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Abstract

Purpose: To evaluate ability of radiomic (computer-extracted imaging) features to distinguish 

non-small cell lung cancer adenocarcinomas from granulomas at noncontrast CT.

Materials and Methods: For this retrospective study, screening or standard diagnostic 

noncontrast CT images were collected for 290 patients (mean age, 68 years; range, 18–92 years; 

125 men [mean age, 67 years; range, 18–90 years] and 165 women [mean age, 68 years; range, 

33–92 years]) from two institutions between 2007 and 2013. Histopathologic analysis was 

available for one nodule per patient. Corresponding nodule of interest was identified on CT axial 

images by a radiologist with manually annotation. Nodule shape, wavelet (Gabor), and texture-

based (Haralick and Laws energy) features were extracted from intra- and perinodular regions. 

Features were pruned to train machine learning classifiers with 145 patients. In a test set of 145 

patients, classifier results were compared against a convolutional neural network (CNN) and 

diagnostic readings of two radiologists.

Results: Support vector machine classifier with intranodular radiomic features achieved an area 

under the receiver operating characteristic curve (AUC) of 0.75 on the test set. Combining 

radiomics of intranodular with perinodular regions improved the AUC to 0.80. On the same test 

set, CNN resulted in an AUC of 0.76. Radiologist readers achieved AUCs of 0.61 and 0.60, 

respectively.

Conclusion: Radiomic features from intranodular and perinodular regions of nodules can 

distinguish non-small cell lung cancer adenocarcinomas from benign granulomas at noncontrast 

CT.

Summary—Perinodular and intranodular radiomic features corresponding to texture and shape 

(radiomics) were evaluated to distinguish nonsmall cell lung cancer adenocarcinomas from benign 

granulomas at noncontrast CT.

Adenocarcinomas are the most prevalent subtype of nonsmall cell lung cancer, making it the 

most common true- positive finding in a given noncontrast lung cancer screening population 

(1), whereas noncalcified granulomas represent the most common and possibly most 

confounding false-positive finding (2,3). Differentiating these two pathologic conditions is 

one of the most challenging issues faced by thoracic radiologists due to their similar 

appearance on CT images. A majority of noncalcified granulomas (< 1 cm in size), like 

adenocarcinomas, also tend to appear fluorodeox-yglucose-avid at PET/CT during their 

acute phase of infection (4).

There is a substantial interest in the use of radiomics (computer extracted imaging features) 

(5) on CT images for distinguishing between benign and malignant nodules on lung CT 

images (6–9). Hawkins et al (9) demonstrated that shape features of lung nodules can help to 

detect malignant nodules on screening CT images. However, lobulated shape features of 

malignant nodules can also be seen in 25% of benign nodules (10). Advent of deep learning 

algorithms, particularly convolution neural networks (CNNs), has emerged as a popular 

methodology for lung nodule classification (11,12). Jin et al (11) constructed a three-

dimensional CNN on 888 CT images to achieve a sensitivity of 92% and to reduce false-
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positive detections in pulmonary nodules. Another CNN-based study obtained an error rate 

of 4.5% in classifying malignancy in 776 nodules (12).

Although radiomic or CNN-based analysis to distinguish benign and malignant lung nodules 

is extensive, no specific emphasis has been given to distinguish granulomas from 

adenocarcinomas on CT images. In a single-site study (13) of 55 nodules, the role of 

intranodular texture for distinguishing granulomas from adenocarcinomas was evaluated. 

However, we are not aware of any work that has attempted to collectively evaluate the role 

of nodule shape and textural patterns of heterogeneity within the nodule and also assess the 

perinodular habitat outside the nodule to classify granulomas from adenocarcinomas. On a 

small data set of 50 nodules with unconfirmed diagnosis (14), pulmonary parenchyma was 

evaluated to identify 39 significant radiomic features but lacked an independent validation 

set for final determination of algorithm utility.

Density of tumor-infiltrating lymphocytes and tumor-associated stromal macrophages in the 

stroma around tumor has been shown to be associated with likelihood of metastasis (15). We 

hypothesized that the peritumoral region may possess this valuable information to improve 

the efficiency of intranodular radiomic analysis. Our study attempted to evaluate whether 

radiomic features associated with heterogeneity patterns in the immediate vicinity outside of 

the nodule (perinodular habitat) was predictive of malignancy on noncontrast CT images, 

and whether the combination of peri- and intranodular radiomic patterns together was more 

predictive of nodule malignancy compared with intranodular measurements alone. A 

machine classifier was trained on a cohort of 145 patients to evaluate perinodular versus a 

combination of intra- and perinodular radiomic features for discriminating adenocarcinomas 

from granulomas on noncontrast CT images. We also compared the approaches against a 

CNN. All approaches were then independently evaluated on a separate cohort of 145 

patients. An overview of our methodology is illustrated in Figure 1, A.

