready datasets with a
common data structure (20). The Institutional Review Board at Harvard Pilgrim Health Care
approved this study; the three participating delivery systems ceded their Institutional Review
Board oversight to Harvard Pilgrim Health Care.
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Empirical examples

Example 1.—The first example assessed the comparative effectiveness and safety of
adjustable gastric banding and Roux-en-Y gastric bypass. We identified a retrospective
cohort of patients =18 years who underwent one of these procedures between 1/1/2005 and
9/30/2015. Eligible patients had continuous health plan enrollment with medical and
pharmacy benefits, at least one recorded body mass index measurement =35 kg/m?2, and no
exposure to any major gastrointestinal procedures during the 365-day period preceding the
initial bariatric procedure.

The effectiveness outcomes of interest were achievement of clinically meaningful changes in
body mass index from baseline (e.g., 210%) within the first post-procedure year. The safety
outcomes included re-intervention and all-cause hospitalization within the first post-
procedure year (15, 21). We analyzed both effectiveness and safety outcomes as binary and
time-to-event outcomes. We defined binary safety and effectiveness outcomes as occurrence
of outcomes of interest closet to the end of the first post-procedure year, and time-to-event
outcomes as time to the first occurrence of outcomes of interest within the same follow-up
period. Follow-up began on the day after the discharge date of the index procedure
hospitalization and ended at the earliest occurrence of an outcome event, 365 days of follow-
up, death, end of health plan enrollment, or 9/30/2015. We identified potential confounders
(Web Table 1) during the 365-day period preceding the index procedure based on subject-
matter knowledge and prior studies (15, 16, 21).

Example 2.—The second example compared the effectiveness and safety of tumor necrosis
factor-alpha inhibitor biologics (adalimumab, certolizumab pegol, etanercept, golimumab, or
infliximab) and non-tumor necrosis factor-alpha inhibitor biologics (abatacept, rituximab, or
tocilizumab) for rheumatoid arthritis. We identified a retrospective cohort of patients =18
years with rheumatoid arthritis who had a first dispensing of a study drug between 1/1/2001
and 9/30/2015. Eligible patients had continuous health plan enrollment with medical and
pharmacy benefits, no exposure to any study drugs during the 365-day period preceding
initial dispensing. We excluded patients who had an outcome event of interest, cancer
(excluding non-melanoma skin cancer), human immunodeficiency virus infection or
acquired immune deficiency syndrome, or organ transplantation during the 365-day baseline
period.

The effectiveness outcome was an adapted version of a validated claims-based clinical
effectiveness measure operationalized for use with health plan data (22). The safety
outcomes included bacterial infections requiring hospitalization and hypersensitivity
reaction, identified using previously validated algorithms (19, 23), in the year following the
index dispensing. We analyzed both effectiveness and safety outcomes as binary and time-
to-event outcomes. We defined binary outcomes as occurrence of outcomes of interest closet
to the end of the first year following the index dispensing, and time-to-event outcomes as
time to the first occurrence of outcomes of interest within the same follow-up period, except
for the time-to-event effectiveness outcome, which was defined as time to the first
occurrence of switching to another biologic anti-rheumatic drug to which the patient had no
prior exposure (a component of the validated claims-based clinical effectiveness measure).
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Follow-up began on the date of index dispensing and ended on the earliest occurrence of an
outcome event of interest, 365 days of follow-up, death, end of health plan enroliment,
cessation of initial biologic treatment, initiation of another biologic treatment, or 9/30/2015.
We identified pre-specified potential confounders during the 365-day baseline period
preceding the index dispensing (Web Table 1).

Data-sharing approaches examined

We tested three aggregate-level data-sharing approaches that require varying levels of
information to be shared by data-contributing sites. The appendix of Mazor et al. (24) and an
introductory video (25), both freely available, provide examples of analytical datasets
typically shared by a site using these approaches. We used pooled individual-level data from
the three sites in the reference analysis.

Risk-set data—This approach aggregated individual-level data into a dataset that included
one record per risk-set, with each risk-set anchored by a unique outcome event time. A risk-
set comprised patients who experienced the outcome and patients who were still at risk of
developing the outcome at that time point. Each record of the shared risk-set data included
the unique event time, number of exposed events, number of unexposed events, size of the
exposed risk-set, and size of the unexposed risk-set. With different confounding adjustment
methods, as discussed below, the base for at-risk patients varied. For example, when
confounding was adjusted through PS matching, the risk-set included all at-risk patients in
the PS-matched cohort within the same site.

