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CHAPTER SUMMARY

Antibiotic resistance is a major public health threat that has stimulated the scientific community to 

search for non-traditional therapeutic targets. Because virulence, but not the growth, of many 

Gram-negative bacterial pathogens depends on the multi-component type three secretion system 

injectisome (T3SSi), the T3SSi has been an attractive target for identifying small molecules, 

peptides, and monoclonal antibodies that inhibit its function to render the pathogen avirulent. 

While many small molecule lead compounds have been identified in whole cell-based high 

throughput screens (HTSs), only a few protein targets of these compounds are known, an 

important step to developing more potent and specific inhibitors. Evaluation of the efficacy of 

compounds in animal studies is ongoing. Some efforts involving the development of antibodies 

and vaccines that target the T3SSi are further along and include an antibody that is currently in 

phase II clinical trials. Continued research into these anti-virulence therapies, used alone or in 

combination with traditional antibiotics, requires combined efforts from both pharmaceutical 

companies and academic labs.

INTRODUCTION

Antibiotic resistance is a great and growing threat to public health motivating scientists to 

find innovative strategies to cure infections (1–3). An alternative approach to classical 

antibiotics is to target virulence factors (4) – bacterial factors required for infection or 

damage but not for growth outside the host (2, 5, 6). An anti-virulence factor should render 

the bacteria non-pathogenic by neutralizing a critical virulence element thereby allowing 

clearance of the pathogen by the host immune system (5–8).

The type 3 secretion system/injectisome (T3SSi) is expressed in a broad spectrum of Gram-

negative bacteria and is usually crucial for virulence (4, 9). This needle and syringe-like 
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apparatus functions as a conduit for the delivery of effector proteins from the bacterial 

cytoplasm into host cells (Fig 1A). These T3SSi systems share homology with 8 essential 

core components of flagellar T3SS and contain an additional 20–30 proteins involved in 

expression, secretion and translocation of effector proteins (9–11). Therapeutic strategies 

against the T3SSi have been pursued that include interfering with transcriptional regulation, 

chaperone-effector interaction, assembly of various structures (outer ring, needle, tip 

complex), or effector translocation or function (4, 5, 12–18).

Targeting the T3SSi as an effective means of curtailing infection has been rationalized in 

several ways. Since the injectisome is absent in many resident microbiota, one proposed 

advantage is that more of the microbiome would be preserved during treatment. 

Furthermore, the likelihood of developing resistance in resident microbiota that can be 

transferred by horizontal gene transfer to pathogenic bacteria is minimal. However, due to 

the homology between some components of the T3SSi and flagella, some inhibitors also 

affect flagella (13, 19, 20), an observation that may mitigate this advantage. Another 

potential benefit is that since these anti-virulence agents should minimally affect bacterial 

growth, they may exert low selective pressure in the environment and therefore drug 

resistance may develop infrequently. To our knowledge this has not been experimentally 

tested in an animal model of infection. On the other hand, disadvantages to be considered 

include that anti-T3SSi agents may not impede bacterial growth in infected 

immunocompromised individuals and that some infections require bactericidal agents. 

Nonetheless, discovering and studying reagents that inhibit the T3SSi remains attractive 

both for the potential therapeutic benefits and their use as important tools to elucidate the 

structure-functional relationships of this complex machinery.

This review focuses on advances in T3SSi-targeted therapies in the past 4 years (Tables 1–2) 

including small molecules, antibodies, and vaccines, whose molecular targets are known 

(Fig. 1B). Excellent in-depth reviews covering progress of the field until 2014–2015 and 

structure of molecules include (2, 21, 22). Some previously well-studied compounds are also 

summarized in Table 1.

SMALL MOLECULES

Many studies use HTSs to identify small molecule inhibitors of T3SSi via phenotypic 

readouts of T3SSi functions including inhibition of T3SSi expression in bacteria (13, 15, 

23–25), secretion of effectors into the extracellular supernatant (14, 17, 25–27), or 

translocation of effector proteins into host cells (14, 18). A benefit of such approaches is that 

identified molecules are effective in the context of the bacterium. However, complications 

include that the inhibitors may target more than one protein, may target a host protein, or 

may alter T3SSi function by generally affecting bacterial cell physiology rather than a 

specific component of the machinery. Consequently, identification of the specific targets of 

many small molecule inhibitors has lagged and structure activity relationship (SAR) studies 

are complicated if the molecule targets several proteins.

