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Abstract

Purpose: We propose a deep learning based approach to breast mass classification in sonography 

and compare it with the assessment of four experienced radiologists employing BI-RADS 4th 

edition lexicon and assessment protocol.

Methods: Several transfer learning techniques are employed to develop classifiers based on a set 

of 882 ultrasound images of breast masses. Additionally, we introduce the concept of a matching 

layer. The aim of this layer is to rescale pixel intensities of the gray scale ultrasound images and 

convert those images to red, green, blue (RGB) to more efficiently utilize the discriminative power 

of the convolutional neural network pre-trained on the ImageNet dataset. We present how this 
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conversion can be determined during fine-tuning using back-propagation. Next, we compare the 

performance of the transfer learning techniques with and without the color conversion. To show 

the usefulness of our approach, we additionally evaluate it using two publicly available datasets.

Results: Color conversion increased the areas under the receiver operating curve for each transfer 

learning method. For the better-performing approach utilizing the fine-tuning and the matching 

layer, the area under the curve was equal to 0.936 on a test set of 150 cases. The areas under the 

curves for the radiologists reading the same set of cases ranged from 0.806 to 0.882. In the case 

of the two separate datasets, utilizing the proposed approach we achieved areas under the curve of 

around 0.890.

Conclusions: The concept of the matching layer is generalizable and can be used to improve the 

overall performance of the transfer learning techniques using deep convolutional neural networks. 

When fully developed as a clinical tool, the methods proposed in this paper have the potential to 

help radiologists with breast mass classification in ultrasound.

Keywords

BI-RADS; breast mass classification; convolutional neural networks; transfer learning; ultrasound 
imaging

1. Introduction

Breast cancer is one of the most common cancer in American women1. Ultrasound (US) 

imaging is the most common adjunct imaging modality used to evaluate mammographic 

findings, palpable masses and to guide biopsy. Breast US is also the primary imaging 

modality in the evaluation of breast complaints in women under the age of 30. In 

comparison to other imaging modalities, US is relatively low cost, readily available and 

can accurately differentiate cysts vs. masses. However, accurate diagnosis with US requires 

experienced and trained radiologists to evaluate cystic and solid breast masses. To support 

the radiologists and standardize the reporting process the Breast Imaging Reporting and 

Data System (BI-RADS) was developed by the American College of Radiology (ACR)2. 

BI-RADS lexicon characterizes US mass features based on shape, margins, orientation, echo 

patterns and posterior acoustic features. BI-RADS also provides assessment categories and 

recommendations as well as guidance on reporting. Although BI-RADS standardizes the 

reporting, the assessment of mass features is still subjective and depends on radiologist’s 

experience and training. There is increased interest in potential use of US for screening, 

particularly in women with dense breast tissue. Screening breast US can detect additional 

mammographically occult cancers but it has a low positive predictive value of about 8% 

leading to increased number of unnecessary biopsies and higher rate of short-term follow 

up3,4. To further help the radiologists correctly and objectively assess breast masses, various 

computer-aided diagnosis (CADx) systems have been proposed5,7. These systems process 

US images to provide as output the probability that the examined masses are malignant.

CADx pipeline commonly includes four steps: image preprocessing, mass segmentation, 

feature extraction and classification. The performance of a CADx system is related to 

applied features that are usually engineered by employing expert knowledge. The usefulness 
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of the hand-selected features is reported to be that morphological features are the most 

effective for breast mass classification7. More angular and indistinct margins are expected 

in the case of malignant masses so the aim of the morphological features is to assess 

mass shape and margin. Various morphological features were inspired by the BI-RADS 

descriptors and aim to computerize BI-RADS related features. The morphological features 

were successfully employed to discriminate breast masses in several studies6–16. However, 

efficiency of morphological features may depend on image preprocessing, US scanner, the 

specific view of the mass and applied segmentation algorithm17,18.

Deep learning methods utilizing convolutional neural networks (CNNs) are gaining 

momentum in medical image analysis. CNNs for classification process an input image 

using different network layers to provide as output the probability that the examined 

image contains particular pathology. Due to limited medical datasets it is usually more 

efficient to use transfer learning and adjust a pre-trained deep model to address the 

classification problem of interest. Transfer learning methods were employed for breast mass 

classification and segmentation in several studies19–25. Additionally, deep learning was used 

to detect breast lesions26 and differentiate breast masses with shear-wave elastography27. 

The better performing pre-trained deep learning models have been developed using RGB 

color images28–31. However, medical images, including US images, are commonly gray 

scale, which raises question about how to efficiently utilize the discriminative power of a 

pre-trained model. In order to use a pre-trained model, the most widely used approach is to 

duplicate the gray scale intensities across all color channels19–22,25. Another approach is to 

modify the convolutional layers of a pre-trained model, for example it is possible to convert 

the RGB images originally employed to develop the model to gray scale and use them to 

modify the model21. The second approach, however, may not lead to better classification 

performance21. Modification of the first layers influences the deeper layers in a network and 

does not necessarily improve the overall performance.

In this work we propose how to more efficiently utilize the color dependent representational 

capacity of a deep CNN to improve breast mass classification in US images. Instead of 

using duplicated gray scale images as input or modifying first convolutional layers, we 

introduce the concept of a matching layer (ML). This additional layer is added before the 

original input layer of the pre-trained CNN to convert gray scale US images to RGB. We 

show that this transformation can be efficiently learned during fine-tuning using the back­

propagation algorithm. Next, we show that our approach leads to improved performance. 

