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Abstract

Processing and maturation of precursor RNA species is coupled to RNA Polymerase II 

transcription. Co-transcriptional RNA processing helps to ensure efficient and proper capping, 

splicing, and 3’ end processing of different RNA species to help ensure quality control of the 

transcriptome. Many improperly processed transcripts are not exported from the nucleus, are 

restricted to the site of transcription, and are in some cases degraded, which helps to limit any 

possibility of aberrant RNA causing harm to cellular health. These critical quality control 

pathways are regulated by the highly dynamic protein-protein interaction network at the site of 

transcription. Recent work has further revealed the extent to which the processes of transcription 

and RNA processing and quality control are integrated, and how critically their coupling relies 

upon the dynamic protein interactions that take place co-transcriptionally. This review focuses 

specifically on the intricate balance between 3’ end processing and RNA decay during 

transcription termination.
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Dynamic coupling of RNAPII transcription complex and RNA processing machinery is the first-

line of defense for nuclear RNA quality control.
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Introduction

RNA polymerase II (RNAPII) is one of three major eukaryotic DNA-dependent RNA 

polymerases and is responsible for transcribing several RNA species, including messenger 

RNA (mRNA), noncoding RNA (ncRNA), and small nuclear/nucleolar RNAs (sn/snoRNA) 

(Tan-Wong, 2012; Wyers, 2005). Plants have two additional RNA Polymerases which were 

derived from RNAPII that have been reviewed in depth previously (Haag, 2011; Zhou, 

2015). Transcription by RNAPII consists of three basic phases: initiation, RNAPII 

recruitment to the promoter, and synthesis of the first few RNA nucleotides; elongation, 

RNAPII moving further into the gene in the context of chromatin and extending the nascent 

RNA transcript; and termination, release of RNAPII and the fully processed nascent RNA 

transcript from the template DNA. Each of these steps requires a distinct set of proteins that 

aid and regulate RNAPII to ensure proper transcription and gene expression.

The majority of RNAPII transcripts need to be processed before serving their cellular 

purpose, and their class specific processing occurs in tandem with the transcription of 

nascent RNA. RNA processing machinery is recruited to RNAPII at the site of transcription 

and the success of processing is inherently linked to the progression of transcription and 

regulatory proteins the two processes share. The nature and extent of processing depends on 

the species of RNA, but the major processes are: 5’ end capping (Cho, 1997; McCracken, 

1997a), splicing (Carrillo Oesterreich, 2010; Misteli, 1999), and 3’ end processing (Ahn, 

2004; Kim, 2004a; Licatalosi, 2002). Under normal biological conditions, if RNA is not 

properly co-transcriptionally processed, it will be degraded often at or near the site of 

transcription. Although not often thought of in the context of quality control, proper 

processing ensures that the necessary transcripts are able to be exported from the nucleus 

and translated and is therefore essential to the maintenance of the transcriptome, and 
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ultimately the proteome. Because it is so critical in determining the fate of nascent RNA, co-

transcriptional processing mechanisms and their regulation will be highlighted in this review 

as primary steps in quality control. RNA transcripts that contain transcription errors or are 

improperly processed pose a threat to cell health. If these erroneous and/or unprocessed 

transcripts are not degraded, they can cause disease through multiple mechanisms such as 

non-functional protein expression, DNA damage through R-loop accumulation, and 

downregulation of functional protein expression through nuclear and/or cytoplasmic mRNA 

decay pathways (Bresson 2018). Degradation of erroneous transcripts in the nucleus is an 

important quality control strategy, and its intricate relationship with RNA processing will be 

prominently featured in this review.

The proteins that regulate co-transcriptional processing and degradation need to be recruited 

to the site of transcription at the appropriate time and perhaps withdraw immediately after 

their purpose is served to clear the way for the next wave of RNAPII interacting proteins. 

