
Evaluating active learning methods for annotating semantic 
predications

Jake Vasilakes1,2, Rubina Rizvi1,2, Genevieve B. Melton1,3, Serguei Pakhomov1,2, and Rui 
Zhang1,2

1Institute for Health Informatics, University of Minnesota, Minneapolis, Minnesota, USA

2Department of Pharmaceutical Care and Health Systems, College of pharmacy, University of 
Minnesota, Minneapolis, Minnesota, USA

3Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA

Abstract

Objectives: This study evaluated and compared a variety of active learning strategies, including 

a novel strategy we proposed, as applied to the task of filtering incorrect semantic predications in 

SemMedDB.

Materials and methods: We evaluated 8 active learning strategies covering 3 types—

uncertainty, representative, and combined—on 2 datasets of 6,000 total semantic predications from 

SemMedDB covering the domains of substance interactions and clinical medicine, respectively. 

We also designed a novel combined strategy called dynamic β that does not use hand-tuned 

hyperparameters. Each strategy was assessed by the Area under the Learning Curve (ALC) and the 

number of training examples required to achieve a target Area Under the ROC curve. We also 

visualized and compared the query patterns of the query strategies.

Results: All types of active learning (AL) methods beat the baseline on both datasets. Combined 

strategies outperformed all other methods in terms of ALC, outperforming the baseline by over 

0.05 ALC for both datasets and reducing 58% annotation efforts in the best case. While 

representative strategies performed well, their performance was matched or outperformed by the 

combined methods. Our proposed AL method dynamic β shows promising ability to achieve near-

optimal performance across 2 datasets.

Discussion: Our visual analysis of query patterns indicates that strategies which efficiently 

obtain a representative subsample perform better on this task.
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Conclusion: Active learning is shown to be effective at reducing annotation costs for filtering 

incorrect semantic predications from SemMedDB. Our proposed AL method demonstrated 

promising performance.

Keywords

active machine learning; supervised machine learning; natural language processing; medical 
informatics; drug interactions; clinical medicine

BACKGROUND AND SIGNIFICANCE

As of February 2018, PubMed contains over 28 million citations. While this comprises a 

vast amount of valuable information, its storage as unstructured text makes it infeasible for 

researchers to utilize it effectively without automated assistance. Literature-based discovery 

(LBD) is an automatic method to discover hypotheses based on findings in the literature, and 

it has led to finding new potential treatments for diseases (1–3) and previously unknown 

drug–drug interactions (4–6). Instead of depending on co-occurrence of words, using 

semantic predications has demonstrated to improve LBD (7).

SemRep (8), developed by the National Library of Medicine’s Semantic Knowledge 

Representation Project, is a natural language processing (NLP) tool to extract semantic 

predications from MEDLINE. These predications are triplets subject entity, predicate, object 
entity where the subject and object entities are Unified Medical Language System (UMLS) 

concepts and the predicate is one of the 30 relationships defined in (9). For example, 

SemRep extracts the predication TGF-beta (C0040690), STIMULATES, IL-1Ra 
(C0245109) from the sentence “TGF-beta stimulates secretion of the IL-1Ra.” The output of 

SemRep applied to the entirety of MEDLINE citations comprises the Semantic MEDLINE 

Database (SemMedDB) (10), which totals over 90 million semantic predications as of 

December 31, 2017.

While semantic predications have been used in a variety of re search efforts (4,11–13), 

SemRep’s precision is relatively low, reported in the range 0.42–0.58 (4). This limits the use 

of semantic predications in biomedical NLP systems as they are often incorrect. A previous 

study (5) showed that machine learning (ML) techniques can be employed to filter incorrect 

semantic predications from SemRep’s output, improving precision. However, training an 

ML model requires an expert-annotated dataset, which is costly to develop. Reducing the 

annotation cost of building such a model is imperative for using the output of SemRep in 

biomedical NLP tasks.

Active learning (AL) is a method for reducing the annotation cost for training statistical 

models. In AL, the learning algorithm chooses the order in which it sees the training data 

using an algorithm called a query strategy. The goal of this process is to query examples in 

an order such that the model achieves the best possible performance given the least amount 

of labeled training data, thereby reducing the total annotation cost.