Materials and Methods

Our study is Health Insurance Portability and Accountability Act-compliant and institutional 

review board-approved, where a retrospective chart review with de-identified data was used 

and no protected health information was needed. Thus, need for an informed consent from 

all patients was waived.

Data

A subset of this data has been previously published (16–18), in which nodule segmentation 

and classification by using intranodular, shape, and vesseltortuosity features were studied in 

195 patients. Our work incorporates perinodular radiomics, evaluates a deep learning 

approach, and assesses the human-machine comparison. Between January 1st, 2007 and 

December 31st, 2013, radiologic image archives of participating institutions were searched 

consecutively to identify 471 patients who either had a granuloma or an adenocarcinoma as 

assessed with histopathologic analysis. Patients with following criteria were included: 

availability of pathologic report through thoracoscopic wedge resection, presence of a 

screening or diagnostic thoracic CT image in axial view, and presence of a solitary 

pulmonary nodule. To this cohort of 405 patients, we applied the exclusion criteria of 
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removing images with CT artifacts (n = 48), images with presence of contrast enhancement 

(n = 37), and patients who underwent biopsy prior to imaging (n = 30). The final cohort had 

290 patients (Fig 2), which was randomly divided into a training set that consisted of 145 

patients with 73adenocarcinomas and 72 granulomas, and a test set that contained 72 

adenocarcinomas and 73 granulomas. The CT images were acquired from Siemens (Sygno; 

Erlangen, Germany), General Electric (Lightspeed16; Waukesha, Wis), Philips (iCT; 

Cleveland, Ohio), or Toshiba (Aquilion; Tochigi-ken, Japan). Further details regarding 

image acquisition are provided in section 1 of Appendix E1 and Table E1 (both online).

Nodule Segmentation and Feature Extraction

The nodule was identified by a single board-certified cardio- thoracic radiologist (R.G., with 

20 years of experience) and the region of interest was manually segmented (R.G.) across all 

the two-dimensional sections of the nodule with a handannotation tool in axial view by using 

an open-source software (3D Slicer, version 4.7; National Institutes of Health- funded; 

https://www.slicer.org) (19,20). The radiologist was blinded to pathologic diagnosis but 

provided with clinical information such as age, and was also given the option to vary the 

window and level setting within this software to efficiently annotate the nodule. From this 

intranodular region, two-dimensional texture features were extracted from a single 

representative slice that had the largest nodule area (21). To assess for segmentation 

variability, two additional readers (P.R., a radiologist with 11 years of experience in thoracic 

radiology and K.B., a physician with 3 years of cardiothoracic research experience) were 

recruited to independently segment a random cohort of 60 nodules. Further details can be 

found in section 4 of Appendix E1 (online).

After the intranodular mask was annotated, depending on the pixel size, a morphologic 

operation of dilation wasperformed to capture the region outside the nodule up to a radial 

distance of 30 mm. The intranodular mask was then subtracted from this dilated mask to 

obtain a ring of lung parenchyma immediately around the nodule (see Fig 3). Further details 

about perinodular mask generation are provided in section 2 of Appendix E1 and Figure E1 

(both online). From this 30-mm perinodular region, features were extracted (Fig 3, C) and 

then divided into 5-mm rings (Fig 3, D) by calculating median, standard deviation, 

skewness, and kurtosis.

Additionally, 12 shape features were also extracted with Matlab platform (version 2015b; 

Mathworks, Natick, Mass). All feature values were normalized (mean of 0 and a standard 

deviation of 1). The detailed description of the features extracted (Haralick, wavelet-based 

Gabor responses, and Laws energy) are provided in section 3 of Appendix E1 (online). Table 

E2 (online) details the possible pathophysiologic relevance of these features. Table E3 

(online) lists the shape features extracted. A pictorial representation of features extracted 

from each region is shown in Figure 1, B.

