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Abstract

Brain atlases are commonly utilized in neuroimaging studies. However, most brain atlases are 

fuzzy and lack structural details, especially in the cortical regions. This is mainly caused by the 

image averaging process involved in atlas construction, which often smoothes out high-frequency 

contents that capture fine anatomical details. Brain atlas construction for neonatal images is even 

more challenging due to insufficient spatial resolution and low tissue contrast. In this paper, we 

propose a novel framework for detail-preserving construction of population-representative atlases. 

Our approach combines spatial and frequency information to better preserve image details. This is 

achieved by performing atlas construction in the space-frequency domain given by wavelet 

transform. In particular, sparse patch-based atlas construction is performed in all frequency 

subbands, and the results are combined to give a final atlas. For enhancing anatomical details, 

tissue probability maps are also used to guide atlas construction. Experimental results show that 

our approach can produce atlases with greater structural details than existing atlases.
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INTRODUCTION

Brain atlases are spatial representations of anatomical structures and allow brain analysis to 

be performed in a standardized space. They are widely used for neuroscience studies, 

disease diagnosis, and pedagogical purposes.

Two types of atlases are widely used [Cabezas et al., 2011; Evans et al., 2012]: single-

subject atlases [Aljabar et al., 2009; Talairach and Tournoux 1988; Tzourio-Mazoyer et al., 

2002; Wang et al., 2013], and population-average atlases [Evans et al., 2012; Fonov et al., 

2011; Kuklisova-Murgasova et al., 2011; Mazziotta et al., 2001; Serag et al., 2011; Shi et al., 

2011a,b]. Single-subject atlases are sharp with good structural definition and are effective 
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for guiding non-linear image structural alignment [Wu et al., 2011]. These atlases, however, 

often lead to bias, and are insufficient in representing the anatomical variability of the entire 

population. In comparison, population-average atlases are designed to capture the 

anatomical variability of multiple subjects. The construction of a population-averaged atlas 

commonly involves registering a population of images to a common space and then fusing 

these registered images into a final atlas. Due to considerable inter-subject anatomical 

variability, fine brain structures are often smoothed out during atlas construction. While this 

problem can be partially mitigated by improving spatial registration, minor structural 

differences still remain, leading to blurred atlases after averaging. Since blurred atlases 

hardly represent any real brain structures, many studies have attempted to remedy this 

problem [Fonov et al., 2011; Luo et al., 2014; Oishi et al., 2011; Schuh et al., 2015; Serag et 

al., 2012; Shi et al., 2011a,b; Wu et al., 2011].

The majority of previous studies have been focused on improving image registration. It is 

commonly recognized that reducing structural misalignment among individuals is essential 

in preserving fine structures. For example, Yeo et al. [2008] proposed to jointly register the 

intensity image and the segmentation label maps for improving accuracy in both registration 

and segmentation. Zhang et al. [2014] proposed an atlas generation method by gradually 

moving the initial template (i.e., a randomly selected subject image) to the common space by 

updating the template iteratively. Kuklisova-Murgasova et al. [2011] constructed atlases for 

preterm babies by affine registration, which was further extended in Schuh et al., [2015] by 

using group-wise parametric diffeomorphic registration. Oishi et al. [2011] proposed to 

combine affine and non-linear registrations for hierarchically building an infant brain atlas. 

Fonov et al. [2011] proposed a non-linear unbiased registration framework based on the 

ICBM atlas data [Mazziotta et a., 2001], and further proposed to hierarchically refine the 

average atlas using a multi-scale non-linear registration strategy. By using adaptive kernel 

regression and group-wise registration, Serag et al. [2012] constructed a spatiotemporal atlas 

of the developing brain. Luo et al. [2014] used both intensity and sulci landmark information 

in the group-wise registration for constructing a toddler atlas. All these methods, however, 

fuse the images by simple averaging, thus often resulting in blurred atlases.