Proteins move on and off RNAPII during the transcription cycle, creating a highly dynamic 

interaction network at the site of transcription that governs the quality of the transcribed 

RNA (Kim, 2004a; Mayer, 2012; Mayer, 2010). This flexible precision is critical to ensure 

quality control of nascent transcripts in order to maintain proper gene expression. 

Altogether, this review will focus on the major protein groups that regulate quality control of 

RNA through balancing co-transcriptional RNA processing with degradation during 

eukaryotic RNAPII transcription termination. For more information on post-transcriptional 

RNA quality control refer to: Halbeisen, 2008; Inada, 2013; and/or Schaefke, 2018.

RECRUITMENT 101: UTILIZING THE C-TERMINAL DOMAIN AND PAUSING

Phosphorylation of the RNAPII CTD

RNAPII is distinguished from RNA polymerases I and III by the conserved C-terminal 

domain (CTD) of its largest subunit, Rpb1, which plays an integral role in the recruitment of 

proteins to RNAPII. The CTD consists of repeats of the peptide Y1S2P3T4S5P6S7, and is 

conserved from fungi to humans with variations in repeat number (Ahearn, 1987; Eick, 

2013; Stiller, 2002; Yang, 2014). Five out of seven of the residues in this repeat can be 

phosphorylated, and the dynamic phosphorylation status of these residues throughout the 

transcription cycle is responsible for the specific recruitment of numerous regulatory 

proteins. Proteins with CTD-binding domains have binding affinity preferences for different 

phosphorylation patterns; as the pattern is modified throughout the transcription cycle, the 

CTD acts as a “landing pad” (Buratowski, 2003; Buratowski, 2009; Greenleaf, 1993) for the 

dynamic interactors at the site of transcription. Indeed, deletion of the RNAPII CTD has 

been shown to inhibit co-transcriptional processing of nascent RNA (Fong, 2001; 

McCracken, 1997b).

RNAPII exists in a hypo-phosphorylated state when it is recruited to the promoter by the 

preinitiation complex. However, very early in transcription CTD serine 5 (Ser5) levels rise 

and peak in early elongation. Ser5 phosphorylation is linked to recruiting both elongation 

factors and RNA processing proteins, such as the 5’ end capping complex (Ghosh, 2011; 

Komarnitsky, 2000) and the spliceosome (Nojima, 2018). Ser5 levels have also been shown 

to peak at actively spliced exons (Nojima, 2015) helping to recruit the spliceosome and 
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regulate splicing (Harlen, 2016). As elongation proceeds, Ser5 phosphorylation levels fall, 

while serine 2 (Ser2) levels rise. This shift in the phosphorylation dynamic is integral in 

continued regulation of splicing, and recruitment of transcription termination factors and 

proteins involved in 3’ end processing and polyadenylation of the nascent RNA (Ahn, 2004; 

Davidson, 2014). Phosphorylation of both Tyr-1 and Thr-4 in the CTD repeats has also been 

shown to play a regulatory role in RNAPII transcription termination suggesting that this 

step, which is intimately coupled to mRNA 3’ end processing, is tightly regulated by the 

CTD phosphorylation state (Hsin, 2011; Mayer, 2012; Nemec, 2017; Schreieck, 2014). 

Finally, Ser-7 phosphorylation has been implicated in snRNA processing and recruitment of 

the Integrator complex (Egloff, 2007). Thus, the CTD has been shown to activate all three 

major RNA processing pathways, fitting in with the “recruitment model” (Bentley, 2014) of 

coupling RNA processing to transcription. Zaborowska, et al. reviews the “CTD code” in 

more depth (Zaborowska, 2016).

Pausing of RNAPII

The “kinetic competition model” poses that as transcription occurs and the nascent RNA is 

extended, RNA-binding proteins are able to bind the transcript in a sequence specific (or 

non-specific) manner (Dujardin, 2013; Nilsen, 2010). The rate at which these binding 

sequences within the nascent RNA are synthesized during transcription elongation may 

allow competition between RNA-binding regulatory proteins that play important roles in 

RNA processing, RNAPII termination, and quality control checkpoints (Roberts, 1998). 