Recently, several exciting advances have been made in both target identification and in 

identifying lead compounds with sufficiently low IC50 for in vivo studies. More classical 
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pharmacological approaches that identify compounds that bind to a protein or inhibit its 

biochemical activity have been fruitfully employed (16, 28–30). Increasingly, the structures 

of T3SS components are being exploited to elucidate the design of potential inhibitors to 

these proteins (31–34).

Salicylidene Acylhydrazides

Salicylidene acylhydrazides (SAHs) are the first identified and most widely studied class of 

synthetic small molecules that target the T3SSi across many bacterial species (13, 14). 

Several studies suggest that some of these molecules have multiple targets or act indirectly 

on the T3SSi by impacting bacterial physiology (19, 25, 35–37). Of the derivatives 

generated, many show promising results. Modifications to improve stability and selectivity 

of SAH ME0055 resulted in two new synthesized compounds, RCZ12 and RCZ20, that 

inhibit secretion of EHEC T3SS translocon protein, EspD, as effectively as ME0055 (Fig. 

1B). Unlike the parent compound, RCZ12 and RCZ20 have no effect on bacterial growth 

suggesting they are more specific (38). Affinity-chromatography experiments revealed the 

coiled-coil domain 1 of EspD as the inhibitors’ key domain-binding site (38). These 

compounds show dual functionality by also downregulating transcription of the locus of 

enterocyte effacement (LEE) that encodes the T3SS (38). Recent mechanistic analysis of 

another SAH, INP0341, shows that it prevents T3SS expression in P. aeruginosa clinical 

isolates without affecting growth (39).

A very recent study employed a multiple-assay approach to elucidate the mechanism of 

action of a group of previously identified T3SS inhibitors (40). Compound SAH INP0007 

disrupts YscD puncta formation suggesting interference with needle assembly and 

significantly decreases flagellar motility. Whether inhibition occurs by directly binding to a 

common core component between the T3SSi and flagella, or by interfering with other 

processes that render bacteria less able to build both systems, is still unknown (40). 

Compound 4 (C4), a haloid-containing sulfonamidobenzamide (SAB), which was originally 

identified along with SAHs as inhibitors of the T3SS (13), is now postulated to have an 

indirect effect on T3SS transcription by inhibiting the secretion process (40).

Compounds Targeting the T3SS ATPase

Using the known structure of the EPEC EscN ATPase, a computational HTS identified 

compounds predicted to block the protein’s active site (29). One lead compound (WEN05–

03) competitively inhibits hydrolysis of ATP by EscN and reduces toxicity to infected HeLa 

cells (29). Another study using molecular docking and virtual screening identified a series of 

N-arylbenzylamines predicted to target the SctN T3SS ATPase of C. trachomatis (30). Two 

of these compounds block translocation of the T3SS effector, IncA, into cultured cells and 

reduce chlamydial survival in these cells (30). Hydroxyquinoline (HQ) derivatives were first 

described as inhibitors of T3SSi gene expression in Y. pseudotuberculosis and C. 
trachomatis (41). HQ INP1855 inhibits YscN ATPase activity in vitro as well as impairs 

flagellar motility providing evidence that it might target conserved ATPases found in T3SS 

and flagella (28). In addition, HQ INP1855 reduces P. aeruginosa T3SS-mediated 

cytotoxicity in cultured cells, blocks secretion of ExoS effector protein, as well as enhances 

survival and reduces bacterial burden and lung pathology of mice infected intranasally with 
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P. aeruginosa (28). HQ INP1750 acts similarly to HQ INP1855 and inhibits both ExoS 

secretion as well as flagellar motility (39). However, a direct interaction between these HQ 

derivatives and T3SS ATPases remains to be shown.

Compounds Targeting Needles or Needle Assembly

Phenoxyacetamide (PXA) was first discovered as an inhibitor of the T3SSi in P. aeruginosa 
and SAR analysis demonstrated strict stereoselectivity suggesting an interaction with a 

specific target or site (42). Isolation of several mutants in PscF resistant to PXA inhibitors 

provides genetic evidence that PXAs target the needle protein (34, 43). Modeling of PXA 

inhibitors supports the idea that these molecules intercalate within the needle and interact 

simultaneously with several assembled PscF subunits; however, biochemical and structural 

studies are needed to demonstrate a direct interaction. Importantly, injection of PXA 

(MBX2359) into abscesses formed by P. aeruginosa significantly reduces abscess size 

providing evidence that these inhibitors are efficacious in infection models in mammals (44).