Summary-table data—This approach further reduced the data into an aggregated dataset
that resembled two-by-two summary tables. Depending on the outcome type, this aggregated
dataset contained the total number of persons (for binary outcomes) or total person-times
(for time-to-event outcomes), as well as the number of outcome events in each exposure
group. As with risk-set data sharing, the number of two-by-two summary tables depended on
the confounding adjustment method. For example, when confounding was adjusted through
PS matching, only a single two-by-two summary table was necessary for the PS-matched
cohort within each site.

Effect-estimate data—This approach shared the least amount of data—an aggregated
dataset that only contained the site-specific effect estimate and the corresponding variance,
obtained by analyzing the individual-level data within each site using the same confounding
adjustment method used for the corresponding reference analysis. For example, when PS-
matching was used for confounding adjustment, the site-specific effect estimates were
obtained by analyzing individual-level data at each site using PS-matching.

Confounder summary scores examined

To adjust for the large number of pre-specified confounders, we used two confounder
summary scores—PS and disease risk score (DRS)—to condense the information contained
in individual confounders into a single variable. PSs are the probabilities of having the study
exposure given patients’ baseline characteristics (26), while DRSs are patients’ probabilities
or hazards of having the study outcome conditional on their baseline characteristics (27).
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Confounding adjustment methods examined

We performed within-site confounding adjustment by incorporating the two confounder
summary scores into the analysis via matching, stratification, or weighting (except for DRS
for which weighted analysis has not been established for single- or multi-database settings).
We evaluated two types of PS weights—inverse probability treatment weights (28) and
matching weights (29, 30). When estimated correctly, these summary scores provide results
comparable to those from individual covariate adjustment (27, 31).

Statistical analysis

Analysis of individual-level data (reference analysis)—We analyzed the pooled
individual-level data across three sites and used the results as the reference to evaluate the
performance of other approaches that analyzed aggregate-level datasets. We used site-
stratified logistic regression to obtain odds ratios (ORs) and 95% confidence intervals (CIs)
for binary outcomes, and site-stratified Cox proportional hazards regression to estimate
hazard ratios (HRs) and 95% ClIs for time-to-event outcomes.

Analysis of risk-set data—For time-to-event outcomes, we analyzed the risk-set data by
fitting a logistic regression model with the proportion of exposed outcome events among all
events as the dependent variable and the log odds of having the study exposure in the risk-set
as the independent variable (specified as an offset). This approach has been shown to be
mathematically equivalent to a stratified Cox regression with individual-level data (9). For
binary outcomes, we used logistic regression with count data.

Analysis of summary-table data—For binary outcomes, we fit a site-stratified logistic
regression model for grouped data, with the number of outcomes/total number of persons as
the dependent variable and the exposure variable as the independent variable. For time-to-
event outcomes, we fit a site-stratified conditional Poisson regression model with the natural
log of person-time as the offset. When confounding adjustment was done through
stratification, we also included the quintile indicator of the confounder summary score as
another stratification variable. In situations where the regression-based analysis was not
feasible, we used the Mantel-Haenszel method (32) to compute a weighted estimate for the
desired effect measure across strata. Weighted analysis has not been established to analyze
summary-table data.

Analysis of effect-estimate data—With the site-specific effect-estimate data, we
performed an inverse variance-weighted meta-analysis using the DerSimonian and Laird’s
fixed-effect and random-effects models to obtain the overall effect estimate and 95% ClI
(33).

Assessment of treatment effect heterogeneity across sites—The goal of the
study was to assess the performance of various data-sharing and analytical method
combinations when the decision to pool data across sites had been made. However, we used
Cochran’s Q test to examine treatment effect heterogeneity across sites for illustrative
purposes (34).
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Assessment of statistical performance—To assess the statistical performance of
different combinations of data-sharing approaches and confounding adjustment methods, we
compared their results against their corresponding pooled individual-level data analyses. We
did not compare the results across methods (e.g., PS matching versus PS stratification)
because they estimated different treatment effects in different target populations.

Example 1: comparative effectiveness and safety of bariatric procedures

We identified 584 eligible adjustable gastric banding patients and 8,777 eligible Roux-en-Y
gastric bypass patients. Web Table 2 summarizes their baseline characteristics.