Since the rate of transcription has an impact on the kinetic recruitment of proteins to the site 

of transcription, an important consideration is RNAPII pausing. Pausing, or accumulation of 

RNAPII on DNA, can occur at any stage of transcription and provide a window of 

opportunity for recruitment of factors involved in the modulation of gene expression and co-

transcriptional RNA processing (Henriques, 2013; Svejstrup, 2007). RNAPII pausing is 

associated with the three major co-transcriptional processing pathways, RNA-capping 

(Rasmussen, 1993), splicing (Alexander, 2010), and 3’ end processing, as well as RNA 

proofreading and degradation (Glover-Cutter, 2008; Kireeva, 2008; Nudler, 2012). This 

coupling of RNA processing to RNAPII activity may ensure that the nascent RNA is 

protected from degradation and efficiently matures into a functional mRNA (Fig. 1).

In metazoans, RNAPII pausing proximal to the promoter is a regulatory step in transcription 

for the majority of protein coding genes (Muse, 2007; Nechaev, 2010) and is thought to be 

used as a rate-limiting elongation checkpoint that can hold back RNAPII to give a “window 

of opportunity” for the recruitment of factors needed for transcription elongation and/or co-

transcriptional RNA processing (Adelman, 2012; Henriques, 2013; Valen, 2011). Pausing 

may provide a timing opportunity and an interaction surface to facilitate capping, as 

interactions have been reported between the capping machinery and the pause-regulatory 

factor/positive transcription elongation factor, DSIF (Spt4/5) (Adelman, 2012; Mandal, 

2004; Moore, 2006). Positive elongation factor b (P-TEFb) has been shown to phosphorylate 

DSIF and NELF to trigger pause release. The regulation of promoter proximal pause release 

may ensure that RNAPII does not proceed into productive elongation before it is 

appropriately modified for binding by the RNA processing factors and may provide a 

binding platform later in transcription for complexes carrying out 3’ end processing 

Peck et al. Page 4

Wiley Interdiscip Rev RNA. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Buratowski, 2009). Of note, recent findings have suggested that RNAPII release from 

pausing at highly abundant promoter proximal pause sites may occur through premature 

transcription termination up to 99% of the time (Erickson, 2018; Steurer, 2018). These 

findings suggest that termination is the predominant form of RNAPII removal from 

promoter proximal pause sites rather than release into productive elongation.

It is possible that the promoter proximal pause site could serve as a key location for mRNA 

5’ capping quality control. This possibility is supported in elegant work showing that 

inhibition of the Cdk9 kinase in Schizosaccharomyces pombe leads to significant decreases 

in the phosphorylation of the elongation factor Spt5, which has been implicated in both 

promoter proximal pausing and the recruitment of capping enzyme components (Booth, 

2018; Pei, 2003; Viladevall, 2009). The biological mechanisms that could underlie a large 

degree of RNAPII turnover at promoter proximal pause sites have not been explored, but this 

topic remains controversial since other groups have reported measurement of stable RNAPII 

pausing as a potential mechanism to poise the transcription machinery for rapid induction. 

Regardless, rapid RNAPII removal from promoter proximal pause sites could involve unique 

termination mechanisms such as potential termination coupled RNA degradation by the 

exosome, which to date has not been explored in metazoan cells (Lemay, 2014; Fox, 2015). 

RNAPII has also been shown to pause at a variety of splice sites throughout the genome and 

also once it reaches the 3’ end of genes and various polyadenylation sites (Kwak, 2013; 

Mayer, 2015; Nojima, 2015). Pausing is an important intermediate step leading to 

termination in many mammalian genes, providing the opportunity for the termination 

machinery to be recruited to chromatin (Andrulis, 2002; Gusarov, 1999). Additionally, it has 

been shown that RNAPII pausing sites change positions when alternative polyadenylation 

sites are used in cells (Fusby, 2016). Details regarding the role of pausing during each 

processing step are provided in their respective sections. Pausing and its effects on 

transcription have recently been reviewed in (Adelman, 2012; Chen, 2018; Mayer, 2017).