To extract deep features by using a CNN, two-dimensional patches with a receptive field size 

of 100 pixels around center of the identified nodule were cropped across all slices and fed as 

input. Deep features were extracted by using a multilayer LeNet model (22), which 

consisted of three sets of convolutional, activation (rectified linear activation), and pooling 
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layers, and a softmax classifier. Figure E7 (online) illustrates these different layers of the 

LeNet model. Further information is provided in section 6 of Appendix E1 (online).

Statistical Analysis

Statistical analysis reported in our study was performed with Matlab (Mathworks). The t test 

was implemented as a feature selection method (23) and to avoid the curse of dimensionality 

and reduce the risk of overfitting, only the top 12 performing features with the lowest 

unadjusted P value (P < .05, by using two-sided Wilcoxon rank sum tests) were used for 

further analysis (6).

In the first experiment, to determine perinodular imaging features that best discriminated 

adenocarcinomas fromgranulomas on CT images, top 12 features were used to train linear 

discriminant analysis, quadratic discriminant analysis, support vector machine (support 

vector machine- linear and radial basis function kernels) (24) and random forest classifiers, 

and then validated on an independent set (n = 145) by using the area under the curve (AUC) 

metric. Next, to identify quantitative imaging (intra-and perinodular) texture and shape 

features that best discriminated adenocarcinomas from granulomas on CT images, similarly 

to the first experiment, top features were used to train multiple classifiers (linear 

discriminant analysis, quadratic discriminant analysis, support vector machine-linear and 

radial basis function kernels, and random forest) and then validated on the independent test 

set. Unsupervised hierarchical clustering was also performed on the test set to assess the 

predictive ability of the identified features. These experiments were performed by four 

authors (N. Beig, M.K., M.A., and P.P.) in consensus.

To understand the biologic inference and potentially recognize a possible physiologic basis 

for these top-expressing radiomic features, hematoxylin and eo-sin-stained pretreatment 

diagnostic core biopsy specimens for representative patients (Fig 4) were qualitatively and 

independently examined by a single board-certified pulmonary pathologist (M.Y., with 10 

years of experience).

The machine learning classifier was compared against the deep learning algorithm by 

training and validating on a twodimensional LeNet-tuned CNN architecture (22) and the 

nodule-evaluating abilityof two human readers, who worked independently. Reader 1 (PR.) 

was a board-certified attending radiologist and reader 2 (C.D., with 3 years of experience in 

reading chest CT images) was a pulmonologist. In this single readout session, both readers 

were blinded to the pathologic diagnosis and clinical information (ie, age and sex). Readers 

were allowed to go back between the images multiple times as required to make their final 

diagnosis, and were also given the option to vary the window and level setting to adjust 

image intensity. Their individual nodule scores (score 1 was “benign,” score 2 was “mostly 

benign,” score 3 was “not sure,” score 4 was “mostly malignant,” and score 5 was 

“malignant”) were recorded for comparison with the machine learning classifier. Last, 

influence of CT image acquisition (manufacturer, section thickness, type of image) was also 

assessed for their ability to distinguish adenocarcinomas from granulomas.
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Results

Perinodular Radiomics 5-mm from the Nodule Discriminate Adenocarcinomas from 
Granulomas

The most predictive features were found to be within an immediate distance of 5 mm from 

the nodule. The top 12 radiomic feature set obtained from the training set are listed in Table 

1. Higher expression of low-frequency Gabor features in adenocarcinomas was frequently 

represented, occupying 11 of the top 12 features(Fig E4 [online]). In Figure 4, C, higher 

expression of low- frequency Gabor features in adenocarcinomas can be seen when 

compared withgranulomas in Figure 5, C. A higher filter response of Laws energy (R5S5) 

was also detected in the peritumoral region of adenocarcinomas, which perceives spotlike 

textural patterns.

By using these top 12 features, highest AUC on the test set of 0.74 (95% confidence interval 

[CI]: 0.57, 0.90) was obtained by using the support vector machine classifier with a linear 

kernel. The other performance metrics were accuracy of 68%, sensitivity of 77%, and 

specificity of 63% at the operating point on the receiver operating characteristic curve (see 

Fig E6 [online]). Table 2 lists the AUCs of the other classifiers. The classification ability of 

intranodular radiomic features alone has been reported in section 5 of Appendix E1 and 

Figure E3 (both online).