AL has been well described in the general ML literature (14–18) and has been applied to 

biomedical and clinical text (19–24). However, the effectiveness of different AL methods 
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varies widely across datasets and tasks (25,26). Previous studies investigate this variation by 

analyzing how AL affects the hypothesis space (15,27) as well as discussing how the nature 

of clinical text data affects the performance of different AL methods (22). Still, without a 

formal evaluation it is impossible to determine which AL methods perform well on the task 

of filtering semantic predications. We, therefore, provide here the first application and 

comparative evaluation of AL to semantic relationships extracted from biomedical literature. 

Moreover, we designed a novel AL method, dynamic β, without hand-tuned 

hyperparameters that achieves near-optimal performance on this task.

OBJECTIVES

Our preliminary work (28) showed the potential value of AL applied to semantic 

predications in biomedical literature. Expanding on this, the objectives of this study are 3-

fold:

• To assess the effectiveness of AL for reducing annotation cost for the task of 

filtering incorrect semantic predications.

• To evaluate and compare query strategies and design a novel AL method that 

does not use hand-tuned parameters

• To provide a comparative analysis of AL methods through visualization to better 

understand how different types of methods perform on this task.

Towards these objectives, we conducted simulated AL experiments on 2 datasets of semantic 

predications using 8 query strategies covering 3 query strategy types: uncertainty, 

representative, and combined; and evaluated each strategy against a baseline, passive 

learning. For the combined type, we developed an innovative query strategy, dynamic β, for 

dynamically computing the weight hyperparameter in an effort to obtain a more 

generalizable AL model. We also performed an error analysis of low middle, and high 

performing query strategies using a novel method for visualizing their query patterns and 

comparing them to their learning curves.

MATERIALS AND METHODS

Figure 1 illustrates the development process of the AL system. We first retrieved a random 

subset of semantic predications from SemMedDB within the substance interactions (SI) and 

clinical medicine (CM) domains. These predications were annotated as either “correct” or 

“incorrect” by 2 health informatics experts. Features were then extracted from these 

examples as input to the ML algorithm. The ML task was a binary classification problem in 

which correct predications receive a positive label and incorrect predications receive a 

negative label. We used a linear support vector machine (SVM) with L2 regularization (29) 

as the classification algorithm, implemented using the SGDClassifier in the scikit-learn 

Python package (30). We then developed an AL system to simulate experiments for each 

query strategy. We evaluated the annotation cost of each strategy using the Area Under the 

Learning Curve (ALC) and the number of iterations required to reach a target Area Under 

the ROC Curve (AUC).
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Datasets

We created 2 datasets for this study: an SI dataset and a CM dataset, each containing 3000 

semantic predications. These were chosen because SI predicates describe low-level 

molecular phenomena, whereas CM predicates cover macro-level observable phenomena. 

We included the following predicates from the SemMedDB December 2016 release:

• SI dataset: INTERACTS_WITH, STIMULATES, or INHIBITS. These 

predicates specifically describe SI according to (9). Additionally, for this group 

the semantic types of the subject and object entities were constrained to belong 

to the “Chemicals and Drugs” UMLS semantic group.

• CM dataset: ADMINISTERED_TO, COEXISTS_WITH, COMPLICATES, 

DIAGNOSES, MANIFESTATION_OF, PRECEDES, PREVENTS, 

PROCESS_OF, PRODUCES, TREATS, or USES. This subset was determined to 

denote CM relationships by a health informatician and physician (R.R.).

For each dataset an annotation guideline was generated by the consensus of 2 annotators: a 

health informatician (J.V.) and a health informatician and physician (R.R.). According to this 

guideline, the annotators annotated a subset of 200 predications from each dataset and inter-

annotator agreement was established by computing Cohen’s kappa and percentage 

agreement. The remaining semantic predications were then split and independently 

annotated to obtain the gold-standard labels for evaluation. Each semantic predication was 

labeled as either “correct” or “incorrect” by comparing the relation stated in the source 

sentence to the predication triplet and the definition of the predicate as given in the appendix 

of (9).

Pre-processing and feature extraction

The sentences were converted to lower case, tokenized on whitespace, and English stop 

words were removed. Punctuation was also removed, with the exception of hyphens in order 

to not split hyphenated entity names such as CCK-PZ. The features extracted consisted of tf-

idf computed over the source sentences as well as the UMLS CUIs of the entities in the 

predication. We did not find any performance improvement using additional features such as 

predicate part-of-speech and argument distance. Using the ANOVA F-test, we retained the 

top 10% of features that explain the greatest amount of variance in the data. This resulted in 

517 features for the SI dataset and 614 features for the CM dataset. This number of features 

was tuned to both obtain acceptable performance of the classifier and allow training and 

prediction to run quickly.

Active learning

The AL system has 5 main components: a query strategy QS, an ML model θ, a pool of 

unlabeled data U, a pool of labeled data L, and the gold-standard or “oracle” which provides 

the labels for the data in U. There is also the held-out test data T upon which θ is evaluated. 

Training and annotation run in tandem in an iterative process in which (i) the query strategy 

QS chooses an example from U, (ii) the oracle is queried for the example’s label, (iii) the 

example is added to L, and (iv) θ is retrained on the new L. This process is illustrated in 

Figure 2. Additionally, θ is evaluated on T at every interation.
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We evaluated 8 query strategies covering 3 types: uncertainty, representative, and combined. 

These strategies are detailed below. The baseline query strategy against which each was 

evaluated is passive learning which, rather than making a series of informed choices as to 

which examples to pick from U, picks each example at random.

Uncertainty sampling

Uncertainty based query strategies operate under the assumption that the most informative 

examples are those closest to the decision boundary of the model θ. The uncertainty 

sampling methods used here are simple margin, least confidence, and least confidence with 

dynamic bias.

Simple margin (SM): SM sampling (15) queries the least certain example from U by 

measuring each example’s distance to the separating hyperplane. For this reason, simple 

margin is restricted to SVM models. The chosen example x* from U is computed by (1).

x∗ = argminx ∈ U f x (1)

Where f (x) is the decision function of the SVM.

Least confidence (LC): The LC strategy (20) chooses the example from U whose 

posterior probability given the ML model Pθ is closest to 0.5. This is computed by (2).

x∗ = argmaxx ∈ U 1 − Pθ y x (2)

Where ŷ is the most probable class for example x under the model. As shown in (18), in the 

case of binary classification LC is equivalent to the other uncertainty sampling methods 

margin sampling and entropy sampling. For this reason, these methods are not included in 

this study.

Least Confidence with Dynamic Bias (LCB2): In LC the class distribution of L can 

become imbalanced resulting in a poor prediction model. LCB2 (19) corrects for this by 

introducing the term Pmax which compensates for class imbalance. Equation 2 is updated as 

shown in (3).

x∗ = argmaxx ∈ U

Pθ y = 1 x
Pmax

; i f Pθ y = 1 x < Pmax

1 − Pθ y = 1 x
Pmax

; otherwise
(3)

Where

• P max = wu0.5 + wb(1 – pp), the linear combination of the uncertainty term wu0:5 

and the bias term wb(1 – pp)
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• wu = L / U0 , the weight of uncertainty: the ratio of the size of the current labeled 

set L to the size of the initial unlabeled set U0.

• wb = 1 – wu, the weight of the bias.

• pp is the proportion of positive to negative labels in L.

The uncertainty term wu represents how certain the system is that the current class 

distribution (represented by pp) is representative of the true class distribution. When L is 

large relative to U0, this certainty is high. In this case the query strategy should compensate 

less for any class imbalance. Thus, the influence of the bias term wb (1 – pp) is inversely 

proportional to the progress of the AL system and diminishes as L increases.

LC and LCB2 both require posterior probabilities from the classifier. Platt scaling (31) was 

used to obtain posterior probabilities from the SVM for these 2 strategies.

Representative sampling

Uncertainty sampling strategies may result in a labeled set distribution that is very different 

from the true distribution. In other words, the system may get “stuck” modeling one area of 

the data. Representative strategies, on the other hand, aim to keep the distributions of the 

labeled and unlabeled sets similar to ensure the ML model generalizes well to the test data. 

They do this by using distance and similarity metrics to choose examples that are spread 

across the data distribution. We used Euclidean distance in all of our representative sampling 

experiments.

Distance to Center (D2C): The distance to center strategy (19) aims to choose from U 
the examples most dissimilar from those in L. It is given by (4).

x∗ = argminx ∈ U
1

1 + dist x, xL
(4)

Where dist(·) is a vector distance measure and xL is the mean vector across samples in L.