Piericidins, a class of compounds derived from Actinomycetales, inhibits translocation of 

YopM into cultured cells (45). A follow-up study showed that Yersinia treated with 

Piericidin A1 has fewer needles, suggesting that it inhibits a step prior to or during needle 

assembly (46). The related Psc T3SS of P. aeruginosa and the Ysa T3SS of Y. enterocolitica 
are not inhibited, indicating its specificity but potentially limiting its usefulness without 

additional SAR analysis (46).

Compounds Targeting Translocon and/or Effector Secretion and Activity

Using click chemistry, the flavonoids baicalein and quercetin were found to covalently 

modify S. Typhimurium translocases and effectors, resulting in changes to stability or 

activity (47). The N-terminal chaperone-binding domain is proposed to be the modified site 

(47). These flavonoids inhibit invasion of S. Typhimurium into cultured cells but have no 

effect on effector secretion or needle assembly (47). Screening libraries for compounds that 

bind to Salmonella SipD (48) or Shigella IpaD tip proteins (49) identified a new class of 

small molecules based on the indole scaffold as potential inhibitors of the T3SSi. Malic 

diamide (42), a compound structurally related to PXA, significantly inhibits the secretion of 

YopB and YopD proteins required for translocation, without disrupting needle YscF puncta 

formation indicating that it targets the translocon (40).

In the past few years, several natural compounds have been identified, typically in screens 

for secretion (50–53), translocation into target cells (54) or by inhibiting the effects on 

T3SSi-mediated functions on targeted host cells (55). Potentially promising compounds are 

listed in Table 1, but to our knowledge, the specificity against T3SSi or protein targets have 

not been investigated in depth.

Anti-T3SS Compounds Tested Against Plant Pathogens

Plants are also susceptible to infection by bacteria harboring T3SSs, and there have been 

several recent exciting findings. Natural and synthetic compounds were screened for the 

ability to reduce expression of the R. solanacearum T3SS pilus gene hrpY (56). The most 

potent inhibitors were SAHs, which inhibit secretion of T3SS effector AvrA and limit 
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bacterial growth on tomato plants (56). SAHs also reduce the expression of T3SS genes of 

Erwinia amylovora and reduce disease symptoms on inoculated crab apple pistils (57). 

Phenolic compounds repress the expression of T3SS transcriptional regulators hrpG and 

hrpX of Xanthomonas oryzae and reduce disease symptoms on rice leaves (58). 

Thiazolidine-2-cyanamide compounds also reduce relative expression of X. oryzae hrpG and 

hrpX and disease symptoms on rice (59).

ANTIBODIES, VACCINES, AND PEPTIDES

Recent advances in targeting T3SSi using antibodies, vaccines, and polypeptides are 

summarized below and in Table 2.

Antibodies

A monoclonal antibody, KB001, that binds to the P. aeruginosa T3SS tip protein, PcrV, 

initially showed promise in the treatment of patients with airway-associated P. aeruginosa 
infection or colonization, but failed in phase II clinical trials for not meeting efficacy 

endpoints (60–62). By contrast, a bispecific antibody, MEDI3902, against P. aeruginosa 
PcrV and the Psl exopolysaccharide, is effective against a wide range of clinical isolates and 

is currently in phase II clinical trials for prevention of ventilator nosocomial pneumonia (63, 

64).

Single-domain antibodies that consist of the N-terminal variable region of an 

immunoglobulin heavy chain (VHH) but not the light chain can be isolated from camelid 

species (65). A panel of VHH single-domain antibodies was raised against the Shigella 
flexneri IpaD tip protein (66). Four such antibodies that bound IpaD significantly inhibit 

hemolysis of sheep red blood cells, a measure of T3SS translocon functionality (66). 

Structural binding analysis revealed that these inhibitory VHHs mostly bound to the distal 

domain of IpaD, suggesting the importance of this region in T3SS function (66).

Vaccines

Work towards a plague vaccine has led to testing a recombinant vaccine consisting of the 

Yersinia pestis F1 protein and the T3SS tip protein LcrV, reviewed in (67). The FDA has 

granted Orphan Drug status for the development of this rF1V vaccine, as a prophylactic for 

high risk individuals (68, 69). Efforts to lessen Shiga toxin-producing Escherichia coli 
(STEC) disease burden in cattle to reduce transmission to humans are ongoing. Cohorts of 

cattle immunized against serotype O157 have reduced shedding of O157 but not of other 

STEC serotypes due to serotype specificity (70). To develop vaccines against a different 

prevalent serotype, anti-sera to five T3SS proteins, EspA, EspB, EspF, NleA and Tir, of 

STEC serotype 0103 were studied. These anti-sera block STEC adherence to HEp-2 cells 

(71). In efficacy studies, mice developed strong serum IgG titers against four of these five 

proteins, but still shed 0103 after oral administration indicating that the bacteria could still 

be transmitted (71).

Recent attempts to develop T3SS-targeted vaccines against Salmonella enterica show some 

success in mouse studies. A peptide vaccine that elicits a CD4 T cell response against T3SS 

effector protein SseI, protects mice against acute infection, a tantalizing result given that 
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only a single peptide elicits protection (72). Mice were immunized by different routes with 

Salmonella T3SS proteins SipD and PrgI in combination or alone; oral immunization with 

SipD provides the highest level of protection against lethal challenge (73). Increased 

protection is observed when flagellin is added to a vaccine against Salmonella T3SS protein 

SseB (74). A subunit vaccine against Salmonella consisting of two components, S1 (a 

genetic fusion of SPI-1 translocon proteins SipB and SipD) and S2 (a genetic fusion of 

SPI-2 proteins SseB and SseC) elicits strong IgG titers to all four proteins in mice (75). 

These mice are significantly protected against challenge with S. typhimurium and S. 
enteritidis and experience reduced cecal inflammation (75). These results warrant studies on 

long-term protection.

Peptides

Anti-T3SS peptides (Table 2) have been identified against Salmonella (76), EPEC (77), and 

EHEC (78) and more recently, in Yersinia (79). Derivatives of the natural compound 

phepropeptin D that contained various peptoid substitutions on the cyclic peptide backbone, 

significantly inhibits NF-kB signaling, secretion of the effector protein YopE, and 

translocation of YopM into HeLa cells by Yersinia (79). The peptomers do not affect 

Yersinia growth or flagellar motility indicating their potential specificity to the T3SSi. 

Several derivatives also inhibit secretion of the P. aeruginosa effector protein ExoU 

suggesting that they might target a conserved component of these two injectisome systems 

(79).

CONCLUSION AND PERSPECTIVE

Discovery of and research into inhibitors of the T3SSi is a highly active area with many 

candidates from different classes that are effective in blocking the function of T3SS. 

Although antibodies and vaccines are further along in the pipeline, many small molecule 

inhibitors show promise. Some molecules have a narrower spectrum of activity, while others 

have broader spectrums including those that target components conserved between the 

T3SSi and flagella. Both have benefits and disadvantages. For instance, an effective, but 

narrow spectrum molecule against the T3SSi of the multi-drug resistant P. aeruginosa could 

save many lives each year. By contrast, a narrow spectrum molecule effective towards Y. 
pestis would not save many lives annually unless a major outbreak occurred. Yet 

importantly, study of such a molecule could help elucidate structure-function relations of the 

T3SSi and be used as a platform to develop molecules highly effective against homologous 

components in other T3SSi. Resistance mutants, biochemical assays, structural modeling, 

and rational designs are helping to identify targets and generate more potent inhibitors. 

Validating their efficacy in animal systems is ongoing. Both basic science and clinical 

translational research from academic and pharmaceutical groups is crucial to the 

advancement of these molecules to combat the rising threat of antibiotic resistance.
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Figure 1. 
(A) Structure of T3SSi. * indicate regions with conserved components between T3SSi and 

flagella. Yersinia = orange; Pseudomonas = blue; EPEC/EHEC = purple; Salmonella = 

green; Shigella = red. (B) Potential targets of compounds based on inhibition of T3SSi 

function, biochemical or binding studies, genetic resistance, or animal studies.
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