Additionally, the usefulness of our approach to classification is depicted using two publicly 

available datasets of breast mass US images. To show the potential clinical value of the 

employed methods, our best performing classifier is compared with the performance of 

four experienced radiologists utilizing BI-RADS lexicon categories for overall breast mass 

assessment.

This manuscript is organized in the following way. First, we describe the datasets employed 

in this study. Then, transfer learning methods utilizing deep CNNs are detailed and we 

describe how these methods were applied to address the problem of the breast mass 

classification. Next, we describe how the gray scale US images were converted to RGB 
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via the ML. Results are presented and we discuss the advantages and the disadvantages of 

the applied methods.

2. Materials and Methods

2.1. Datasets

The main dataset employed in this study contained 882 US images of unique breast masses, 

one mass per patient, consisting of 678 benign and 204 malignant lesions. The dataset was 

divided into training, validation and test sets. The training set contained images of 582 breast 

masses (23% malignant) while the validation and the test sets both contained 150 masses 

each (23% malignant). In the case of the benign masses, the three sets contained similar 

number of fibroadenomas (42%), simple (26%) and complicated cysts (9%) as determined 

by one radiologist in the study. From a total of 14 malignant histological findings the 

following were included: 29% invasive ductal carcinoma, 21% invasive lobular carcinoma, 

21% intraductal carcinoma, 11% ductal carcinoma in situ (all types), 10% invasive and in 

situ carcinoma, 20% other malignancies. The proportion of the five dominant findings was 

maintained in each dataset (training, validation and test). The distribution of mass types 

closely corresponded to the 5-year average mix of cases (<2% differences) at the Moores 

Cancer Center, University of California, San Diego. DICOM B-mode images (8 bit) were 

retrieved retrospectively in chronological order from institutional archive under approval 

by the Institutional Review Board and privacy compliance. Following BI-RADS criteria, 

cases were included if a breast mass was identified in at least two views sonographically, 

with only one image used. Biopsy was performed in 65% and the remainder had benign 

clinical follow-up of at least two years. Exams with no mass present (BI-RADS 1), 

inconclusive pathology results, significant artifacts or known cancers were excluded, but 

none were specifically included or excluded for race, ethnic background or health status. 

Self-reported racial/ethnic descriptions were White (69%), Asian/Pacific Islander (12%), 

Hispanic (7%), Black (5%), Native American/Eskimo (<1%), Other (3%), and not reported 

(4%). Age ranged from 18–90 years (mean 51±15). Mass size ranged from 2.5 to 98 mm2 

(mean 12.8±9.3 mm2). Sonography was performed at an ACR accredited center following 

standard clinical protocol with one of three scanners: Siemens Acuson (59%), GE L9 (21%) 

and ATL-HDI (20%). The BI-RADS category was assigned to each mass in the test set 

independently by four senior sub-specialty radiologists, reviewing the cases in random order 

in two sessions using a standard hard-copy BI-RADS classification form that includes final 

assessment category, descriptors and recommendations for follow-up interval or biopsy. The 

radiologists were not aware of the confirmed findings for any case.

To show the usefulness of the methods proposed in this paper, we also employed two 

publicly available breast mass datasets26,32. The first one, named UDIAT, consists of 163 

B-mode images of breast masses (53 malignant and 110 benign) collected using Siemens 

ACUSON scanner from the UDIAT Diagnostic Centre of the Parc Tauli Corporation, 

Sabadell (Spain). This dataset was used by the authors to develop deep learning based 

algorithms for the breast mass detection26 and segmentation22. The second dataset, named 

OASBUD (Open Access Series of Breast Ultrasonic Data), consists of raw ultrasonic echoes 

(before B-mode image reconstruction) acquired from 52 malignant and 48 benign masses 
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with the Ultrasonix SonixTouch Research scanner from patients of the Oncology Institute 

in Warsaw (Poland). For each mass two perpendicular scans were recorded. The OASBUD 

was originally used to assess the statistical properties of backscattered ultrasound echoes 

in breast tissue33,34 and to differentiate breast masses using transfer learning with CNNs20. 

Detailed descriptions of both datasets can be found in the original papers26,32.

2.2. Transfer learning

In this study we used the VGG19 neural network publicly available in TensorFlow.29,35 

The CNN was pre-trained on the ImageNet dataset that contains over 1.2 million 

RGB images corresponding to 1000 classes28. The model includes five large blocks of 

sequentially stacked convolutional layers followed by a block of fully connected (FC) layers. 

Convolutional layers extract different information from images. The first layers include edge 

and blob detectors while the deeper layers include ImageNet class-related features. This 

CNN was reported to be useful for various medical image analysis tasks36, including breast 

mass classification19,20, so it was selected for this study to enable comparison to other’s 

results.

We employed two approaches to neural transfer learning37. The first utilized the pre-trained 

model as a fixed feature extractor. In this case, the model architecture was not modified. 

The aim of the second approach was to fine-tune the CNN using the new dataset, in our 

case breast sonograms. In order to perform fine-tuning the CNN architecture is usually 

modified, the last layers of the network are replaced with custom FC layers. Next, the 

back-propagation algorithm is used to adjust the model to the new classification problem.