Density: Rather than choosing the example with the greatest distance from the average x in 

L, as D2C does, density sampling, adapted from (17), chooses the example with the greatest 

average distance from every other x in U. It is given by (5).

x∗ = argminx ∈ U
1
U i = 1

U 1
1 + dist x, xi

(5)

Density sampling thus focuses on querying examples that are representative of U, rather than 

examples that are not representative of L.

Min-Max: Min-Max sampling was originally developed for AL applied to semi-supervised 

clustering tasks (16,32). Like D2C, this method obtains a representative sample from U by 
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choosing points that are dissimilar from those in L. The difference lies in how the 

dissimilarity is computed. Whereas D2C measures the distance of an example to the mean L, 

Min-Max sampling computes the distance between each pair of points and chooses the 

example from U that has the greatest minimum distance to any other point in L. This 

approach is given by (6).

x∗ = argmaxxi ∈ U minx j ∈ L
dist xi, x j (6)

Min-Max aims to obtain a representative sample quickly by ensuring that very similar points 

are not queried in succession. At the time of writing, this study is the first to use Min-Max 

sampling for fully supervised classification.

Combined sampling

Combined strategies leverage the benefits of uncertainty and representative query strategies 

to outweigh the pitfalls of both. A combined strategy thus aims to choose the example that is 

relatively uncertain while still being representative of the unlabeled set.

Information density (ID): ID sampling (17) balances informativeness and 

representativeness by combining the scores output by query strategies of both types into a 

single score. This is shown in (7).

x∗ = argmaxx ∈ U US x × RS x β (7)

Where US(x) is the uncertainty sampling score for x and RS(x) is the representative 

sampling score for x. β is a hyperparameter that weights the representative sampling score. 

In our implementation, US(x) and RS(x) are scaled to the interval [0, 1] to ensure consistent 

behavior of β. In this study, we used LCB2 as the uncertainty sampling strategy and Min-

Max as the representative sampling strategy for the ID sampling experiments, these being 

the best performing strategies from each type.

Dynamic β: There are two things to note about the early stages of the AL process, when L 
is small and U is large: (i) it is unlikely that L is representative of U; (ii) given that L is small 

and unrepresentative, the prediction model trained on L is likely to be poor. Therefore, it is 

crucial to make L more representative early in the AL process, while later it is more 

important to fine-tune the decision boundary. These points motivated the development of 

dynamic β, which adjusts the weight of the representative sampling score in (7) according to 

the progress of the AL system. The definition of β in equation 7 is updated to (8).

β = 2 U
L (8)

Where |U| is the size of the current unlabeled set and |L| is the size of the current labeled set.
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Experiments and evaluation

We used 10-fold cross validation to evaluate each query strategy. Ten percent (300) of the 

examples comprised the test fold and the remaining 2700 examples comprised the training 

fold. Ten percent (270) of the training examples were randomly selected for the initial 

labeled set L0 while the remaining 2430 comprised the initial unlabeled set U0. Each time L 
was updated and the ML model was retrained, the model was evaluated on the test data T 
using AUC as the performance metric. As the performance of the classifier is dependent 

upon how the data is initially split into L0 and U0, we ran each experiment ten times with 

different initializations of L0 and U0 and averaged the AUC scores at each update of L.

The AL system was evaluated using 2 metrics: the normalized ALC as used in the active 

learning challenge (14) and the number of training examples required to achieve 0.80 AUC. 

This AUC threshold was chosen as the target because preliminary experiments found that 

the best performing ML classifier achieved an AUC in the 0.80–0.84 range on both datasets. 

Plotting the AUC as a function of the size of the labeled set produces a learning curve. The 

ALC is the area under this curve. The ALC is normalized using equation (9).

ALCnorm = ALC − Arand
Amax − Arand (9)

Where Arand is the area under the learning curve given random predictions (0.5 AUC at 

every point on the learning curve) and Amax is the area under the best possible learning 

curve (1.0 AUC at every point on the learning curve). In our experiments, ALC is computed 

using the full set of 2700 examples. Hereafter, ALC is taken to mean the normalized ALC in 

(9).

RESULTS

Inter-annotator agreement computed over 200 semantic predications for both datasets was in 

the “substantial agreement” range (33). Cohen’s kappa and percentage agreement on the SI 

and CM datasets were 0.74 and 87%, 0.72 and 91%, respectively.

Table 1 shows the results of the simulated AL experiments on the SI and CM datasets. The 

learning curves for each query strategy on each dataset are given in Figure 3. All query 

strategies outperformed the passive learning baseline on both datasets. The representative 

sampling methods generally outperformed the uncertainty sampling methods in terms of 

ALC. However, on the CM dataset the representative-based methods required more training 

examples to reach 0.80 AUC than the uncertainty-based methods, largely due to a relative 

plateau in AUC from 500 to around 1700 training examples. The best performing query 

strategy on the SI dataset was ID sampling with β = 1, which outperformed the baseline by 

0.052 ALC (ALC = 0.642). Additionally, the number of annotations required to reach 0.80 

AUC on the SI dataset was reduced by 58% compared with the baseline. The best 

performing strategy on the CM datasets was tied in terms of ALC between ID sampling with 

β =100 and Min-Max, both of which achieved an ALC of 0.550, 0.059 greater than the 

baseline. Min-Max did, however, require 19 fewer annotations to reach 0.80 AUC, a 
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reduction of 13%. Our proposed dynamic β method closely approximated (by 0.001 ALC) 

the learning curve of the best performing β value for both datasets, achieving comparable 

ALCs of 0.641 and 0.549, respectively.

DISCUSSION

We have shown that AL is able to reduce the number of annotations required for this task by 

749 (58%) in the best case. As the annotators for this task averaged around 100 annotations 

per hour, this amounts to a full work-day of annotation time. Additionally, the ID strategy 

achieves the best ALC on both datasets and our proposed method, dynamic β, shows 

promising ability to approximate the learning curves of the best performing query strategy. 

These strategies could thus reduce annotation cost when used in other AL tasks by removing 

the need to manually choose the query strategy type or the β value, which the results show 

can dramatically influence performance. Nevertheless, it is necessary to understand how to 

best apply AL in order to reap its benefits. To contribute to this understanding, we present 

comparative visualization of the AL strategies used in this study.

Comparative analysis of query patterns

Overall, we observed that the representative and combined sampling methods outperformed 

the uncertainty sampling methods on both datasets, largely due to a difference in slope of the 

learning curves in the early stages of AL. We hypothesized that this difference is due to the 

data distribution and how the query strategies pick the next example from U. Uncertainty 

sampling methods rely entirely on the current model trained on L to compute the 

informativeness of the examples in U. When L is small, the prediction model is likely to be 

poor, yet uncertainty sampling will choose examples close to the decision boundary, 

reinforcing it. The result is a model that converges slowly to the optimal decision boundary 

for the dataset. Representative sampling, on the other hand, finds a good decision boundary 

quickly by ensuring that L (and the model trained on it) generalizes to U.

To investigate this performance discrepancy, we compared the learning curves and query 

patterns of three query strategies for each dataset, including dynamic β, stratified by their 

type and performance. We logged the orders in which examples were chosen from U by each 

query strategy. U was then transformed using t-Distributed Stochastic Neighbor Embedding 

(t-SNE) (34) to 2 dimensions for visualization. Overlaying this visualization with a heat map 

corresponding to the order in which examples were chosen shows how trends differ by query 

strategy (Figure 4).

The low performing strategies, SM (Figure 4a) and ID β =0.01 (Figure 4b), exhibit different 

trends across the datasets. Both strategies first sample data around the middle of the 

distribution. However, there is little improvement over the baseline on the SI dataset in the 

early stages. This indicates that the first points queried by SM from the SI dataset are not 

informative for the model, reinforcing the aforementioned point of how uncertainty 

sampling strategies can become “stuck” reinforcing a sub-optimal decision boundary. On the 

other hand, ID β =0.01 on the CM dataset achieves a large deviation from the baseline in the 

early stages, indicating that these points are informative for the model.
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These indications are supported by the query patterns of the middle (Figure 4c and 4d) and 

high (Figure 4e and 4f) performing strategies. On the SI dataset, these strategies choose 

examples on the outer edge of the data first (density sampling, Figure 4c) or sample a 

relatively even spread (ID dynamic β Figure 4e) in the early stages. As these strategies 

obtain a large deviation from the baseline learning curve early on, we infer that the most 

informative examples in the SI dataset are spread around the outer portions of the 

distribution, rather than around the center where SM focuses. On the CM dataset, the query 

patterns of the middle (SM, Figure 4d) and high (ID dynamic β, Figure 4f) performing 

strategies are similar to the low performing strategy in the early stages, i.e. they choose 

examples around the center and in the far-left cluster first. As all three strategies achieve 

improvements over the baseline in the early stages of AL, we infer that these examples are 

informative for the model.