For more effective image fusion, Artaechvarria et al. [2009] proposed a local weighted 

voting method for improving brain tissue segmentation accuracy. Instead of using global 

weights to fuse candidate segmentations, the local fusion weights are determined voxel-wise 

according to local estimation of segmentation performance. In Wang et al.’s work [2013], 

the weighted voting is optimized by minimizing the total expectation of labeling error. The 

pairwise dependency between atlases is explicitly modeled as the joint probability of two 

atlases making a segmentation error at a voxel. More recently, Wu et al. [2014] developed a 

multi-scale label fusion method to propagate label information from multiple atlases to the 

target image in a patch-by-patch manner with sparsity constraint. Shi et al. [2014] utilized a 

sparse representation technique for patch-based fusion of similar brain structures that occur 

in the local neighborhood of each voxel. The limitation of this approach is that there is no 

explicit attempt to preserve high-frequency contents for improving anatomical details.

For constructing detail-preserving population-average atlases, it is essential to consider both 

global brain structures and fine local anatomical details during image fusion [Zhang et al., 
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2015]. Wavelet transform provides a pyramidal decomposition of images, encoding coarse 

and fine image contents in different frequency subbands. For example, Wei et al. [2015] 

proposed to use Daubichies wavelet basis to bring out detailed information from motion 

corrupted diffusion-weighted images of the human heart. By optimally fusing low-resolution 

and high-resolution image components in the frequency domain, Singh et al. [2014] 

proposed to apply wavelet transform for detail enhanced image super-resolution.

In this paper, we propose a novel space-frequency image fusion approach for constructing 

neonatal brain atlases with rich details. To achieve this goal, we employ information in both 

frequency and spatial domains given by the wavelet transform for atlas construction. Each 

brain image is decomposed into multiple scales and orientations using wavelet transform so 

that the fine anatomical structures can be preserved more effectively in the frequency 

subbands. The atlas is constructed in the spatial domain using a patch-based mechanism. For 

each image patch, we fuse local neighborhood information by group-sparse construction. In 

addition, we supervise the construction process by anatomical priors in the form of tissue 

probability maps. Then we apply our method to construct a brain atlas from neonatal MR 

images, which often suffer from low spatial resolution and tissue contrast. Experimental 

results show that the proposed method can generate atlases with greater anatomical details, 

compared with the existing state-of-the-art neonatal atlases.

METHOD

Overview

The overall pipeline of the proposed method is shown in Figure 1. First, intensity images of 

all subjects are aligned to a common space using group-wise registration to generate a mean 

intensity image. The resulting deformations are used to generate the corresponding tissue 

probability maps (Fig. 1a,b). Then, wavelet transform is used to decompose both the aligned 

individual images and the mean image (Fig. 1c). In each frequency subband, we construct a 

subband atlas using patch-by-patch sparse construction, guided by the tissue probability 

maps (Fig. 1d–e). For spatial consistency, immediate neighbors are group constrained during 

sparse estimation (Fig. 1f,g). Finally, the subband atlases are combined to form a final atlas 

(Fig. 1h).

Image Preprocessing

All 73 images were preprocessed with a standard pipeline using the iBEAT software 

package (https://www.nitrc.org/projects/ibeat/). Briefly, it includes the following major 

steps: (1) rigid alignment of each T2 image to its T1 image and further resampling to be of 1 

× 1 × 1 mm3 using FLIRT in FSL [Smith et al., 2004]; (2) skull stripping by a learning-

based method [Shi et al., 2012] and further removal of cerebellum and brain stem by 

registration with an atlas [Shen and Davatzikos, 2002]; (3) correction of intensity 

inhomogeneity by N3 [Sled et al., 1998]; (4) tissue segmentation by an infant-dedicated 

method [Wang et al., 2012], based on the complementary multimodal information from T1 

and T2 images, for reducing structural ambiguities in tissue segmentation due to low image 

contrast. We use a publicly available group-wise registration method [Wu et al., 2012] to 

align all images to a common space (http://www.nitrc.org/projects/glirt), giving a set of N 
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registered images In ∈ ℝ3 |n = 1, …, N , which are averaged to form a mean image 

Imean = +1
N n = 1

N
In.

Frequency Domain Sparse Representation

We combine subband atlases generated from different frequency subbands for detail-

preserving atlas construction. We first perform pyramidal decomposition using 3D wavelet 

on all images:

I =
s = 1

S

r = 1

R
I(s, r) =

s = 1

S

r = 1

R
D(s, r) ⋅ a(s, r) (1)

where scale s=1,…,S denotes that the image has been down-sampled s times. For each scale 

s, images are further decomposed into orientation subband r=1,…, R. For each scale s, we 

fixed R=8, and the corresponding orientation subbands in 3D are denoted as ‘LLL’, ‘HLL’, 
‘LHL’, ‘HHL’, ‘LLH’, ‘HLH’, ‘LHH’, and ‘HHH’ filters, where ‘L’ indicates low-pass 

filtering and ‘H’ indicates high-pass filtering. D(s,r) denotes the wavelet basis of subband 

((s,r)); and a(s,r) denotes the wavelet coefficients in subband ((s,r)): The wavelet coefficients 

of subband ((s,r)) of all images In |n = 1, …, N  are denoted as an
(s, r) |n = 1, …, N .

Atlas construction is performed in a patch-by-patch manner. We consider a local cubic patch 

pmean
(s, r)  centered at location (x,y,z) in the mean image Imean. The patch is represented as a 

vector of length V=v×v×v, where v is the patch size in each dimension. We sparsely refine 

the mean patch pmean
(S, r)  using a dictionary, formed by including all patches at the same 

location in all N training images, i.e., p(s, r) = p1
(s, r), p2

(s, r), pN
(s, r) , thereby generating the 

constructed detail-preserved atlas patch patlas
(s, r). To compensate for possible registration error, 

we enrich the dictionary by including patches from neighboring locations, i.e., 26 locations 

immediately adjacent to (x, y, z) Therefore, from all N aligned images, we will have a total 

of Ntotal=27×N patches in the dictionary, i.e., p(s, r) = p1
(s, r), p2

(s, r), …pNtotal
(s, r) . We use this 

dictionary to construct the refined atlas patch patlas
(s, r) by estimating a sparse coefficient vector 

β(s, r), with each element denoting the weight of the contribution of a patch in the dictionary.

To further enhance robustness, we constrain the constructed atlas patch patlas
(s, r) to be similar to 

the appearance of a small set of K (K≤ Ntotal) neighboring patches pk
(s, r) |k = 1, …, K  from 

P(s,r) that are most correlated with pmean
(s, r) . The construction problem can now be formulated 

as
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β(s, r) = argmin
β(s, r) > 0k = 1

K
pk

(s, r) − P(s, r) ⋅ β(s, r)
2
2 + λ β(s, r)

1 (2)

where λ is a non-negative parameter controlling the influence of the regularization term. 

Here, the first term measures the discrepancy between observations pk
(s, r) and the 

constructed atlas patch patlas
(s, r) = P(s, r) ⋅ β(s, r), and the second term is for L1-regularization on 

the coefficients in β(s,r) Considering that the dictionary P(s,r) and the observations pk
(s, r) share 

the same basis D(s,r), we can combine Eq. (1) and Eq.(2) for a wavelet representation version 

of the problem:

β(s, r) = argmin
β(s, r) > 0k = 1

K
D(s, r) ⋅ ck

(s, r) − C(s, r) ⋅ β(s, r)
2
2 + λ β(s, r)

1 (3)

where ck
(s, r) is a vector consisting of the wavelet coefficients of pk

(s, r), and 

C(s, r) = c1
(s, r), c2

(s, r), …, cNtotal
(s, r)  is a matrix containing the wavelet coefficients of the patches 

in dictionary P(s,r). Finally, the atlas is constructed as

Iatlas =
s = 1

S

r = 1

R
Iatlas
(s, r) =

s = 1

S

r = 1

R
D(s, r) ⋅ C(s, r) ⋅ β(s, r)

(4)

Consistency in Spatial Domain

As illustrated in Figure 2, to promote local consistency, multi-task LASSO [Tibshirani, 

1996] is used for spatial regularization in the space-frequency domain for all G neighboring 

atlas patches, indexed as g=1,…, G, simultaneously.

We denote the dictionary, training patch, and sparse coefficient vector for the g-th neighbor 

respectively aspg
(s, r), pk, g

(s, r) and βg
(s, r). For simplicity, we let B(s, r) = β1

(s, r), …, βG
(s, r) , which 

can also be written in the form of row vectors: B(s, r) =

γ1
(s, r)

⋮
γNtotal
(s, r)

, where γm
(s, r) is the m-th row 

in the matrix B(s,r). Then, we reformulate Eq. (2) using multi-task LASSO:
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B(s, r) = argmin
B(s, r) > 0g = 1

G

k = 1

K
pg, k

(s, r) − Pg
(s, r) ⋅ βg

(s, r)
2
2 + λ B(s, r)

2, 1

= argmin
B(s, r) > 0g = 1

G

k = 1

K
D(s, r) ⋅ cg, k

(s, r) − Cg
(s, r) ⋅ βg

(s, r)
2
2 + λ B(s, r)

2, 1

(5)

where | |B(s, r) | |2, 1 = m = 1
Ntotal | |γm

(s, r) | |2 The first term is a multi-task sum-of-squares term for 

all G neighboring atlas patches. The second term is for multi-task regularization using a 

combination of L2 and L1-norm. L2-norm penalization is imposed on each row of matrix 

B(s,r) (i.e., γm
(s, r)) to enforce similarity of neighboring patches. L1-norm penalization is 

imposed to ensure representation sparsity. This combined penalization ensures that 

neighboring patches have similar sparse coefficients. The multi-task LASSO in Eq. (5) can 

be solved efficiently by using the algorithm described in Liu et al. [2009].

Anatomical Consistency

To avoid anatomical inconsistency between subbands, we propose to supervise the 

construction in each wavelet subband by integrating intensity with anatomical features.

White matter (WM) and gray matter (GM) are the two main constituents of the brain 

[Damasio, 1995]. We use WM and GM probability maps to guide the atlas construction in 

distinct frequency subbands. As shown in Figure 3, for a local cubic patch p(s,r), centered at 

location (x,y,z) in the intensity image component I(s,r), there are two corresponding cubic 

patches, represented as pWM and pGM respectively, at the same location (x, y, z) of the WM 

and GM maps. Then, we combine the three patches into a single vector pcombo
(s, r) =

p(s, r)

pWM

pGM

, 

which consists of V×3=v3×3 features (i.e., voxels). By doing so, the atlas construction 

processes in the respective frequency subbands are restricted by the common tissue features, 

thus the anatomical consistency between scales and orientations is ensured for atlas 

construction. Conversely, the intensity image components on different frequency subbands 

also contribute to building clearer tissue maps, each with a unique emphasis of distinct 

structures. Finally, we obtain the tissue probability maps associated with the final combined 

intensity atlas by summation of the tissue maps built in each subband.

EXPERIMENTAL RESULTS

Dataset

In this study, we use neonatal brain scans to demonstrate the performance of the proposed 

atlas construction method. Specifically, 73 healthy neonatal subjects (42 males/31 females) 

were used in this study. The data come from a large prospective study of early brain 

development in UNC [Gilmore et al., 2012]. MR images of the subjects were scanned at 

postnatal age of 24 ± 10 (9–55) days using a Siemens head-only 3T scanner. T2-weighted 
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images were obtained with 70 axial slices using a turbo spin-echo (TSE) sequence for a 

resolution of 1.25×1.25×1.95 mm3. All 73 images were resampled to have an isotropic 

resolution of 1×1×1 mm3, bias corrected, skull stripped, and tissue segmented.

Implementation Details

There are several parameters in the proposed method: the number of reference patches K, the 

multi-task Lasso regularization parameter λ, the patch size v, and the basis of wavelet 

transformation D(s,r). We run our algorithm with different values of these parameters, and 

assessed the constructed atlases by means of signal energy variations across frequency 

subbands. The signal energy is computed for each of the 24 wavelet subbands (including 

three scales, and eight orientations for each scale) for each atlas image. The image energy of 

each frequency subband is defined as the L2-norm of wavelet coefficients in the subband. 

High-frequency subbands capture fine image details, and low frequency subbands capture 

global image details. We can therefore assess the composition of images by observing the 

signal energy variations across each frequency subband. As shown in Figure 4, by varying 

parameters, the signal energy of atlases varies as well. We determined the parameter values 

by those providing the highest signal energy on each frequency subband for the final atlas 

construction. Therefore, we fixed K=10 and λ= 10−3 across each subband based on the 

energy distributions illustrated in Figure 4(a,b). In Figure 4(c), the energy distributions show 

variations on different scale levels; for fine image components (Scale 1 and 2), smaller patch 

sizes V=2×2×2 and V=4×4×4 outperformed other settings. While for coarse image 

components (Scale 3), we fixed V=10×10×10. We used ‘coiflets 4’ as the wavelet basis for 

image decomposition, considering the charts in Figure 4(d). Besides, the number of G 
neighboring atlas patches is set to G=6, where 6 is the number of immediate neighbors for a 

cubic patch.