THE RNA EXOSOME: THE CLEAN-UP CREW

Proper maturation and processing of the mRNA lends protective features to the transcripts 

that keep them from being degraded. The major quality control mechanism for aberrant 

RNA is degradation. However, degradation is not solely restricted to incorrectly made or 

processed RNAs, as it also occurs during routine processing in the case of many ncRNAs. 

Arguably, the most significant role for degradation in RNA quality control is its role in the 

removal of RNAs produced from pervasive transcription. There are both nuclear and 

cytoplasmic RNA degradation systems, but this review will only focus on the nuclear 

mechanisms due to their connection to transcription and co-transcriptional RNA processing.

Processing transcripts while they are still attached to chromatin provides additional 

checkpoints for the removal of unprocessed and potentially deleterious transcripts and 

avoids wasteful transcription. The RNA exosome is a multi-subunit 3’−5’ exonuclease 

complex that has been shown to have a large number of regulatory roles in RNA biology 

including, 3’ end processing and the degradation of ncRNAs and unstable transcripts 

(Allmang, 1999; Chlebowski, 2013; Mitchell, 1997). The exosome is responsible for 

degrading mRNA transcripts that have been improperly processed (Bitton, 2015; Bousquet-
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Antonelli, 2000; Gudipati, 2012; Schneider, 2012; Szczepinska, 2015), including: lncRNAs 

(Pefanis, 2015; Wlotzka, 2011), cryptic unstable transcripts (CUTs) (Davis, 2006; 

Szczepinska, 2015; Wyers, 2005) and their human counterparts promoter upstream 

transcripts (PROMPTs) (Preker, 2008; Preker, 2011), and heterochromatin-forming 

repetitive elements such as rRNA and centromeres (Buhler, 2007; Houseley, 2007; Vasiljeva, 

2008b). Defective transcripts that are destined for exosomal degradation often accumulate 

and result in the retention of RNAPII at the site of transcription (de Almeida, 2010; Eberle, 

2010; Hilleren, 2001). Exosome-dependent degradation at the site of transcription could 

have an array of consequences such as increases in the local concentrations of nucleotides, 

which could facilitate RNAPII transcription at nearby genes.

The exosome has two catalytic subunits responsible for degradation of RNA, Dis3 and Rrp6, 

with Rrp6 able to function independently of the exosome core particle (Chlebowski, 2013). 

However, the exosome requires all subunits plus cofactors for optimal activity and 

appropriate substrate selection. Four such cofactors are the Trf4/5-Air1/2-Mtr4 

polyadenylation (TRAMP) complex, the yeast Nrd1-Nab3-Sen1 (NNS) complex, and the 

human nuclear exosome targeting (NEXT) and poly-A tail exosome targeting (PAXT) 

complexes. The exosome and its cofactors were recently reviewed in Zinder, 2017. The 

TRAMP complex interacts with the exosome to both increase the hydrolytic activity of Rrp6 

(Callahan, 2010) and to add short polyA tails to RNA substrates in order to make them more 

accessible for degradation (Schmidt, 2013). TRAMP function is generally coupled to that of 

the NNS complex (Arigo, 2006b; Schulz 2013; Thiebaut, 2006), which is further discussed 

later in this review. The exosome has an established role in post-transcriptional quality 

control (Lemieux, 2011; Schneider, 2012; Wang, 2008), but there is also evidence showing 

that Rrp6 and the exosome are recruited to transcribed genes (Andrulis, 2002; Hessle, 2012; 

Hieronymus, 2004; Lim, 2013), and that the exosome interacts with elongating RNAPII in 

metazoans (Andrulis, 2002).

Transcriptome analysis of quality control mutants revealed an important role for nucleases in 

removing aberrant mRNA species (Davis, 2006; Gudipati, 2012; