Skip to main content
. Author manuscript; available in PMC: 2019 Feb 7.
Published in final edited form as: JAMIA Open. 2018 Jun 27;1(2):275–282. doi: 10.1093/jamiaopen/ooy021

Table 1.

Area under the learning curve (ALC) and number of training examples required to reach target area under the ROC curve (AUC) of the uncertainty, representative, and combined query strategies evaluated on the substance interactions and clinical medicine datasets

Type Query strategy Substance interactions
Clinical medicine
ALC |L| @ 0.80 AUC ALC |L| @ 0.80 AUC
Baseline Passive 0.590 1295 0.491 2473
SM 0.597 1218 0.541 2093
Uncertainty LC 0.606 1051 0.543 2043
LCB2 0.607 1060 0.542 2089
D2C 0.623  891 0.548 2166
Representative Density 0.622  905 0.547 2136
Min-Max 0.634  657 0.550 2127
Combined ID (β = 0.01) 0.626  771 0.534 2157
ID (β = 1) 0.642 546 0.542 2146
ID (β = 100) 0.635  653 0.550 2174
ID (dynamic β)a 0.641  587 0.549 2180

Bold values indicate the best performing method for that metric.

a

Novel algorithm.