Significances of Frequency Domain, Space Domain, and Anatomical Constraint for Atlas 
Construction

We propose to use information jointly from the frequency and space domains, as well as 

anatomical feature maps, to construct the neonatal brain atlas. Each of these components 

contributes to the final atlas construction, as explained and demonstrated below.

Frequency Domain

Wavelet decomposition provides multi-resolution views of the brain images for better 

preservation of anatomical structures in atlas construction.

Difference in image composition—Figure 5 denotes an example of the essential 

difference for constructing the atlas without/with frequency domain decomposition. As 

shown in Figure 5a–c, three patches from the same location of the average atlas and the 

atlases constructed with/without frequency domain decomposition are decomposed into 

frequency subbands. Similarly, patches from the related locations of subject images are used 

to build the subband dictionary P(s,r). Figure 5d–f further show how these dictionary patches 

contribute to the atlases constructed using different methods. For the average atlas (shown in 

(d)), all the patches share an equal weight, which is equal to the reciprocal of the number of 

subjects. Thus all information in the subject images is included into the average atlas. The 
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common global structures are preserved, while various details are blurred. As shown in 

Figure 5b, the global brain structures are enhanced in the patch-based atlas construction 

without frequency subband decomposition. Patches from the respective subjects are 

combined with unequal weights, even though weights on different subbands are kept the 

same (Fig. 5e). These weights are estimated in the original image domain, where the energy 

of the low frequency subband (subband “LLL” on Scale 3, denoting global structure) 

dominates over 94% of the total image energy. Thus, minor brain structures remain blurred. 

Figure 5f demonstrates that, in the proposed atlas, the compositions of patches on each 

subband are different. Global structures are enhanced in the lower frequency subbands, and 

also detailed structures are enhanced in higher frequency subbands. Therefore, the proposed 

method is robust and is detail-preserving.

Comparison of image components—Figure 6 shows visual evaluation of image 

components. Each atlas is displayed with four main image components. The “low frequency 

component” indicates the image component captured by the “LLL” filter on Scale 3. 

Similarly, the “high-frequency components” of scale 1, 2, and 3 are the components 

extracted by all the seven high pass filters on each scale level. By comparing the components 

of different frequency bands, we observe that the randomly selected single subject image 

(top row in Fig. 6) has more structures and higher intensity contrast in high-frequency 

domain than the average atlas (second row in Fig. 6). This suggests that the image averaging 

process acts as a low pass filter, which smoothes out high-frequency components during the 

averaging process. Thus, by performing construction in the space-frequency domain given 

by wavelet transform, the quality of the atlas is better (bottom row in Fig. 6) than that given 

by construction only in the spatial domain (third row in Fig. 6).

Since different frequency subbands comprise different image components, the sharpness of 

the atlases can be illustrated from the signal energy value of high-frequency subbands. We 

thus assess structural sharpness by means of the image energy variation across all frequency 

subbands. We employ the individual images used for our atlas construction as a reference of 

single-subject atlases. The energy of each frequency subband is defined as the L2-norm of 

wavelet coefficients in that subband. The average energy is computed for each of the 24 

wavelet subbands (including three scales, and eight orientations for each scale) of the 73 

subject images. We then compare signal energy between the single-subject atlas, the simple 

average atlas, and the proposed atlas. Figure 7 shows the energy distributions for different 

scale levels and orientations. For the atlas created with simple averaging (bright yellow 

bars), and the atlas built without frequency domain construction (light green bars), the 

energy loss is significant in the high-frequency subbands (e.g., from subband “HLL” to 

“HHH” in Scale 1), compared with the single-subject atlas (blue bars) and the atlas created 

using the proposed method (dark green bars). The energy loss can also be observed in the 

higher frequency subbands (e.g., subband “HHH”) of Scale 2 and Scale 3. The proposed 

atlas mitigates the energy loss problem. This illustrates that the proposed atlas preserves 

additional anatomical details from individual images and is hence more representative of the 

population.
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Comparison of constructed atlases—As illustrated in Figure 8, the intensity atlas and 

tissue maps in the top two rows are given by the proposed framework without wavelet 

decomposition. Compared with the proposed atlas in the bottom two rows, many anatomical 

details are not preserved. This is because the atlas construction process in the original image 

domain is dominated by low frequency components.

Comparison of atlas-guided image normalizations—The advantage of the 

population-average atlases is the representativeness. We evaluate the neonatal population-

average atlases without/with frequency domain construction in terms of how well they can 

spatially normalize the test populations of neonatal images. In this assessment, we use three 

test datasets that cover the high-to-low image resolution. These datasets are independent of 

the subjects used for atlas construction. The test dataset 1 is the high-resolution dataset. It 

includes eight neonatal images, scanned at postnatal 14 to 58 days on a 3T Siemens scanner 

[Shi et al., 2011a,b]. T2 images were obtained with 87 axial slices at a resolution of 

1.00×1.00×1.30 mm3. The test dataset 2 is the normal resolution test set, which includes 15 

neonatal images, scanned at 37–41 gestational weeks using a Siemens 3T scanner. T2-

weighted images were obtained with 70 axial slices for a resolution of 1.25×1.25×1.95 mm3. 

The test dataset 3 is the low-resolution dataset, which was derived from the healthy neonatal 

subjects of the online public National Database for Autism Research (NDAR, http://

ndar.nih.gov/) [Hall et al., 2012]. It contains totally 12 selected low-resolution subjects, 

which are scanned at postnatal age of 8 to 21 days on a 1.5T scanner. T2 images were 

obtained with 39 axial slices at a resolution of 0.98×0.98×3.00 mm3. Similar image 

preprocessing was performed to three datasets, including bias correction, skull stripping, and 

tissue segmentation. All test images are aligned to the atlases without/with frequency 

domain construction by first using affine registration [Jenkinson et al., 2002] and then non-

linear deformable registration with Diffeomorphic Demons [Vercauteren et al., 2009], 

respectively.

The effectiveness of atlas-guided normalization is confirmed by the averaged normalized 

GM maps of test images in Figure 9. Gray matter is distributed at the surfaces of the cerebral 

hemispheres (cerebral cortex) and the cerebellum (cerebellar cortex), as well as the deep 

cerebrum and brainstem [Sowell et al., 2001]. Thus, more precise registration of cerebral 

cortex leads to more accurate GM maps. Figure 9 compares the average GM maps generated 

by atlas-guided normalizations, using (left column) the average atlas, (middle column) the 

atlas constructed without frequency-domain construction, and (right column) the proposed 

atlas as references, respectively. The GM map in the right column, which is normalized 

using the proposed atlas, shows clearer cortical structures than the maps in other two 

columns. This is because the proposed atlas provides an improved detail-preserved template, 

thus is able to guide registration more precisely in the cerebral cortex region.

For each atlas and each normalized test dataset, we first use all aligned segmentation images 

to get a mean segmentation image by voxel-wise majority voting. We then compare this 

mean segmentation image with each of the aligned images to assess the normalization 

consistency associated with the given atlas. In particular, after warping to the atlas space, the 

segmentation images of all individuals are presented as probability maps Lj (j=1, 2,

…,NTest)where NTest represents the number of warped test images. Each voxel (x, y, z) in Lj 

Zhang et al. Page 9

Hum Brain Mapp. Author manuscript; available in PMC 2019 January 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://ndar.nih.gov/
http://ndar.nih.gov/


denotes the possibility of each tissue label pj(Lj(x, y, z)=l),l ∈ {WM, GM, CSF}The label 

map of the mean segmentation is computed as:

Lmean(x, y, z) = argmax
l ∈ WM, GM, CSF j = 1

N Test
p j L j(x, y, z) = l (6)

The aligned individual segmentation images Lj (j=1, 2, … ,NTest) are then compared with 

this mean segmentation image Lmean by computing the Dice Ratio: 

DR j = 2 Σ L j ∗ Lmean / Σ L j + Σ Lmean , ( j = 1, 2, …, NTest). DR ranges from 0 (for totally 

disjoint segmentations) to 1 (for identical segmentations). The structural agreement is 

calculated in pair of each aligned image and the voted mean segmentation image, which 

denotes the ability of each atlas for guiding test images into a common space. Statistical 

analysis results are shown in Figure 10. As can be observed that the proposed atlas 

outperforms other atlases in GM, WM, and CSF alignment, for all the three test datasets.

Spatial Domain

Neighboring patches are group-constrained for spatially consistent atlas construction. With 

similar sparse representations for neighboring patches, the consistency of the related subject 

patches is propagated to the constructed atlas. For more convinced comparison, we 

constructed the atlases and tissue maps in Figure 11 without any overlap between patches, so 

that the enforcement of spatial consistency only relies on the group-constrained strategy 

described in “Consistency in Spatial Domain” Section. As shown in the top two rows of 

Figure 11, without spatial consistency constraint, the atlas suffers from blocking artifacts. 

The bottom two rows of Figure 11 show that, with group-sparse constraint, consistency is 

maintained.

Anatomical Consistency

Figure 12 shows the atlases constructed without/with anatomical constraint. Comparing the 

two axial slices and the close-up views, the atlas constructed using anatomical features gives 

greater contrast.

Atlas Construction Using 73 Subjects

Figure 13(a–f) show six representative axial slices of the neonatal brain atlas constructed by 

the proposed method. Despite the large number of subjects (73) used for atlas construction, 

the atlas still contains clear structural details especially in the cortical regions.

Comparison With State-of-the-Art Neonatal Population-Average Atlases

Four state-of-the-art neonatal population-average atlases are included for visual inspection. 

Atlas-A: The atlas created by Kuklisova-Murgasova et al. [2011], longitudinally for each 

week between week 28.6 to week 47.7 using 142 neonatal subjects. And we select their atlas 

of 41 weeks. Atlas-B: The atlas constructed by Oishi et al. [2011] using 25 brain images 

from neonates of 0–4 days of age. Atlas-C: The 41-th week atlas built by Serag et al. [2012] 

involving 204 premature neonates between 26.7 and 44.3 gestational weeks. Atlas-D: The 
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neonatal atlas created by Shi et al. [2014], involving neonatal brain images scanned at 

postnatal ages of 9–55 days. An atlas created by simply averaging the 73 neonatal images is 

also included for comparison. One can easily observe from Figure 14 that the atlas generated 

by the proposed method provides the clearest structural details. Note that, Atlas-A, Atlas-B, 

and Atlas-C were constructed with datasets different from ours and thus may have different 

appearance from our atlas.

CONCLUSION

In this article, we presented a novel space-frequency domain based sparse representation 

method for better preservation of structural details in neonatal brain atlases. Our approach 

employs a hierarchical strategy in constructing the atlas by combining atlases constructed 

from the frequency subbands using wavelet decomposition. Experimental results 

demonstrated that our approach is able to preserve richer anatomical details with better 

performance on neonatal image normalization than other state-of-the-art neonatal atlases.

Abbreviations

GM Gray matter

TSE Turbo spin-echo

WM White matter
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Figure 1. 
Flow chart of the proposed atlas construction framework. (a) Mean images in common space 

are generated from (b) the individual images using group-wise registration. (c) Wavelet 

decomposition of images into frequency subbands. (d) Atlas construction in each frequency 

subband guided by GM and WM tissue maps. (e) Patch-based sparse construction in each 

frequency subband. (f) Neighboring patches are group-constrained for spatial consistency 

(see details in Fig. 2, “Consistency in Spatial Domain” Section). (g) Anatomically-

constrained patch based construction (see details in Fig. 3, “Anatomical Consistency” 
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Section). (h) Generation of subband atlases. The subband atlases are combined to build the 

final atlas. [Color figure can be viewed in the online issue, which is available at 

wileyonlinelibrary.com.]
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Figure 2. 
Neighboring patches are group-constrained for spatial consistency. (a) Without constraint, 

neighboring patches are represented independently; (b) Multi-task LASSO combines L2 and 

L1-norm to impose similar representations for the neighboring patches. (c) Using spatial 

consistency constraint, neighboring atlas patches are generated with greater spatial 

consistency. [Color figure can be viewed in the online issue, which is available at 

wileyonlinelibrary.com.]
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Figure 3. 
(a) Atlas construction in each frequency subband is guided by WM and GM tissue maps; (b) 