PS-based analyses

Binary outcomes.: All aggregate-level data-sharing approaches generated results similar to
their references for all confounding adjustment methods examined (Table 2). In fact, the
results from risk-set and summary-table data sharing were identical to the reference. Both
fixed-effect and random-effects meta-analyses of effect-estimate data produced comparable
results for effectiveness outcomes, with the random-effects model showing slightly more
variation. For safety outcomes, the two meta-analyses of effect-estimate data produced
somewhat different results, with greater discrepancy observed in inverse probability
weighted analyses.

Time-to-event outcomes.: Risk-set data sharing produced results identical to the reference
in all confounding adjustment methods assessed (Table 3). Summary-table data sharing
generated numerically different but qualitatively similar results in matched and stratified
analysis of summary scores. Fixed-effect meta-analysis of effect-estimate data produced
results compatible to the reference, while random-effects meta-analysis produced slightly
different results that did not materially change the overall inference for effectiveness
outcomes. For safety outcomes, the effect-estimate data-sharing approach showed discrepant
results, with greater divergence seen in inverse probability weighted analyses.

DRS-based analyses—As with PS-based analyses, we observed similar performance for
various data-sharing and adjustment method combinations when used with DRS for both
binary and time-to-event outcomes (Table 4). Analyses of risk-set data produced results
identical to the reference. Summary-table data sharing generated identical results for binary
outcomes but slightly different results for time-to-event outcomes when compared with the
reference. The two meta-analyses of effect-estimate data produced slightly different results
for both outcome types. When compared across the same confounding adjustment method
(i.e., stratification or matching) for any specific outcome, DRS-based analyses generally
produced results consistent with those from PS-based analyses.

Treatment effect heterogeneity across sites—The Q-statistic suggested potential
treatment effect heterogeneity across the three data-contributing sites for most outcomes
examined (Tables 2-4).
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Example 2: comparative effectiveness and safety of biologic disease-modifying anti-
rheumatic drugs

We identified 7,419 patients who initiated a tumor necrosis factor-alpha inhibitor and 407
patients who initiated a non-tumor necrosis factor-alpha inhibitor biologic. Web Table 3
summarizes their baseline characteristics. Due to the low outcome occurrences as well as the
limited sample size, we present results for switching for the effectiveness outcome and
serious infections for the safety outcome, the only outcomes for which we could obtain
reliable estimates.

PS-based analyses

Binary outcomes.: Similar to the bariatric procedure example, all three data-sharing
approaches generated results similar to the reference (Table 5). The results from risk-set and
summary-table data sharing were identical to the reference when confounding was adjusted
through stratification or matching. The two meta-analyses of effect-estimate data also
produced comparable results. When using inverse probability weighting for confounding
adjustment, divergence from the reference was observed, especially for the serious infections
outcome, which had lower incidence compared to treatment switching.

Time-to-event outcomes.: Sharing of risk-set data produced results identical to the
reference except when confounding was adjusted through weighting—divergence from the
reference was observed in the 95% Cls, especially for the serious infections outcome (Table
6). Both meta-analyses of effect-estimate data produced results compatible to the reference,
with the random-effects showing slightly more variation. However, different from the
bariatric procedure example, summary-table data sharing generated results concordant with
the reference.

DRS-based analyses—We observed similar findings for both binary and time-to-event
outcomes when comparing results from the aggregate-level analytical methods with the
reference (Table 7). Risk-set and summary-table data sharing generated identical results for
both binary and time-to-event outcomes. Meta-analyses of effect-estimate data produced
slightly different results for both outcome types but did not change the overall inference. For
any specific outcome, DRS-based analyses generated results consistent with those from PS-
based analyses when using the same confounding adjustment method (i.e., stratification or
matching).

Treatment effect heterogeneity across sites—The Q-statistic suggested no treatment
effect heterogeneity across the three data-contributing sites for most outcomes examined
(Tables 5-7).

DISCUSSION

Using two empirical examples within a three-site distributed data network, we tested
combinations of three aggregate-level data-sharing approaches, four confounding adjustment
methods, and two confounder summary scores and assessed their performance in
multivariable-adjusted analysis of binary and time-to-event outcomes. The empirical
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examples included a range of exposure prevalences and outcome incidences, allowing for
assessment under various real-world settings. For both outcome types, these aggregate-level
data-sharing approaches yielded results identical or comparable to those from their
corresponding pooled individual-level data analyses in most scenarios examined.

Summary of findings

For a given data-sharing approach, the comparability between aggregate- and individual-
level data analysis depended on the confounding adjustment method. For example, with risk-
set data sharing, matched or stratified analysis of confounder summary scores returned
identical results, while weighted analysis showed some variation. This was true for both PS-
and DRS-based analysis. Our finding on the equivalence between PS-stratified analysis of
risk-set data and the pooled individual-level data analysis was consistent with a previous
empirical examination (13). Our study also confirmed the high comparability between
inverse probability weighted analysis of risk-set data and the corresponding reference
analysis in most scenarios, which was previously demonstrated in a simulation study (35).

Sharing of summary-table data only requires aggregated information by exposure group, but
analyses using this approach were sensitive to outcome type, outcome incidence, and sample
size. Across confounding adjustment methods, this data-sharing approach yielded results
identical to the reference for binary outcomes but discrepant results for time-to-event
outcomes in some scenarios. For example, the HR estimate for <5% change in body mass
index from the PS-based analysis was 3.48 (95% CI: 3.11, 3.89) with summary-table data
sharing while the reference was 2.20 (1.97, 2.46) (Table 3). This discordance was not
surprising because summary-table data sharing for time-to-event outcomes was, in essence,
performing a Poisson regression analysis, which assumes constant hazards. In the situation
of time-varying hazards, this approach would generate results different from the Cox
proportional hazards regression used in the pooled individual-level data analysis. This
difference indicates that analysis of summary-table data may not be appropriate for certain
time-to-event outcomes, especially when the hazards of outcome under study are not
constant.

Meta-analysis of effect-estimate data requires the least amount of information be shared
across sites, but our empirical examples suggest that this approach was sensitive to outcome
incidence and sample size. The discordance between results from this approach and the
reference was evident for the =230% change in body mass index outcome and the safety
outcomes in the bariatric procedure example, and the serious infections outcome in the
biologic anti-rheumatic drugs example. These outcomes incidences were <3.5% at some
sites, much lower compared to the other outcomes. In addition, some outcomes only
occurred in one exposure group at some sites, making the data uninformative in meta-
analyses of effect-estimate data. Conversely, other data-sharing approaches can utilize data
from sites with outcome occurring in only one of the exposure groups. When the outcome
under study was common across exposure groups and across sites, effect-estimate data
sharing, using both fixed-effect and random-effects modeling, produced estimates similar to
the reference. This finding was consistent with the results from previous simulation studies
(14, 35).
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Synthesis of evidence on the performance of methods examined

Results from this empirical study confirmed and complemented those from a simulation
study that examined the performance of these methods in a wider range of scenarios with
varying treatment prevalence, outcome incidence, treatment effect, site size, number of sites,
and covariate distributions (35). Simulation and empirical studies showed that these method
combinations produced highly comparable results to those from their corresponding pooled
individual-level analysis when the exposure prevalence was high, the outcome incidence was
high, and the site size was adequate. The performance of these method combinations varied
in scenarios with low exposure prevalence, low outcome incidence, and small site size. Web
Table 4 summarizes the strengths and limitations of these methods examined in both studies
and how their performance may be influenced by key parameters in a given multi-center
study. This table can serve as a guide for researchers interested in applying these methods. In
general, risk-set data sharing is the method of choice in matched or stratified analysis of
confounder summary scores because of its mathematical equivalence to its corresponding
pooled individual-level data analysis. We demonstrated this equivalence in simulation and
empirical studies. Meta-analysis of effect-estimate data is a valid alternative if all data-
contributing sites are able to produce an effect estimate. Summary-table data sharing can
also be considered when the hazards of study outcome are constant.

Additional considerations

We evaluated the performance of these methods in a distributed data network that had a
common data model and reliable data quality. However, we do not expect their relative
performance to differ in settings with less standardized data infrastructure, because the
pooled individual-level data analysis would be equally susceptible to the same data issues. In
practice, it may be more challenging to apply certain privacy-protecting methods in settings
with less standardized data infrastructure. The use of these methods may also require more
programming resources at each site and more coordination across sites. These operational
challenges, though important, were beyond the scope of this study, which focused on the
statistical performance of the methods.

It is not uncommon to have richer data at certain sites in a multi-center study. Researchers
can estimate confounder summary scores using a common set of covariates or site-specific
covariates. Both approaches have unique strengths and limitations that may vary by setting
(12). Again, this issue applies to all data-sharing approaches, including approaches that
share individual-level data. Using a common model to estimate summary scores ensures
consistency across sites, but this approach may not fully utilize the information available at
each site. Estimating site-specific summary scores theoretically allows better confounding
adjustment at each site but may require more programming resources when using aggregate-
level data sharing. Some semi-automated modeling techniques, such as the high-dimensional
PS approach (36), may help improve the feasibility of estimating site-specific summary
scores. In practice, it is generally worthwhile to estimate summary scores in multiple ways
to examine the robustness of the results.
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To our knowledge, this is the first study to systematically and comprehensively assess these
newer privacy-protecting analytical and data-sharing methods for distributed data network
studies. We used the results from pooled individual-level data analysis as the benchmark to
evaluate the results from these more privacy-protecting methods. Although the referent
pooled individual-level data analysis might not necessarily yield the true treatment effect, it
represents the best possible analysis one could perform in multi-center studies; a more
privacy-protecting method is a reasonable alternative if it produces identical or comparable
results. It is also reassuring that our empirical studies produced results consistent with
findings from prior methodological (8, 12-14, 35, 37, 38) and clinical studies (15-19). Data
from the three integrated delivery systems allowed us to assess the performance of these
methods in settings that researchers may encounter in real-world studies with different
outcome incidences and exposure prevalences. We also produced empirical evidence to
support the use of DRS in combination with aggregate-level data-sharing approaches, which
has not been previously evaluated.

Due to small sample sizes and rare outcomes in some scenarios, certain analyses were not
feasible or produced unreliable estimates. However, our study offers a realistic scenario
involving sparse data at participating sites, a setting that necessitates multi-center studies.
Our distributed data network comprised only three sites whose data had been converted into
standardized formats. Future studies need to assess the validity of these methods in networks
with more data-contributing sites, larger sample sizes, and more diverse databases.

The combinations of data-sharing approaches and confounding adjustment methods
evaluated were by no means exhaustive. We did not consider distributed regression (10, 11,
39-41), which could be used in combination with confounder summary scores (42). We
tested for treatment effect heterogeneity across sites but did not address it in our analyses
other than accounting for it in the random-effects meta-analysis. In the presence of treatment
effect heterogeneity by site, issues around the appropriateness of combining data across sites
apply to all data-sharing approaches, including approaches that share individual-level data.
All methods we examined can accommodate assessment of treatment effect heterogeneity,
either by site or by specific patient characteristics, if researchers specify potential effect
modifiers in advance and request data accordingly. It is worth noting that the performance of
the various method combinations examined was similar in both empirical examples, one of
which showed substantial treatment effect heterogeneity and the other did not.

When used in conjunction with confounder summary scores, several combinations of data-
sharing approaches and confounding adjustment methods allow researchers to perform
multivariable-adjusted analysis using only aggregate-level information from participating
sites and produce results identical or comparable to those from pooled individual-level data
analysis. These more privacy-protecting analytical methods can be viable alternatives when
sharing of individual-level data is not feasible or preferred in multi-center studies. Generally,
risk-set data sharing is the method of choice in matched or stratified analysis of confounder
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summary scores. Meta-analysis of effect-estimate data is a valid alternative if all data-
contributing sites can produce an effect estimate. Summary-table data sharing can also be
considered when the hazards of study outcome are constant. Researchers should carefully
evaluate exposure prevalence and outcome incidence when choosing among available data-
sharing approaches and confounding adjustment methods in multi-center studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 5.
Empirical Example 2: Results for Binary Outcomes from Propensity Score-Adjusted Analyses using Different

Combinations of Confounding Adjustment Method and Data-Sharing Approach, Non-TNFi vs TNFi®

Effectiveness outcome Safety outcome

Confounding adjustment method & data-sharing approach  Treatment switchingb Serious infections®