Overall, the query patterns indicate that strategies which quickly obtain an L that is 

representative of U perform best on this task. The middle and high performing strategies on 

the SI dataset (Figure 4c and 4e) obtain a representative subset by 1000 examples, whereas 

the low performing strategy (Figure 4a) samples the outer portions of the distribution only in 

the later stages of AL. Also, on the CM dataset the strategies with the steepest initial 

learning curves (ID β = 1 and ID β = dynamic, Figure 4b and 4f) sample from the outer 

portions of the distribution earlier than SM (Figure 4d).

The improvement of the ID dynamic β = dynamic strategy over the density strategy on the 

SI dataset is due to the efficiency in which the ID strategy obtains a representative 

subsample of the data. Unlike density sampling, most of the points that ID dynamic β 
queries last (the yellow points) lie at the center of small clusters. Given that the ID learning 

curve increases faster than the density curve, we conclude that these points do not greatly 

influence the ML model’s ability to generalize to the test data. ID dynamic β thus achieves a 

generalizable model by querying a representative subsample of the data more efficiently than 

density sampling.

Limitations and future work

Although the inter-annotator agreement was “substantial” for both datasets according to 

(33), we encountered issues of ambiguity during annotation. For example, take the sentence 

and predication “The influence of caffeine on the mitomycin C-induced chromosome 

aberration frequency in normal human and xeroderma pigmentosum cells” xeroderma 
pigmentosum, PROCESS_OF, human. Here, it is unclear whether the sentence is contrasting 

human cells and xeroderma pigmentosum cells or normal human cells and xeroderma 

pigmentosum human cells. Additionally, we noticed different levels of annotator 

disagreement across predicates. For example, there were 3 times more disagreements 

regarding the MANIFESTATION_OF and TREATS predicates than the PRODUCES and 

ADMINISTERED_TO predicates.

This study covered the major uncertainty and representative sampling query strategies. Still, 

there are numerous strategies in addition to ID sampling that aim to combine 

informativeness and representativeness that were not explored (25–27). Future work is to 
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perform a more in-depth analysis of how these strategies compare and how informativeness 

and representativeness measures combine.

CONCLUSION

This study evaluated 8 different AL query strategies belonging to 3 different types on the 

task of filtering incorrect semantic predications from SemMedDB. Combined sampling 

methods were the most effective on both datasets, in the best case reducing the annotation 

cost by 58%. For the ID sampling strategy, we designed dynamic β, a method for 

dynamically weighting the representative sampling score, which demonstrated promising 

performance. We also performed a comparative analysis of the query strategies, visualizing 

their query patterns with respect to their learning curves and performance on this dataset.

ACKNOWLEDGEMENTS

The authors thank Dr. Halil Kilicoglu and Dr. Mike Cairelli for their guidance in building and annotating the 
datasets used in this study.

FUNDING

This research was supported by National Center for Complementary & Integrative Health Award (#R01AT009457) 
(Zhang), the Agency for Healthcare Research & Quality grant (#1R01HS022085) (Melton), and the National Center 
for Advancing Translational Science (#U01TR002062) (Liu/Pakhomov/Jiang).

REFERENCES

1. Hristovski D, Kastrin A, Peterlin B, Rindflesch TC. Combining Semantic Relations and DNA 
Microarray Data for Novel Hypotheses Generation Berlin, Heidelberg: Springer Berlin Heidelberg; 
2010: 53–61.

2. Rastegar-Mojarad M, Elayavilli RK, Wang L, Prasad R, Liu H. Prioritizing Adverse Drug Reaction 
and Drug Repositioning Candidates Generated by Literature-Based Discovery. Proceedings of the 
7th ACM International Conference on Bioinformatics, Computational Biology, and Health 
Informatics (BCB ’16) New York, NY, USA: ACM; 2016: 289–296.