Combined Radiomics (Intranodular and Perinodular Texture Features) to Distinguish 
Adenocarcinomas from Granulomas

The top 12 radiomic features obtained from the training set are listed in Table 1. Three 

features were from the perinodular distance of 5 mm outside the tumor, where midfrequency 

Gabor features were prominent in granulomas. The remaining nine features were picked 

from the intranodular region where seven high-frequency Gabor filters were expressed 

higher in the granulomas when compared with adenocarcinomas. Additionally, three Laws 

energy features from the intra- and perinodular regions identified microstructure 

characteristics of wavelike patterns and edge enhancement in the adenocarcinomas (Fig E5 

[online]). Interestingly, none of the shape attributes of the nodule were selected.

In a supervised setting, AUC of 0.80 (95% CI: 0.65, 0.94) was obtained on the test set by 

using support vector machine classifier with a linear kernel. This classifier yielded an 

accuracy of 0.71 (sensitivity of 74% and specificity of 68%). When unsupervised 

hierarchical clustering was implemented on the test set, accuracy of 69% was observed with 

sensitivity and specificity of 73% and 67%, respectively (Fig 6, A). This unsupervised 

clustering alternatively evaluated the combined features, where two distinct patient groups 

showed corroboration between the combined features and pathologic diagnosis.

Comparative Deep Learning Model and Multireader Study

The CNN model was trained over 100 epochs after which the weights were locked down for 

testing (section 6 of Appendix E1 and Fig E8 [both online]). Weights learned from the 

training phase were then used on the same independent test set, and predicted probabilities 
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were used to obtain AUC of 0.76 (95% CI: 0.60,0.92) with sensitivity and specificity of 72% 

and 76%, respectively.

For the multireader study, reader scores were mapped to a classifier probability measure 

(score 1 of “benign,” -0.20; score 2 of “mostly benign,” -0.40; score 3 of “not sure,” -0.60; 

score 4 of “mostly malignant,” -0.80; and score 5 of “malignant,” -1). Readers achieved 

AUCs of 0.61 and 0.60, respectively. Details of human machine comparison are provided in 

part 2 of Appendix E1 and Table E4 (both online).

Influence of Clinical Parameters, CT Image Acquisition, and Manual Nodule Segmentation

The clinical parameters of smoking status and age were the only patient factors that were 

found to be significantly different between the two nodule classes (as shown in Table 3). The 

influence of reconstruction kernel on CT radiomics has been demonstrated by several groups 

(25),and therefore precaution was taken to maintain a class balance of reconstruction kernels 

in both the training and test set(Table E1 [online]). Furthermore, trained classifier (n = 145) 

was independently validated to assess CT manufacturer, section thickness, and type of CT 

image (diagnostic orscreening). Table 4 lists the AUC values for these parameters. The 

classifier yielded an AUC of 0.82 (95% CI: 0.64, 0.99) and 0.72 (95% CI: 0.43, 0.99) with 

Siemens (n = 85) and Philips (n = 58) scanners, respectively. Highest AUC of 0.75 (95% CI: 

0.56, 0.93) was obtained on diagnostic images with smaller section thickness (≤3 mm). Last, 

it was found that the top-performing radiomic features are largely resilient to variations as a 

result of reader segmentations (section 4 of Appendix E1 and Fig E2 [both online]).

Discussion

In this study, we investigated the ability of radiomic features extracted from intra- and 

perinodular regions of lung nodules on CT images to distinguish adenocarcinomas from 

granulomas.

We found that in the immediate vicinity of 5 mm outside the tumor, low and middle 

frequencies of Gabor filters had a higher response in adenocarcinomas. In the representative 

hematoxylin and eosin-stained images, interface of the tumor had a “rim” of densely packed 

tumor-infiltrating lymphocytes and tumor-associated macrophages. At a macroscopic scale, 

the densely packed stromal tumor-infiltrating lymphocytes around adenocarcinomas 

manifest as smooth texture on CT images and potentially results in high expression of low-

frequency Gabor filters. Similarly, Laws energy features detected heterogeneous patterns of 

spots in adenocarcinomas, potentially detecting higher presence of tumor-infiltrating 

lymphocytes. At the interface of granuloma and normal lung, histiocytes and macrophages 

formed giant cells that had elongated or spindle-shaped nuclei that were roughly parallel to 

each other. At a macroscopic level on CT images, this scattered appearance of giant cells 

could possibly explain the higher expression of midfrequency Gabor features. On evaluating 

the intranodular region, we found low-frequency Gabor features that were expressed higher 

in adenocarcinomas, potentially reflecting high nucleus-to-cytoplasm ratio. Similarly, low 

nucleus-to-cytoplasm ratio in granulomas might explain the more diffuse edges and blurry 

spotlike patterns that arecaptured by high-frequency Gabor features. Our findings are in 

consensus with Braman et al (26), who reported that the peritumoral microenvironment 
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immediately surrounding a breast malignancy is related to disease aggressiveness and can be 

predictive of treatment response.