The main dataset was augmented in order to improve training and provide more diverse 

images to the network. First, each US image of a breast mass was median filtered and 

cropped with a fixed exterior margin of 30 pixels using the region of interest (ROI) provided 

by the radiologist and resized to the default VGG19 image size of 224*244. Additionally, 

the images were flipped and shifted by 15 pixels horizontally. Image shift was applied 

before cropping. Due to the augmentation, the number of images in each set increased six 

times. We decided not to perform image rotation or shift in longitudinal direction, as this 

would alter some of the known attributes of breast masses such as posterior shadowing 

and enhancement, potentially decreasing classification performance38. Example images are 

presented in Fig. 1. The B-mode images from the UDIAT dataset were pre-processed 

and augmented in a similar way as in the case of our dataset. Raw ultrasonic echoes 

from the OASBUD dataset were used to reconstruct B-mode images following the scheme 

proposed in the original paper32. Echo amplitude was computed with the Hilbert transform 

and logarithmically compressed to reconstruct the B-mode image. Next, the data were 

pre-processed and augmented as in the case of the other datasets.

2.2.1. Neural feature extraction—We implemented two efficient neural feature 

extraction methods employed in a recent paper19. First, features for classification were 

extracted from each of five max pooling (MP) layers of the original VGG19 model37. 

Next, features corresponding to each block were averaged along spatial dimensions and 

normalized using l2 norm. Features vectors corresponding to each block were then combined 
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to form the final MP feature vector. Second, we additionally used the first FC layer to 

extract features. For both methods all zero variance features in respect to the training 

set were discarded. For classification we employed the Support Vector Machine (SVM) 

algorithm39. In our study we applied two different approaches to model development. The 

main dataset was divided into training, validation and test sets. Training and validation 

sets were used to determine the best performing hyper-parameters and the optimal kernel 

of the SVM classifier via the grid search algorithm. For the C and γ parameters of the 

SVM algorithm the grid included parameters in range of [0.00001, 0.0001, …, 1, 10] 

and [1, 5, … 100]. The parameter grid also included the kernels, namely the linear and 

radial basis function kernels. Next, the best performing model was evaluated on the test 

set. However, the UDIAT and OASBUD datasets are too small to divide them into three 

separate sets in a convenient way. Therefore, we applied 10-fold cross-validation (case 

based) to evaluate the classification. Within each fold, additional 5-fold cross-validation was 

used to find optimal hyper-parameters of the SVM classifiers. To address the problem of 

class imbalance, we employed class weights inversely proportional to class frequencies in 

the training set. The SVM classifiers were developed and evaluated using the augmented 

datasets. To determine a posteriori probability that a mass in the test set is malignant, we 

averaged the probabilities calculated for each image of this particular mass. Next, to assess 

the classification performance we determined the receiver operating characteristic (ROC) 

and calculated the area under the ROC curve (AUC). Sensitivity, specificity and accuracy of 

the better performing algorithms were calculated using the ROC curve for the point on the 

curve that was the closest to (0, 1)40. Welch’s t-test at significance level of 0.001 was used 

to determine whether there is a difference in AUC values. All calculations were performed in 

Python.

2.2.2. Fine-tuning—The architecture of the original VGG19 model was modified in 

order to perform fine-tuning. Unfortunately, the UDIAT and OASBUD datasets were too 

small to efficiently fine-tune the VGG19 model, therefore fine-tuning was employed only in 

the case of the main dataset. The way to modify the architecture was determined using the 

validation set. The original FC layers, developed for the ImageNet classes, were replaced 

with a FC layer with 4096 units followed by a FC layer with 256 units and a single unit 

employing sigmoid activation function suitable for binary classification (in this case, benign 

or malignant). For the first two FC layers we used a rectifier activation functions. Initial 

weights of the layers were set using the Xavier uniform initializer. With the use of the 

validation dataset, we found that the highest performance can be obtained if the first four 

convolutional blocks are frozen and only the fifth block and the fully connected layers 

are fine-tuned. We also found that the fine-tuning of the first convolutional block does 

not improve the classification performance. To fine-tune the VGG19 neural network we 

used the mini-batch stochastic gradient descent with Nesterov update. The learning rate 

was initially set to 0.001 and was decreased by 0.00001 per epoch up to 0.00001. The 

momentum and the batch size were set to 0.9 and 40, respectively. The binary cross-entropy 

loss was employed with weights inversely proportional to class frequencies in the training 

set. To reduce over-fitting, we applied dropout with 80% dropout probability to the first fully 

connected layer. The experiments were performed on a computer equipped with a GeForce 

GTX 1080 Ti graphics card. The AUC value on the validation set was monitored during the 

Byra et al. Page 6

Med Phys. Author manuscript; available in PMC 2021 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



training. As in the case of the SVM algorithm, we selected the model that maximized the 

AUC value on the validation set.

2.3. Matching layer

Recently proposed CNN based breast mass classification approaches employed gray scale 

US images as input to the pre-trained models19–22. In this paper, we propose to adjust the 

gray scale US images to the pre-trained model instead of duplicating gray scale images 

across the channels or modifying the first convolutional layer of the CNN. By performing 

this transformation, we aim to utilize more efficiently the representational capacity of the 

deep model. For this task we use a ML that transforms the input gray scale images to RGB 

images via a linear transformation:

Iout = a Iin + b

where Iin is the gray scale image, Iout is the output RGB image, a  and b  are the 

transformation parameters that shall be determined during training. This transformation is 

a 1D convolution with a bias term. 1D convolutions were employed, for example, by the 

authors of the GoogleLeNet CNN to reduce the dimensionality of the input data31. In our 

case, we use a 1D convolution layer to artificially increase the dimensions of the input 

images and ideally perform color conversion from gray level images to RGB. Fig. 2 depicts 

the modified VGG19 architecture that includes the ML layer in the front. In this study, we 

determined the parameters of the ML layer during fine-tuning using the back-propagation 

algorithm in a way that minimizes the loss function.

3. Results

First, we used the gray scale images to perform classification of the B-mode images from the 

main dataset following the standard approach19,20,22,25. For each US image, the gray level 

intensities were copied to RGB channels and the VGG19 CNN was tuned. The highest AUC 

value on the validation set, equal to 0.921, was obtained after 16th epoch. The corresponding 

AUC value on the test set was equal to 0.895. Next, we extracted the MP features and the 

FC features using the original VGG19 model and used those features to train the SVM 

classifiers. The validation set was employed to select the best hyper-parameters. For both 

feature sets we obtained similar AUC values equal to 0.849 on the test set. The classification 

performance is depicted in Table I and the ROC curves are shown in Fig. 3.

Next, we fine-tuned the VGG19 CNN combined with the ML using the back-propagation 

algorithm. The highest AUC value on the validation set, equal to 0.961, was obtained after 

7th epoch and corresponded to AUC value of 0.936 on the test set, see Table II and Fig. 4. 

To visualize how the ML works, we converted two gray scale US images into RGB images 

with results depicted in Fig. 5. Following the conversion, the image was dominated by light 

blue and yellow colors.

The converted RGB US images were utilized to extract the MP features and the FC features 

using the original VGG19 model (not fine-tuned). Again, the validation set was employed 
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to find the best performing hyper-parameters for the SVM classifiers. For the RGB images 

we obtained higher AUC values on the validation and the test set, equal to 0.889 and 

0.873 for the MP features and the FC features, respectively. Color conversion improved the 

classification performance. In comparison to gray US images, the AUC values significantly 

increased by around 0.04 (p-values<0.001), see Table I. The ROC curves calculated for the 

classifiers developed using the ML layer are depicted in Fig. 4.

In the next step, we extracted the MP features and the FC features from the VGG19 model 

using the B-mode images from the UDIAT and OASBUD datasets. For each US image, 

the gray level intensities were copied to RGB channels. In the case of the UDIAT dataset, 

we obtained AUC values of 0.858 and 0.849 for the MP and the FC features, respectively. 

For the OASBUD dataset the corresponding AUC values for the MP and the FC features 

were equal to 0.819 and 0.791, respectively. Unfortunately, due to small sizes of these 

datasets we were not able to perform fine-tuning in an efficient way, so we employed the 

ML layer developed using the main dataset. As in the case of our dataset, all B-mode 

images from the UDIAT and OASBUD datasets were converted to RGB using the ML and 

utilized to extract the FC and the ML features. The same cross-validation folds were used to 

evaluate the performance. Results showed that due to the color conversion the classification 

performance increased. For the UDIAT dataset, the AUC values for the MP and the FC 

features increased to 0.873 and 0.893, respectively. In the case of the OASBUD, the AUC 

values were equal to 0.831 and 0.881 for the MP and the FC features, respectively. The 

ML improved significantly the AUC values (p-values<0.001) in the case of the FC features 

(both datasets). However, for the classifiers trained using the MP features the improvement 

was too small to provide statistically significant difference. Results are depicted in Table II. 

Fig. 6 shows how the ML converts the B-images from the UDIAT and OASBUD datasets to 

RGB.

Four radiologists participated in our study. Table III shows the distribution of BI-RADS 

categories for the masses in the test set. The Fleiss’ kappa was equal to 0.41 indicating 

moderate agreement of the radiologists in BI-RADS category final assessment. Table 

IV presents the classification performance of the radiologists employing the BI-RADS 

categories. The AUC values ranged between 0.806 and 0.882 with mean of 0.849. The AUC 

value for the better performing CNN with ML was significantly higher than the highest 

AUC value for the radiologists, 0.936 vs. 0.882 (p-value<0.001). Accuracy, sensitivity 

and specificity were determined for the BI-RADS category 3 (probably benign) used as 

the benign cut-off. In this case, the sensitivity of the radiologists was excellent (mean 

0.992), but the specificity was lower (mean 0.412), indicating an expected bias towards not 

missing a positive mass. To additionally compare the assessment of the radiologists with 

our better performing method, we employed the following procedure. First, majority voting 

was applied to assign a single BI-RADS category to each breast mass. Ties were handled 

by assigning the higher BI-RADS category. Second, we investigated the relation between the 

output of the network (a posteriori probability of malignancy) and the BI-RADS category 

(after voting) assigned to each mass. Fig. 6 shows that the probability of malignancy 

increases with the BI-RADS category, as expected. To confirm this observation, the Mann­

Whitney statistical tests with Bonferroni correction were applied. Results show that four 

groups are statistically different (p-value<0.05), expect for the BI-RADS categories 2 and 
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3 (p-value=0.22). These two groups contained only benign lesions for which the network 

assigned small probabilities of malignancy.

To illustrate the examples that were difficult for our better performing model to classify 

(fine-tuned VGG19 model with the ML), we extracted from the test set the images of 

malignant and benign breast masses that were assessed with the highest and the lowest 

confidence level for each class, these are shown in Fig. 8. For example, Fig. 8b) shows 

a benign mass that was assessed with the highest confidence of being malignant by the 

classifier. For this mass, the radiologists assigned BI-RADS categories 4, 4, 4 and 5, which 

indicates that according to the radiologists this mass was suspicious for malignancy. Fig. 8d) 

depicts a malignant mass that was assessed with the lowest confidence of being malignant 

by the classifier. All radiologists assigned BI-RADS category 5 to this mass. The oval shape, 

moderate posterior enhancement and fairly uniform anechoic pattern of this mass might be 

the reason why the model performed worse in this case.