3. Kostoff RN. Literature-related discovery (LRD): introduction and background. Technol Forecast Soc 
Change 2008; 75 (2): 165–185.

4. Zhang R, Cairelli MJ, Fiszman M, et al. Using semantic predications to uncover drug-drug 
interactions in clinical data. J Biomed Inform 2014; 49: 134–47. [PubMed: 24448204] 

5. Zhang R, Adam TJ, Simon G, et al. Mining biomedical literature to explore interactions between 
cancer drugs and dietary supplements. AMIA Jt Summits Transl Sci Proc 2015; 2015: 69–73. 
[PubMed: 26306241] 

6. Ahlers CB, Hristovski D, Kilicoglu H, Rindflesch TC. Using the literature-based discovery 
paradigm to investigate drug mechanisms. AMIA Annu Symp Proc 2007; 2007: 6–10.

7. Hristovski D, Friedman C, Rindflesch TC, Peterlin B. Exploiting semantic relations for literature-
based discovery. AMIA Annu Symp Proc 2006; 2006: 349–53.

8. Rindflesch TC, Fiszman M. The interaction of domain knowledge and linguistic structure in natural 
language processing: interpreting hypernymic propositions in biomedical text. J Biomed Inform 
2003; 36 (6): 462–77. [PubMed: 14759819] 

9. Kilicoglu H, Rosemblat G, Fiszman M, Rindflesch TC. Constructing a semantic predication gold 
standard from the biomedical literature. BMC Bioinformatics 2011; 12: 486. [PubMed: 22185221] 

10. SemMedDB Database Details https://skr3.nlm.nih.gov/SemMedDB/dbinfo.html Accessed January 
10 2017.

11. Liu Y, Bill R, Fiszman M, et al. Using SemRep to label semantic relations extracted from clinical 
text. AMIA Annu Symp Proc 2012; 2012: 587–95. [PubMed: 23304331] 

Vasilakes et al. Page 11

JAMIA Open. Author manuscript; available in PMC 2019 February 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://skr3.nlm.nih.gov/SemMedDB/dbinfo.html


12. Rosemblat G, Resnick MP, Auston I, et al. Extending SemRep to the Public Health Domain. J Am 
Soc Inf Sci Technol 2013; 64 (10): 1963–74. [PubMed: 24729747] 

13. Fathiamini S, Johnson AM, Zeng J, et al. Automated identification of molecular effects of drugs 
(AIMED). J Am Med Inform Assoc 2016; 23 (4): 758. [PubMed: 27107438] 

14. Guyon I, Cawley G, Dror G, Lemaire V. Results of the active learning challenge. Proceedings of 
Machine Learning Research - Proceedings Track, 2011; 16: 19–45. http://proceedings.mlr.press.

15. Kremer J, Pedersen KS, Igel C. Active learning with support vector machines. Wires Data Mining 
Knowl Discov 2014; 4 (4): 313–26.

16. Mallapragada PK, Jin R, Jain AK. Active query selection for semi-supervised clustering. 2008 19th 
International Conference on Pattern Recognition IEEE, Tampa, FL, USA; 2008: 1–4.

17. Settles B, Craven M. An analysis of active learning strategies for sequence labeling tasks. 
Presented at the Proceedings of the Conference on Empirical Methods in Natural Language 
Processing, Honolulu, Hawaii, 2008.

18. Settles B Active learning, San Rafael, Calif: Morgan & Claypool, 2012, pp. 1 online resource (xiii, 
100 pages). http://www.morganclaypool.com/doi/abs/10.2200/S00429ED1V01Y201207AIM018. 
Available through Synthesis Digital Library of Engineering and Computer Science.