OR 95% ClI OR 95% ClI
Stratification
Pooled individual-level 0.52 0.34,0.76 0.97 0.46, 1.86
Risk-set 0.52 0.34,0.76 0.97  0.46,1.86
Summary-table 0.52 0.34,0.76 0.97 0.46, 1.86
Effect-estimate, fixed-effect 0.54 0.36, 0.79 1.06 0.56, 2.03
Effect-estimate, random-effects 0.53 0.32,0.86 1.03 056,203
Measure of heterogeneity, Qd 2.23 0.3268 0.78 0.6741
Matching
Pooled individual-level 0.47 0.30,0.73 1.07 0.46, 2.37
Risk-set 0.47 0.30,0.73 1.07 0.46, 2.37
Summary-table 0.47 0.30,0.73 1.07 0.46, 2.37
Effect-estimate, fixed-effect 0.47 0.31,0.72 123 058,264
Effect-estimate, random-effects 0.47 0.31,0.72 1.23 0.58, 2.64
Measure of heterogeneity, Qd 0.55 0.7589 0.03 0.9820
Inverse probability weighting
Pooled individual-level 0.36 0.23, 0.57 2.88 1.97,4.21
Risk-set 0.36 0.23,0.57 311 2.12,4.55
Effect-estimate, fixed-effect 0.39 0.25, 0.61 317  2.16,4.65
Effect-estimate, random-effects 0.45 0.18, 1.09 3.17 2.16, 4.65
Measure of heterogeneity, Qd 4.62 0.0992 0.85 0.6531
Matching weighting
Pooled individual-level 0.51 0.32,0.81 0.89 0.39, 2.04
Risk-set 0.51 0.32,0.81 0.95 0.41,2.19
Effect-estimate, fixed-effect 0.51 0.32,0.82 0.93 0.40, 2.17
Effect-estimate, random-effects 0.51 0.32,0.82 0.93 0.40, 2.17
Measure of heterogeneity, Qd 1.30 0.5213 0.42 0.8105

Note: TNFi=tumor necrosis factor-alpha inhibitor; OR= odds ratio; Cl= confidence interval

aThere were 407 (5.2%) patients who initiated non-TNFi, and 7,419 (94.8%) patients who initiated TNFi.

bThe incidences for treatment switching were 7.6% in new users of non-TNFi and 11.2% in new users of TNFi.
cThe incidences for serious infections were 2.9% in new users of non-TNFi and 3.1% in new users of TNFi.

Q is a measure of heterogeneity among the three data-contributing sites. The summary statistic and p-value from Cochran’s Q test are shown here.
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Table 6.

Empirical Example 2: Results for Time-to-Event Outcomes from Propensity Score-Adjusted Analyses using
Different Combinations of Confounding Adjustment Method and Data-Sharing Approach, Non-TNFi vs

TNFi?

Effectiveness outcome Safety outcome

Confounding adjustment method & data-sharing approach  Treatment switchingb Serious infections®

HR 95% ClI HR 95% ClI
Stratification
Pooled individual-level 0.59 0.41,0.86 0.94 050,177
Risk-set 0.59 0.41, 0.86 0.94 0.50, 1.77
Summary-table 0.59 0.39,0.85 0.94 0.45,1.78
Effect-estimate, fixed-effect 0.64 0.44,0.93 1.04  0.55,1.96
Effect-estimate, random-effects 0.63 0.26, 1.50 1.04 0.55, 1.96
Measure of heterogeneity, Qd 4.21 0.1215 0.83 0.6599
Matching
Pooled individual-level 0.55 0.37,0.83 1.07 0.51, 2.22
Risk-set 0.55 0.37,0.83 1.07 0.51, 2.22
Summary-table 0.55 0.35,0.82 1.07 047,234
Effect-estimate, fixed-effect 0.57 0.38, 0.84 1.23 0.58, 2.61
Effect-estimate, random-effects 0.58 0.34,1.02 1.23 0.58, 2.61
Measure of heterogeneity, Qd 2.37 0.3053 0.03 0.9701
Inverse probability weighting
Pooled individual-level 0.60 0.38, 0.93 2.67 1.86, 3.84
Risk-set 0.60 0.35,1.01 2.67 0.53,13.52
Effect-estimate, fixed-effect 0.69 0.44, 1.07 2.93 2.03,4.22
Effect-estimate, random-effects 0.79 0.26, 2.42 2.93 2.03,4.22
Measure of heterogeneity, Qd 7.61 0.0222 0.81 0.6656
Matching weighting
Pooled individual-level 0.60 0.39, 0.94 0.85 0.38,1.92
Risk-set 0.60 0.41,0.88 0.85 0.45,1.63
Effect-estimate, fixed-effect 0.62 0.40, 0.96 0.89 0.39, 2.05
Effect-estimate, random-effects 0.60 0.30, 1.23 0.89 0.39, 2.05
Measure of heterogeneity, Qd 2.62 0.2689 0.37 0.8304