The majority of radiomic approaches used in lung cancer have focused solely on malignant 

lung nodule texture analysis and shape features from noncontrast CT examinations 

(13,21,27–30). To specifically distinguish adenocarcinoma from granulomatous, a study (13) 

used an intranodular radiomics-based approach with only Haralick features to obtain 

sensitivity of 88%. However, the data set consisted of only 55 nodules from a single site and 

their model was not validated on an independent set. Alilou et al (16) showed that shape-

based features (such as roughness, convexity, and sphericity) were able to distinguish 

adenocarcinomas from granulomas with an AUC of 0.72 on an independent test set of 67 

patients. Unlike previously reported methods (16,18), our feature selection method did not 

choose shape-based features over the intranodular and perinodular texture features, 

indicating that computer-extracted perinodular texture features are more predictive of 

malignancy than are the shape attributes of any given nodule.

The majority of CNN approaches outperform the traditional radiomic-based approaches 

(11,12), but these algorithms are limited in their explanatory capacity of the deep features 

with neither a set of diagnostic rules nor an insight into the results (31). Our CNN result was 

comparable to the machine learning algorithm developed with intra-and perinodular 

featurescombined. However, despite the hyperparameter optimization, the results of the 

CNN might be affected by the training sample size.

The retrospective design of our cohort was restricted to only adenocarcinomas and 

granulomas and currently mimics the high possibility of a real clinical dilemma, especially 

in the Ohio River Valley or the upper Midwest region of the United States (32,33). Further 

work is neededto focus on incorporating other benign and malignant nodules into the 

classifier and validating it on a larger multisite data set. Multiple groups have reported the 

inclusion of qualitative semantic features such as nodule location, cavitation, and 

calcification (5,34,35). Hence, additional work is required to integrate these radiologist-

crafted features to analyze their importance in our cohort. Additionally, our study extracted 

only two-dimensional texture features from the largest representative slice, but we plan to 

incorporate threedimensional texture features. Future directions also include a more 

comprehensive analysis of differences in training model as a function of image acquisition 

parameters, to determine if the intranodular and perinodular features will change with 

varying section thickness and reconstruction kernels.

Furthermore, our study included screening as well as diagnostic images. To deploy a 

computer-assisted lung cancer screening tool, we must explicitly develop a machine learning 

model that is trained on only screening CT images. Last, clinical translation as a cancer 

screening tool will require careful planning to integrate the human and machine 

interpretations together in decision support mode.

In conclusion, we introduced a machine learning approach that demonstrates the utility of 

combining texture features of a nodule and its immediate surrounding lung parenchyma at 

noncontrast chest CT imaging to discriminate malignant and benign nodules. Incorporation 

Beig et al. Page 9

Radiology. Author manuscript; available in PMC 2019 March 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of perinodular texture features with intranodular texture improved the predictive ability of 

the classifier to distinguish adenocarcinomas from granulomas.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Implications for Patient Care

• A radiomic machine classifier could potentially aid in distinguishing 

granulomas from adenocarcinomas at lung CT.

• Radiomics analysis of lung CT has potential to reduce the number of 

interventions and repeat imaging scans due to benign granulomas 

misidentified as indeterminate or suspicious.
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Figure 1: 
A, Images show overview of methodology. CT images were retrospectively collected. 

Region of interest was manually segmented in axial view to obtain intranodular mask and 

perinodular masks were automatically generated for varying distances (shown here at 5 mm) 

outside tumor. Haralick, Laws energy, Gabor, texture and shape features were extracted from 

largest tumor slice. Next, t test was implemented to select top 12 features to train support 

vector machine classifier and validate it on independent set (n = 145). B, Diagram shows 

features extracted in each experiment before feature selection was implemented. Total of 
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1776 features were extracted from each solitary pulmonary nodule, with 252 features from 

intranodular region, 12 shape features, and 1512 features from perinodular regions (252 

features from each of the six perinodular regions).
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Figure 2: 
Consolidated Standards of Reporting Trials, or CONSORT, flow diagram of patient 

enrollment, eligibility, and exclusion criteria of data set.
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Figure 3: 
Images show feature extraction from perinodular region. A, B, Noncontrast CT axial view of 

adenocarcinoma in a 55-year-old man and granuloma in a 67-year-old woman, respectively. 

C, Heat map of Haralick entropy feature that was extracted from lung parenchyma (also 

termed perinodular region of lung nodule) demonstrates, D, various intervals (up to 30 mm 

of lung parenchyma, outside lung nodule), from which radiomic features were extracted as 

annular rings.
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Figure 4: 
Images show intranodular and perinodular radiomics of adenocarcinoma in a 61-year-old 

woman at noncontrast CT (axial view). A, Higher spatial resolution image of malignant 

nodule. B, Top row represents higher expression of Laws energy (E5W5) inside tumor; 

E5W5 implies that Laws energy-based textural patterns of edges (or E ) in horizontal 

direction and waves (or W ) in vertical direction by using five-pixel by fivepixel two-

dimensional convolution filter. Further information on Laws energy features can be found in 

Table E2 (online). Bottom row shows representative hematoxylin and eosin (H&E) stain of 

adenocarcinoma (original magnification, 3100), where tumor cells show high nucleus-to-

cytoplasm ratio with irregularly shaped nuclei. Tumor cells form angulated irregular acini in 

background of fibrosis. Scant intranodular lymphocytes are present. Pigmented macrophages 

are present within malignant acini. C, Top row represents radiomic heat map of low-

frequency Gabor feature, which is expressed higher in adenocarcinomas in peritumoral 

region, and bottom row is H&E stain of adenocarcinoma (original magnification, 3100), 

where increased lymphocytes and macrophages are observed at interface between tumor and 

normal lung. This “rim” of lymphocytes and macrophages is less than 1 mm. D, Shape of 

entire malignant nodule.
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Figure 5: 
Images show intranodular and perinodular radiomics of granuloma in a 55-year-old man at 

noncontrast CT (axial view). A, Higher spatial resolution image of benign nodule. B, Top 

row represents lower expression of Laws energy (E5 W5) inside tumor; E5W5 implies that 

Laws energy-based textural patterns of edges (or E) in horizontal direction and waves (or W) 

in vertical direction by using five-pixel by five-pixel twodimensional convolution filter. 

Further information on Laws energy features can be found in Table E2 (online). Bottom row 

shows representative hematoxylin and eosin (H&E) stain of granuloma (original 

magnification, ×100), where it consists of admixed lymphocytes, plasma cells, and 

histiocytes. There are also areas of fibrosis, necrosis, and calcification. C, Top row 

represents radiomic heat map of low-frequency Gabor feature, which has low expression in 

granulomas in peritumoral region, and bottom row is H&E stain of adenocarcinoma 

(original magnification, ×100), where giant cells are observed at interface between nodule 

and normal lung. D, Shape of entire benign nodule.
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Figure 6: 
A, Graph shows unsupervised hierarchal clustering of intranodular and perinodular radiomic 

features. X axis represents top 12 features where (P) denotes a perinodular feature. Y axis 

represents independent test set of patients (n = 145). Dendrogram highlighted in red 

represents prominent cluster of adenocarcinomas. B, First row shows noncontrast baseline 

lung CT (axial view) of granuloma nodule in an 81-year-old man from independent test set, 

which was diagnosed as “mostly malignant” by both expert readers (score of 4). Radiomic 

heat map represents Laws energy feature inside nodule and also low expression of high-

frequency Gabor response captured in perinodular region of 0–5 mm outside nodule. Second 

row shows noncontrast baseline lung CT (axial view) from independent test set of 

adenocarcinoma nodule in a 63-year-old woman from independent test set, which was 

diagnosed as a “mostly benign” granuloma by expert reader 1 (score of 2) and “not sure” by 

expert reader 2 (score of 3). Radiomic heat map represents Laws energy feature inside 

nodule and also high expression of low-frequency Gabor response (f = 8) captured in 

perinodular region of 0–5 mm outside nodule. These cases were correctly classified by linear 

support vector machine classifier that was trained.
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Table 1:

Top 12 Radiomic Features Identified in Each Experiment to Distinguish Adenocarcinomas from Granulomas 

on CT Images

Feature No. Feature Family Descriptor
*

Statistic

Nodule Region of

Feature Extraction
†

P Value
‡

Perinodular Radiomic Features

1 Gabor f = 16, Ө = π/8 Skewness Perinodular <.001

2 Laws energy
R5S5

† Median Perinodular <.001

3 Gabor f = 8, Ө = π/2 SD Perinodular <.001

4 Gabor f = 8, Ө = 3π/4 Kurtosis Perinodular .001

5 Gabor f = 2, Ө = π/2 Skewness Perinodular .001

6 Gabor f = 2, Ө = 3π/4 Kurtosis Perinodular <.001

7 Gabor f = 4, Ө = π/4 Median Perinodular <.001

8 Gabor f = 4, Ө = π/8 Kurtosis Perinodular <.001

9 Gabor f = 4, Ө = π/8 Median Perinodular <.001

10 Gabor f = 2, Ө = 3π/4 Skewness Perinodular <.001

11 Gabor f = 4, Ө = π/8 SD Perinodular <.001

12 Gabor f = 2, Ө = 3π/4 Skewness Perinodular <.001

Combined Radiomic Features

1 Gabor f = 16, Ө = π/8 Skewness Perinodular <.001

2 Gabor f = 32, Ө = 3 π/4 Kurtosis Intranodular <.001

3 Gabor f = 4, Ө = 3π/4 Skewness Intranodular <.001

4 Gabor f = 4, Ө = π/2 Median Intranodular .001

5 Laws energy
R5 W5

§ Median Perinodular <.001

6 Laws energy
W5E5

§ Median Intranodular <.001

7 Laws energy
S5E5

§ Median Intranodular <.001

8 Gabor f= 32, Ө = 3 π/4 Median Intranodular <.001

9 Gabor f = 8, Ө = π/2 SD Perinodular <.001

10 Gabor f = 32, Ө = π/2 Median Intranodular <.001

11 Gabor f = 32, Ө = 3π/8 Skewness Intranodular .003

12 Gabor f = 8, Ө = 3π/4 Kurtosis Intranodular <.001

Note.–Combined radiomic features include intranodular, perinodular, and shape features. SD = standard deviation.

*
Data indicates details about the feature (such as f = frequency of the filter, Ө = orientation of the filter with respect to the normal axis).

†
“Intranodular” implies that the texture within the lung nodule was a strong radiomic predictor of malignancy status. “Perinodular” (distance of 0–

5 mm) indicates the region of the lung parenchyma immediately outside the CT nodule that has radiomic-based imaging markers that can 
differentiate adenocarcinomas from granulomas.

‡
P values were computed by using the paired Student t test for continuous variables.

§
Feature descriptors for Laws energy descriptors include all combinations of five one-dimensional filters: level (L), edge (E), spot (S), wave (W), 

and ripple (R). For example, in the perinodular radiomic feature experiment, R5S5 (feature number 2) implies that Laws energy-based textural 
patterns of ripples (R) in the horizontal direction and spots (S) in the vertical direction by using five- pixel by five-pixel two-dimensional 
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convolution filter was statistically different (P < .001) between adenocarcinomas and granulomas. Further information on Laws energy features can 
be found in Table E2 (online).
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Table 2:

AUC Values Obtained on the Training and Independent Test Set by Using Different Classifiers to Distinguish 

Adenocarcinomas from Granulomas on CT Images

Perinodular Classifier Combined Classifier

Parameter Training AUC Test AUC Training AUC Test AUC

LDA 0.70 (0.53, 0.87) 0.75 (0.60, 0.91) 0.73 (0.57, 0.90) 0.76 (0.61, 0.92)

SVM-linear 0.72 (0.54, 0.87) 0.75 (0.59, 0.91) 0.76 (0.60, 0.91) 0.80 (0.66, 0.94)

SVM-RBF 0.71 (0.54, 0.88) 0.72 (0.55, 0.88) 0.74 (0.58, 0.90) 0.74 (0.58, 0.90)

RF 0.67 (0.50, 0.85) 0.69 (0.52, 0.86) 0.74 (0.58, 0.90) 0.77 (0.62, 0.92)

QDA 0.68 (0.51, 0.86) 0.67 (0.50, 0.85) 0.77 (0.62, 0.93) 0.80 (0.66, 0.95)

Note.– Combined classifier includes intranodular, perinodular, and shape features. Data in parentheses are 95% confidence intervals. Best 
performance on the independent test set was obtained by using the combined features from the nodule and its immediate parenchyma within a 
radial distance of 5 mm. Support vector machine (SVM) classifier with a linear kernel obtained a test area under the curve (AUC) of 80.02. LDA = 
linear discriminant analysis, RBF = radial basis function, RF = random forest, QDA = quadratic discriminant analysis.
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Table 3:

Statistical Significance Testing between Patients’ Parameters and Disease Outcome for Both Training and Test 

Cohorts

Training Set (n = 145) Independent Test Set (n = 145)

Parameter Adenocarcinoma Granuloma P Value Adenocarcinoma Granuloma P Value

Subpopulation 73 72 … 72 73 …

Mean IN −950(%) 0.13 0.14 … 0.10 0.08 …

Nodule size (mm)* 13.33 ± 6.65 11.15 ± 4.45 .42 11.91 ± 4.36 12.19 ± 6.48 .01

Sex .38 .43

 Male 27 31 30 36

 Female 46 41 37

Overall age (y)† 73.87 ± 10.34 (43–90) 62.85 ± 14.2 (21–87) <.01 72.08 ± 10.7 (40–92) 61.31 ± 12.54 (18–87) <.01

 Male 73.8 ± 12.35 (47–90) 61.1 ± 15.07 (21–82) 72.76 ± 10.41 (48–89) 60.9 ± 12.1 (18–87)

 Female 73.8 ± 9.11 (43–88) 15.8 (39–87) 71.5 ± 11.06 (40–92) 61.09 ± 13.66 (33–85)

Smoking status <.01 .04

 Yes 53 17 43 25

 Mean pack-years 39.6 28.2 35.5 24.2

 No 2 19 8 13

 Unavailable 18 36 21 35

Ethnicity .97 .54

 White 41 37 43 51

 African American 12 13 12 20

 Other 20 22 17 2

Note.–Unless otherwise specified, data are the number of patients. Smoking status and age were the only patient factors that were found to be 
significantly different between the two nodule classes. P values were computed by using Student t test for continuous variable and Fisher exact test 
for categorical data. IN-950 = percentage of lung less than 950 Hounsfield units, SD = standard deviation.

*
Data are means ± standard deviation.

†
Data in parentheses are ranges.
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Table 4:

Effect of Vendor, Section Thickness, and Type of CT Image in Distinguishing Adenocarcinomas from 

Granulomas

Criteria
No. of
Studies Reconstruction Kernels Used AUC

*

Vendor

 Siemens 85 B20f, B30f/s, B3lf/s, B35f, B40f, B4lf/s, B50f, B60f, B70s, T20s 0.82 (0.64,0.99)

 Philips 58 A, B, C, D, E, L, YA, YB 0.72 (0.43,0.99)

ST (mm)

 ST ≤1 10 For Siemens: B3lf/s, B60f, T20s For Philips: B 0.70 (−0.16,1.66)

 1 < ST ≤2 94 For Siemens; B20f, B30f, B3lf, B40f, B4ls, B50f, B60f, B70s For Philips: A, B, C, D E, 
L, YA

0.75 (0.56,0.93)

 2 < ST ≤3 17 For Siemens: B3lf, B35f For Philips: C For GE: Standard For Toshiba: FC08 0.69 (0.11, 1.26)

 3 < ST ≤6.5 24 For Siemens: B30f, B3ls, B40f For Philips: A, B, C, D, L, YB 0.66 (0.20, 1.11)

Type of CT image†

 Diagnostic CT 121 For Siemens: B20f, B30f/s, B3lf/s,B35f, B40f/s, B4lf/s, B50f, B60f, B70s For Philips: A, 
B, C, D, E, L, YA For GE: Standard For Toshiba: FC08

0.73 (0.53, 0.93)

 Screening CT 24 For Siemens: B30f, B3ls, B40f For Philips: A, B, C, D, L, YB For Toshiba: FC08 0.66 (0.20, 1.11)

Note.–The classifier was trained on the training set (n = 145) by using intranodular and perinodular features together and tested (n = 145) on the 
various subsets of the test set based on the vendor, section thickness criteria, and type of CT image. Increasing section thickness (ST) was 
accompanied by a decrease in area under the curve (AUC) for the discrimination of benign (granulomas) from malignant (adenocarcinomas) lung 
nodules at noncontrast CT chest examinations, and additionally it was also found that diagnostic images were more accurate in distinguishing 
adenocarcinoma from granulomas. Large variation in the confidence intervals (CIs) can be attributed to the effect of various other image acquisition 
parameters (eg, reconstruction kernel and manufacturer) when controlled for one (eg, section thickness).

*
Data in parentheses are 95% CIs.

†
Diagnostic scans were defined as CT images with section thickness less than or equal to 3 mm and screening scans were defined as CT images 

with section thickness greater than 3 mm.
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