Skip to main content
. Author manuscript; available in PMC: 2021 Oct 25.
Published in final edited form as: Med Phys. 2019 Jan 16;46(2):746–755. doi: 10.1002/mp.13361

Table II.

Classification performance of the models developed with and without the ML in the case of the UDIAT and OASBUD datasets. The standard deviations of the parameters were calculated using bootstrap.

Dataset Method AUC Accuracy Sensitivity Specificity
UDIAT MP features 0.858±0.029 0.853±0.024 0.796±0.043 0.880±0.027
FC features 0.849±0.031 0.822±0.037 0.759±0.043 0.853±0.053
MP features, ML 0.873±0.027 0.840±0.023 0.833±0.037 0.844±0.027
FC features, ML 0.893±0.030 0.840±0.024 0.851±0.042 0.834±0.030
OASBUD MP features 0.819±0.030 0.760±0.029 0.692±0.057 0.833±0.057
FC features 0.791±0.035 0.750±0.031 0.750±0.044 0.750±0.050
MP features, ML 0.831±0.031 0.760±0.031 0.762±0.059 0.750±0.061
FC features, ML 0.881±0.023 0.830±0.026 0.807±0.039 0.854±0.036