Note: TNFi=tumor necrosis factor-alpha inhibitor; HR= hazard ratio; Cl= confidence interval

aThere were 407 (5.2%) patients who initiated non-TNFi, and 7,419 (94.8%) patients who initiated TNFi.

bThe incidences for treatment switching were 7.6% in new users of non-TNFi and 11.2% in new users of TNFi.
cThe incidences for serious infections were 2.9% in new users of non-TNFi and 3.1% in new users of TNFi.

Q is a measure of heterogeneity among the three data-contributing sites. The summary statistic and p-value from Cochran’s Q test are shown here.
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Table 7.

Empirical Example 2: Results from Disease Risk Scorea—Adjusted Analyses using Different Combinations of
Confounding Adjustment Method and Data-Sharing Approach, Non-TNFi vs TNFi’

Effectiveness outcome Safety outcome
Confounding adjustment method & data-sharing approach
L. C S . d

Treatment switching™  Serious infections

OR 95% ClI OR 95% ClI
Stratification
Pooled individual-level 0.53 0.35,0.78 0.88  0.42,1.64
Risk-set 0.53 0.36,0.78 0.88 0.42,1.64
Summary-table 0.53 0.35,0.78 0.88 0.42,1.64
Effect-estimate, fixed-effect 0.56 0.38,0.82 097 052,182
Effect-estimate, random-effects 0.51 0.28, 0.96 0.97 0.52,1.82
Measure of heterogeneity, Qe 2.67 0.2624 0.24 0.8832
Matching
Pooled individual-level 0.41 0.26, 0.63 0.86 0.37,1.93
Risk-set 0.41 0.26, 0.63 0.86 0.37,1.93
Summary-table 0.41 0.26, 0.63 0.86  0.37,1.93
Effect-estimate, fixed-effect 0.41 0.27,0.63 0.89 0.40, 1.98
Effect-estimate, random-effects 0.41 0.27,0.63 0.89 0.40, 1.98
Measure of heterogeneity, Q€ 177 0.4115 0.00 0.9961
HR 95% ClI HR 95% ClI
Stratification
Pooled individual-level 0.59 0.41, 0.84 0.86 0.47,1.57
Risk-set 0.59 0.41,0.84 0.86 0.47,1.57
Summary-table 0.58 0.39,0.83 086  0.42, 157
Effect-estimate, fixed-effect 0.63 0.44,0.91 0.95 0.52,1.75
Effect-estimate, random-effects 0.59 0.26, 1.32 0.95 0.52,1.75
Measure of heterogeneity, Qe 3.83 0.1466 0.21 0.8989
Matching
Pooled individual-level 0.46 0.31, 0.68 0.89 0.42, 1.86
Risk-set 0.46 0.31,0.68 0.89 0.42,1.86
Summary-table 0.45 0.30, 0.68 0.88 0.38, 1.95
Effect-estimate, fixed-effect 0.47 0.32,0.70 0.91 0.42, 2.00
Effect-estimate, random-effects 0.52 0.22,1.25 091  0.42,2.00
Measure of heterogeneity, Qe 4.01 0.1345 0.00 1.0000

Note: TNFi= tumor necrosis factor-alpha inhibitor; OR= odds ratio; Cl= confidence interval; HR= hazard ratio

a . . . . . . . . . -
The disease risk score was estimated using Cox proportional hazards regression on patients receiving tumor necrosis factor-alpha inhibitor
biologics.

bThere were 407 (5.2%) patients who initiated non-TNFi, and 7,419 (94.8%) patients who initiated TNFi.
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CThe incidences for treatment switching were 7.6% in new users of non-TNFi and 11.2% in new users of TNFi.
The incidences for serious infections were 2.9% in new users of non-TNFi and 3.1% in new users of TNFi.

e . . S .
Q is a measure of heterogeneity among the three data-contributing sites. The summary statistic and p-value from Cochran’s Q test are shown here.
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