19. Chen Y, Mani S, Xu H. Applying active learning to assertion classification of concepts in clinical 
text,” (in eng). J Biomed Inform 2012; 45 (2): 265–72. [PubMed: 22127105] 

20. Chen Y, Lasko TA, Mei Q, Denny JC, Xu H. A study of active learning methods for named entity 
recognition in clinical text. J Biomed Inform 2015; 58: 11–8. [PubMed: 26385377] 

21. Chen Y, Lask TA, Mei Q, et al. An active learning-enabled annotation system for clinical named 
entity recognition. BMC Med Inform Decis Mak 2017; 17 (S2): 82. [PubMed: 28699546] 

22. Figueroa RL, Zeng-Treitler Q, Ngo LH, Goryachev S, Wiechmann EP. Active learning for clinical 
text classification: is it better than random sampling?. J Am Med Inform Assoc 2012; 19 (5): 809–
16. [PubMed: 22707743] 

23. Kholghi M, Sitbon L, Zuccon G, Nguyen A. Active learning: a step towards automating medical 
concept extraction. J Am Med Inform Assoc 2016; 23 (2): 289–96. [PubMed: 26253132] 

24. Chen Y, Cao H, Mei Q, Zheng K, Xu H. Applying active learning to supervised word sense 
disambiguation in MEDLINE. J Am Med Inform Assoc 2013; 20 (5): 1001–6. [PubMed: 
23364851] 

25. Du B, Wang Z, Zhang L, et al. Exploring representativeness and informativeness for active 
learning. IEEE Trans Cybern 2017; 47 (1): 14–26. [PubMed: 26595936] 

26. Huang SJ, Jin R, Zhou ZH. Active learning by querying informative and representative examples. 
IEEE Trans Pattern Anal Mach Intell 2014; 36 (10): 1936–49. [PubMed: 26352626] 

27. Xu Z, Yu K, Tresp V, Xu X, Wang J. Representative Sampling for Text Classification Using 
Support Vector Machines Berlin, Heidelberg: Springer Berlin Heidelberg; 2003: 393–407.

28. Chen X, Cairelli MJ, Sneiderman C, Rindflesch R, Pakhomov S, Melton G, Zhang R Applying 
active learning to semantic predications in SemMedDB. Poster presented at IEEE International 
Conference on Biomedical and Health Informatics, 2 24, 2016; Las Vegas, NV, USA.

29. Boser BE, Guyon IM, Vapnik VN. A training algorithm for optimal margin classifiers. Presented at 
the Proceedings of the fifth annual workshop on Computational learning theory, Pittsburgh, 
Pennsylvania, USA, 1992.

30. Pedregosa F, et al. Scikit-learn: machine learning in python. J Mach Learn Res 2011; 12: 2825–30.

31. Platt J Probabilistic outputs for support vector machines and comparisons to regularized likelihood 
methods. Advances in Large Margin Classifiers Cambridge, MA, USA: MIT Press; 1999; 10: 61–
74.

32. Vu V-V, Labroche N, Bouchon-Meunier B. Active learning for semi-supervised K-means 
clustering. Presented at the 2010 22nd IEEE International Conference on Tools with Artificial 
Intelligence, 2010.

33. Viera AJ, Garrett JM. Understanding interobserver agreement: the kappa statistic. Fam Med 2005; 
37 (5): 360–3. [PubMed: 15883903] 

34. van der Maaten LJP, Hinton GE. Visualizing high-dimensional data using t-SNE. J Mach Learn 
Res 2008; 9: 2579–605.

Vasilakes et al. Page 12

JAMIA Open. Author manuscript; available in PMC 2019 February 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://proceedings.mlr.press
http://www.morganclaypool.com/doi/abs/10.2200/S00429ED1V01Y201207AIM018


Figure 1. 
An overview of the active learning system development process.
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Figure 2. 
The active learning process. From an initial labeled set L, train the ML model θ, choose the 

most informative example from the unlabeled set U using the query strategy QS and the 

updated θ, query the oracle for its label, and update L.
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Figure 3. 
Average area under the ROC curve (AUC) learning curves for the uncertainty-based, 

representative-based, and combined query strategy types for the substance interactions and 

clinical medicine datasets. Rows correspond to query strategy types. Columns correspond to 

the datasets.
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Figure 4. 
Query patterns of the low, middle, and high performing query strategies for the substance 

interactions and clinical medicine datasets overlaid on a visualization of U generated using t-

SNE along with their corresponding learning curves. Dark blue corresponds to the first 

examples queried. Yellow corresponds to the last examples queried. Columns correspond to 

the substance interactions and clinical medicine datasets, respectively. Rows from the top 

correspond to the low, middle, and high performing query strategies, respectively.
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