Local cubic patch from subband intensity image, WM map and GM map are vectorized and 

combined into a single vector. Thus the atlas construction processes in the respective 

frequency subbands are restricted by common tissue features. [Color figure can be viewed in 

the online issue, which is available at wileyonlinelibrary.com.]
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Figure 4. 
Image energy distributions across orientations and scales associated with (a) the number of 

reference patches K, (b) multi-task Lasso regularization parameter λ, (c) the construction 

patch size v, and (d) wavelet basis D(s,r). Higher signal energy values in frequency subband 

indicate better preservation of image components. [Color figure can be viewed in the online 

issue, which is available at wileyonlinelibrary.com.]
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Figure 5. 
(a) Average atlas. (b) Atlas built without frequency domain decomposition. (c) Proposed 

atlas built with frequency domain construction. (d) An example patch from the average atlas, 

along with its frequency subband composition examples. For the average atlas, dictionary 

elements are combined with equal weights. (e) Similar composition example for the patch 

from the atlas built without frequency domain decomposition. Dictionary elements from 

respective subjects are combined with unequal weights, although weights on different 

subbands remain the same. (f) For building the proposed atlas, dictionary elements for 

different subjects and different subbands are combined with different contributions. See text 

for details. The patches shown here are enlarged for illustration purpose. [Color figure can 

be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Figure 6. 
Image components of a single-subject image (top row), the average atlas (second row), the 

atlas built without frequency domain construction (third row), and the proposed atlas 

(bottom row). In columns 2–5 are the four key components of the respective intensity image 

(in column 1). The image component of the constructed atlas is comparable to the single 

subject atlas. The right two columns show tissue maps of the three atlases.
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Figure 7. 
Image energy distributions across orientations and scales, for the individual images, the 

average atlas, and the proposed atlas. Higher energy values in high-frequency subbands 

represent better preservation of anatomical details. It is illustrated that the proposed atlas 

(dark green bars) preserves more details from single-subject atlases (by considering blue 

bars as standard), comparing with the average atlas (i.e., light green bars). [Color figure can 

be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Figure 8. 
Atlas construction without/with frequency domain construction. The top two rows show the 

intensity atlas and the probability tissue maps constructed from the original image domain. 

The bottom two rows show the atlases given by the proposed method. [Color figure can be 

viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Figure 9. 
GM maps generated by averaging the GM maps of normalized test images. The 

normalization was performed using (left column) the average atlas, (middle column) the 

atlases constructed without frequency-domain construction, and (right column) the proposed 

atlas as references, respectively. The average GM map in the right column shows more 

detailed cortical structures, compared to the other two GM maps. [Color figure can be 

viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Figure 10. 
Box plots of Dice ratios using the average atlas, the atlas built without frequency domain 

construction, and the proposed atlas for image normalization, respectively. (a) Box plots of 

Dice ratios for high-resolution test images; (b) Box plots of Dice ratios for normal-

resolution test images; (c) Box plots of Dice ratios for low-resolution test images. Red lines 

in the boxes mark the medians. The boxes extend to the lower and upper quartiles (i.e., 25% 

and 75%). Whiskers extend to the minimum and maximum values in one-and-a-half 
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interquartile range. Outliers beyond this range are marked by red crosses “+”. [Color figure 

can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Figure 11. 
Atlas construction without/with spatial consistency constraint. In the top two rows, the atlas 

and the tissue maps are constructed patch-by-patch independently. In the bottom two rows, 

the neighboring patches are group-constrained. [Color figure can be viewed in the online 

issue, which is available at wileyonlinelibrary.com.]
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Figure 12. 
Comparison of the atlas constructions without/with anatomical supervision. In the left 

column, the atlas is constructed simply with the intensity images. And for the right three 

columns, for emphasizing the anatomical significance, the atlas and probability maps are 

constructed jointly. [Color figure can be viewed in the online issue, which is available at 

wileyonlinelibrary.com.]
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Figure 13. 
Construction of the neonatal atlas from 73 subjects using the proposed method. From top to 

bottom are the intensity atlas and three tissue (GM, WM, CSF) probability maps.
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Figure 14. 
Comparison of neonatal atlases constructed by Kuklisova-Murgasova et al. (Atlas-A, 2010), 

Oishi et al. (Atlas-B, 2011), Serag et al. (Atlas-C, 2012), Shi et al. (Atlas-D, 2014), simple 

averaging (Averaging), and our proposed method (Proposed) on the 73 aligned images. 

Similar slices were selected from each of these six atlases for the ease of comparison.
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