4. Discussion

Our study demonstrates potential usefulness of a deep CNN based approach for breast mass 

classification in US images on three different datasets. In the case of the main dataset, we 

evaluated three transfer learning methods and achieved good results with each of them. The 

highest AUC value of 0.936 was achieved for the fine-tuned VGG19 model combined with 

the ML. Using the MP and the FC features we obtained AUCs in range from 0.849 to 

0.889. In the case of the other datasets we obtained the AUC values in range from 0.791 to 

0.893. Although we were not able to fine-tune the model using the smaller datasets, we still 

obtained similar classification performance using the ML and the FC features as in the case 

of the main dataset. For the UDIAT dataset the performance was almost the same, while for 

the OASBUD dataset the AUC values were lower by about 0.03 (without the ML). All these 

results are comparable with the results reported in previous papers19,20,25, where the AUC 

values of around 0.85 were obtained. In one of the studies the GoogleLeNet was fine-tuned 

to classify breast masses in US images21. The authors achieved high AUC value of 0.96. 

However, the authors used a large set of over 7000 US images to develop the model. In our 

case, we used a set of 882 breast mass images to develop the model, which may explain the 

difference in AUC values. Supposedly, with a larger dataset it is possible to fine-tune the 

model in a more efficient way.

In our study fine-tuning proved to be more efficient than the SVM algorithm utilizing 

directly extracted CNN features; we obtained higher AUC values by around 0.04 for the 

main dataset. The better performance may be partially explained by the fact that we fine­

tuned the last convolutional block of the VGG19 model. The usefulness of the convolutional 

blocks of the VGG19 CNN for breast mass classification was evaluated separately in one 

of the previous papers20. The performance of the last 5th convolutional block was lower 

than in the case of the 4th block, which suggests that the 5th block is specifically related to 

recognition of the ImageNet objects. The approach employing fine-tuning, however, is more 

challenging and troublesome to develop. It requires to replace the FC layers of the original 

CNN with custom layers and determining which layers of the original network should be 

trainable during the fine tuning. Moreover, the learning rate and other hyper-parameters 
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have to be correctly selected to yield good classification performance on the validation set. 

Iterating over methods of model development is time consuming and may not yield good 

results at first. Moreover, in the case of a small dataset, the fine-tuning might not be efficient 

and it is more reasonable to utilize the FC or the MP features.

The concept of the color conversion has been widely employed in the image analysis field41. 

Usually a type of color conversion is used before image segmentation42,43. In the case 

of deep learning, color conversion was employed in deep colorization44 or neural style 

transfer45. Our study shows that color distribution appears to be an important factor and that 

it should be taken into account to more efficiently use transfer learning with pre-trained deep 

models. By utilizing the ML we were able to obtain better classification performance. The 

first layers of the pre-trained network commonly include color blob detectors. Modifying 

these layers may not necessarily lead to better performance, because those layers are 

somehow connected with the deeper layers in the network. With the color conversion it 

was possible to more efficiently use the pre-trained CNN. This advantage is clearly depicted 

in the case of the MP and FC features extracted from all datasets. The ML developed using 

the main dataset proved to work with other datasets as well. This shows the universality 

of our approach. For example, in the case of the FC features extracted using the OASBUD 

dataset due to the color conversion the AUC value increased from 0.791 to 0.881. Moreover, 

the color conversion enabled us to more efficiently fine-tune the VGG19 CNN. In this 

work we used linear transformations to convert gray scale US images to RGB. Regular 

image pre-processing required in the case of the VGG19 network could be performed using 

only the bias term b . We decided to additionally employ the scaling parameter a  for 

several reasons. First, color inversion in particular channels may improve the performance. 

Second, the area of mass in US image is commonly hypoechoic or anechoic while the 

surrounding tissue is significantly brighter. For the network to perform well it might be 

useful to rescale this relation and for example decrease this difference in brightness levels. 

The proposed approach, however, is general and not limited to gray scale images or to 

US, so it can be applied to RGB images as well. Moreover, it is possible to use other 

transformations including nonlinear ones, which could be useful for processing images from 

different medical modalities. The advantage of our approach is that the transformation is 

determined during fine-tuning automatically. In some sense, our approach can be perceived 

as adding an additional neural network in front of the pre-trained one. The main issue is that 

the transformation may change the range of intensities to one outside [0, 255] making the 

transformed image difficult or impossible to visualize.

The CNN based methods developed using the main dataset achieved results comparable 

to or higher than the AUC obtained by the radiologists. Our best performing approach 

showed an AUC value that was higher by 0.04 to 0.13 than the range of AUCs calculated 

for the radiologists. These results demonstrate potential clinical usefulness of the developed 

classifiers. However, it is important to recognize that diagnostic breast US is commonly used 

to determine whether and where to perform the biopsy rather than to determine if a lesion is 

benign or malignant. In order to avoid missing a potential malignancy, radiologists achieve 

very high sensitivity at the expense of lower specificity.34 The better classifier in this study 

achieved higher specificity (0.90) but lower sensitivity (0.85) than all of the radiologists. 
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However, according to the ROC curve in Fig. 4, at a sensitivity of 1.0 corresponding to that 

of the radiologists, our better performing CNN achieves higher specificity of 0.65 compared 

to 0.3–0.5. We also showed that the output of the better performing model (a posteriori 
probability of malignancy) is related to the BI-RADS category. This, however, was expected 

since both measures aim to assess the level of malignancy.

To more thoroughly evaluate the classifier utility in a clinical environment, it will be 

desirable to employ the CNN as a decision tool with the radiologist “in the loop.” For 

a particular mass, the CNN result may be overridden by the interpreting radiologist in 

the final assessment. The current results do not describe a complete medical device ready 

for clinical use but they may provide necessary information to properly design and study 

such a tool. In our approach the radiologists identify the mass and select an ROI, hence 

requiring interaction by the radiologist. It remains to be seen if this can be done efficiently 

or semi-automatically without impacting workflow, and if it is useful for the radiologist with 

difficult cases where accurate assessment of the type of breast mass is desired. In future, it 

would be also interesting to investigate whether the CNNs can be used to classify malignant 

and benign breast mass subtypes.

5. Conclusion

In this study we utilized the VGG19 CNN for breast mass classification and introduced 

the concept of the matching layer, a layer that is used to convert gray images to RGB. We 

demonstrated that with the ML it was possible to perform more efficient classification than 

in the case of duplicating gray level US images across the RGB channels. The concept of 

the ML is general and can be applied to various problems to enhance CNN based transfer 

learning techniques. The AUC obtained for our better performing classifier was higher 

than that of four expert radiologists who utilized BI-RADS lexicon and categories. Even at 

sensitivity of 1.0 the classifier achieved higher specificity in comparison to the radiologists. 

In future we are going to perform additional studies to determine the clinical usefulness of 

the employed methods.

Acknowledgments

This work was supported in part by Grant 2R44CA112858 from the National Institutes of Health, National Cancer 
Institute, USA and by the Gustavus and Louise Pfeiffer Research Foundation, NJ, USA. We gratefully acknowledge 
our long-collaboration and friendship with the late Dr. Michael Galperin, without whose considerable contributions 
much of this work would not have been possible. The database of images in this study were used with written 
permission of Almen Laboratories, Inc.

References

1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: 
GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA 
Cancer J Clin.

2. Bott R. ACR BI-RADS Atlas.; 2014. doi:10.1007/s13398-014-0173-7.2

3. Berg WA, Blume JD, Cormack JB, et al. Combined screening with ultrasound and mammography 
vs mammography alone in women at elevated risk of breast cancer. Jama. 2008;299(18):2151–2163. 
[PubMed: 18477782] 

Byra et al. Page 11

Med Phys. Author manuscript; available in PMC 2021 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4. Hooley RJ, Greenberg KL, Stackhouse RM, Geisel JL, Butler RS, Philpotts LE. Screening US 
in patients with mammographically dense breasts: initial experience with Connecticut Public Act 
09–41. Radiology. 2012;265(1):59–69. [PubMed: 22723501] 

5. Cheng HD, Shan J, Ju W, Guo Y, Zhang L. Automated breast cancer detection and 
classification using ultrasound images: A survey. Pattern Recognit. 2010;43(1):299–317. 
doi:10.1016/j.patcog.2009.05.012

6. Giger ML, Karssemeijer N, Schnabel JA. Breast image analysis for risk assessment, detection, 
diagnosis, and treatment of cancer. Annu Rev Biomed Eng. 2013;15:327–357. [PubMed: 23683087] 

7. Flores WG, de Albuquerque Pereira WC, Infantosi AFC. Improving classification performance of 
breast lesions on ultrasonography. Pattern Recognit. 2015;48(4):1125–1136.

8. André MP, Galperin M, Berry A, et al. Performance of a method to standardize breast ultrasound 
interpretation using image processing and case-based reasoning. In: Acoustical Imaging. Springer; 
2011:3–9.

9. Bian C, Lee R, Chou Y-H, Cheng J-Z. Boundary Regularized Convolutional Neural Network 
for Layer Parsing of Breast Anatomy in Automated Whole Breast Ultrasound. In: International 
Conference on Medical Image Computing and Computer-Assisted Intervention. ; 2017:259–266.

10. Chen C-M, Chou Y-H, Han K-C, et al. Breast lesions on sonograms: computer-aided 
diagnosis with nearly setting-independent features and artificial neural networks. Radiology. 
2003;226(2):504–514. doi:10.1148/radiol.2262011843 [PubMed: 12563146] 

11. Cheng J-Z, Chou Y-H, Huang C-S, et al. Computer-aided US diagnosis of breast lesions by using 
cell-based contour grouping. Radiology. 2010;255(3):746–754. [PubMed: 20501714] 

12. Cheng J-Z, Ni D, Chou Y-H, et al. Computer-aided diagnosis with deep learning architecture: 
applications to breast lesions in US images and pulmonary nodules in CT scans. Sci Rep. 
2016;6:24454. [PubMed: 27079888] 

13. Drukker K, Gruszauskas NP, Sennett CA, Giger ML. Breast US computer-aided diagnosis 
workstation: performance with a large clinical diagnostic population. Radiology. 2008;248(2):392–
397. [PubMed: 18574139] 

14. Joo S, Yang YS, Moon WK, Kim HC. Computer-aided diagnosis of solid breast nodules: Use of 
an artificial neural network based on multiple sonographic features. IEEE Trans Med Imaging. 
2004;23(10):1292–1300. doi:10.1109/TMI.2004.834617 [PubMed: 15493696] 

15. Shen WC, Chang RF, Moon WK, Chou YH, Huang CS. Breast Ultrasound Computer­
Aided Diagnosis Using BI-RADS Features. Acad Radiol. 2007;14(8):928–939. doi:10.1016/
j.acra.2007.04.016 [PubMed: 17659238] 

16. Hoda N, Hamid F, Nasrin A, FA F, Ali G. Classification of Breast Lesions in Ultrasonography 
Using Sparse Logistic Regression and Morphology-based Texture Features. Med Phys. 0(ja). 
doi:10.1002/mp.13082

17. Hu Y, Qiao M, Guo Y, et al. Reproducibility of quantitative high-throughput BI-RADS features 
extracted from ultrasound images of breast cancer. Med Phys. 2017;44(7):3676–3685. [PubMed: 
28409843] 

18. Rodriguez-Cristerna A, Guerrero-Cedillo CP, Donati-Olvera GA, Gómez-Flores W, Pereira WCA. 
Study of the impact of image preprocessing approaches on the segmentation and classification 
of breast lesions on ultrasound. In: Electrical Engineering, Computing Science and Automatic 
Control (CCE), 2017 14th International Conference On. ; 2017:1–4.

19. Antropova N, Huynh BQ, Giger ML. A Deep Feature Fusion Methodology for Breast Cancer 
Diagnosis Demonstrated on Three Imaging Modality Datasets. Med Phys. 2017;doi:10.1002/
mp.12453

20. Byra M. Discriminant analysis of neural style representations for breast lesion classification in 
ultrasound. Biocybern Biomed Eng. 2018;38(3):684–690.

21. Han S, Kang H-K, Jeong J-Y, et al. A deep learning framework for supporting the classification of 
breast lesions in ultrasound images. Phys Med Biol. 2017;62(19):7714. [PubMed: 28753132] 

22. Yap MH, Goyal M, Osman F, et al. End-to-end breast ultrasound lesions recognition with a deep 
learning approach. In: Medical Imaging 2018: Biomedical Applications in Molecular, Structural, 
and Functional Imaging. Vol 10578. ; 2018:1057819.

Byra et al. Page 12

Med Phys. Author manuscript; available in PMC 2021 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



23. Xie X, Shi F, Niu J, Tang X. Breast Ultrasound Image Classification and Segmentation Using 
Convolutional Neural Networks. In: Hong R, Cheng W-H, Yamasaki T, Wang M, Ngo C-W, 
eds. Advances in Multimedia Information Processing -- PCM 2018. Cham: Springer International 
Publishing; 2018:200–211.

24. Xu Y, Wang Y, Yuan J, Cheng Q, Wang X, Carson PL. Medical breast ultrasound image 
segmentation by machine learning. Ultrasonics. 2019;91:1–9. [PubMed: 30029074] 

25. Huynh B, Drukker K, Giger M. MO-DE-207B-06: Computer-aided diagnosis of breast 
ultrasound images using transfer learning from deep convolutional neural networks. Med Phys. 
2016;43(6Part30):3705.

26. Yap MH, Pons G, Marti J, et al. Automated breast ultrasound lesions detection using convolutional 
neural networks. IEEE J Biomed Heal informatics. 2018;22(4):1218–1226.

27. Zhang Q, Xiao Y, Dai W, et al. Deep learning based classification of breast tumors with shear-wave 
elastography. Ultrasonics. 2016;72:150–157. [PubMed: 27529139] 

28. Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L. Imagenet: A large-scale hierarchical image 
database. In: Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference 
On. ; 2009:248–255.

29. Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. 
arXiv Prepr arXiv14091556. 2014.

30. Szegedy C, Ioffe S, Vanhoucke V, Alemi AA. Inception-v4, inception-resnet and the impact of 
residual connections on learning. In: ; 2017.

31. Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions. In: Proceedings of the IEEE 
Conference on Computer Vision and Pattern Recognition. ; 2015:1–9.

32. Piotrzkowska-Wróblewska H, Dobruch-Sobczak K, Byra M, Nowicki A. Open access database 
of raw ultrasonic signals acquired from malignant and benign breast lesions. Med Phys. 2017. 
doi:10.1002/mp.12538

33. Byra Michał, Nowicki A, Wróblewska-Piotrzkowska H, Dobruch-Sobczak K. Classification 
of breast lesions using segmented quantitative ultrasound maps of homodyned K distribution 
parameters. Med Phys. 2016;43(10):5561–5569. doi:10.1118/1.4962928 [PubMed: 27782690] 

34. Dobruch-Sobczak K, Piotrzkowska-Wróblewska H, Roszkowska-Purska K, Nowicki A, 
Jakubowski W. Usefulness of combined BI-RADS analysis and Nakagami statistics of ultrasound 
echoes in the diagnosis of breast lesions. Clin Radiol. 2017;72(4):339.e7–339.e15. doi:10.1016/
j.crad.2016.11.009

35. Abadi M, Barham P, Chen J, et al. TensorFlow: A System for Large-Scale Machine Learning. In: 
OSDI. Vol 16. ; 2016:265–283.

36. Litjens GJS, Kooi T, Bejnordi BE, et al. A Survey on Deep Learning in Medical Image Analysis. 
CoRR. 2017;abs/1702.0. http://arxiv.org/abs/1702.05747.

37. Zheng L, Zhao Y, Wang S, Wang J, Tian Q. Good practice in CNN feature transfer. arXiv Prepr 
arXiv160400133. 2016.

38. Landini L, Sarnelli R. Evaluation of the attenuation coefficients in normal and pathological breast 
tissue. Med Biol Eng Comput. 1986;24(3):243–247. [PubMed: 3528703] 

39. Chang C-C, Lin C-J. LIBSVM: a library for support vector machines. ACM Trans Intell Syst 
Technol. 2011;2(3):27.

40. Fawcett T. An introduction to ROC analysis. Pattern Recognit Lett. 2006;27(8):861–874. 
doi:10.1016/j.patrec.2005.10.010

41. Faridul HS, Pouli T, Chamaret C, et al. Colour mapping: A review of recent methods, extensions 
and applications. In: Computer Graphics Forum. Vol 35. ; 2016:59–88.

42. Khattab D, Ebied HM, Hussein AS, Tolba MF. Color image segmentation based on different color 
space models using automatic GrabCut. Sci World J. 2014;2014.

43. Sanchez-Cuevas MC, Aguilar-Ponce RM, Tecpanecatl-Xihuitl JL. A comparison of color models 
for color face segmentation. Procedia Technol. 2013;7:134–141.

44. Cheng Z, Yang Q, Sheng B. Deep colorization. In: Proceedings of the IEEE International 
Conference on Computer Vision. ; 2015:415–423.

Byra et al. Page 13

Med Phys. Author manuscript; available in PMC 2021 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://arxiv.org/abs/1702.05747


45. Gatys LA, Ecker AS, Bethge M, Hertzmann A, Shechtman E. Controlling perceptual factors in 
neural style transfer. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR). ; 
2017.

Byra et al. Page 14

Med Phys. Author manuscript; available in PMC 2021 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
a) Benign and b) malignant ultrasound images from the main dataset after the preprocessing.
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Fig. 2. 
The modified architecture of the VGG19 CNN, gray colors indicate the trainable layers. We 

propose to add a ML in front of the pre-trained model to transform the gray scale US images 

to RGB to utilize more efficiently the representation capacity of the deep model.

Byra et al. Page 16

Med Phys. Author manuscript; available in PMC 2021 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
The ROC curves for the CNN based classification without the ML in the case of the main 

dataset.
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Fig. 4. 
The ROC curves for the CNN based classification with the ML in the case of the main 

dataset.
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Fig. 5. 
Conversion of gray scale US images from our dataset to RGB using the ML, a) a benign 

lesion image and b) its conversion, c) a malignant lesion image and d) its conversion. 

By using the color conversion, it was possible to more efficiently use the CNN model 

pre-trained on RGB images.
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Fig. 6. 
a) Image from the UDIAT dataset and b) its conversion to RGB, c) image from the 

OASBUD and d) its conversion to RGB. By using the color conversion, it was possible 

to more efficiently use the CNN model pre-trained on RGB images.
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Fig. 7. 
Relation between the output of the CNN with the ML and the average BI-RADS category 

assigned to each breast mass.
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Fig. 8. 
Benign masses assessed by the fine-tuned model as malignant with a) the lowest (a 
posteriori probability of 0.98, BI-RADS: 2, 2, 2, 2) and b) the highest confidence level (a 
posteriori probability of 0, BI-RADS 4, 4, 4, 5), and malignant masses assessed as malignant 

with c) the highest (a posteriori probability of 1, BI-RADS: 4, 5, 5, 5) and d) the lowest 

confidence level (a posteriori probability of 0.33, BI-RADS 5, 5, 5, 5).
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Table I.

Classification performance of the models developed without the ML for our dataset. The standard deviations 

of the parameters were calculated using bootstrap.

Method AUC Accuracy Sensitivity Specificity

Fine tuning 0.895±0.031 0.860±0.024 0.848±0.056 0.863±0.026

MP features 0.849±0.036 0.793±0.036 0.757±0.054 0.803±0.048

FC features 0.849±0.036 0.800±0.038 0.757±0.054 0.812±0.046

Fine tuning, ML 0.936±0.019 0.887±0.028 0.848±0.039 0.897±0.035

MP features, ML 0.889±0.029 0.860±0.044 0.757±0.058 0.889±0.062

FC features, ML 0.873±0.036 0.753±0.044 0.879±0.058 0.718±0.053
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Table II.

Classification performance of the models developed with and without the ML in the case of the UDIAT and 

OASBUD datasets. The standard deviations of the parameters were calculated using bootstrap.

Dataset Method AUC Accuracy Sensitivity Specificity

UDIAT

MP features 0.858±0.029 0.853±0.024 0.796±0.043 0.880±0.027

FC features 0.849±0.031 0.822±0.037 0.759±0.043 0.853±0.053

MP features, ML 0.873±0.027 0.840±0.023 0.833±0.037 0.844±0.027

FC features, ML 0.893±0.030 0.840±0.024 0.851±0.042 0.834±0.030

OASBUD

MP features 0.819±0.030 0.760±0.029 0.692±0.057 0.833±0.057

FC features 0.791±0.035 0.750±0.031 0.750±0.044 0.750±0.050

MP features, ML 0.831±0.031 0.760±0.031 0.762±0.059 0.750±0.061

FC features, ML 0.881±0.023 0.830±0.026 0.807±0.039 0.854±0.036
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Table III.

Distribution of BI-RADS categories for the test set, Fleiss’ kappa was equal to 0.41.

BI-RADS

2 3 4 5

Radiologist 1
Benign 44 15 57 1

Malignant 0 1 23 9

Radiologist 2
Benign 37 13 64 3

Malignant 0 0 16 17

Radiologist 3
Benign 41 11 61 4

Malignant 0 0 12 21

Radiologist 4
Benign 19 13 60 25

Malignant 0 0 3 30
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Table IV.

Performance of the Radiologists employing BI-RADS for benign cut-off set to BI-RADS 3.

AUC Accuracy Sensitivity Specificity

Radiologist 1 0.806±0.028 0.607 0.967 0.504

Radiologist 2 0.848±0.028 0.553 1 0.427

Radiologist 3 0.882±0.026 0.567 1 0.444

Radiologist 4 0.860±0.027 0.433 1 0.273

Mean 0.849 0.540 0.992 0.412
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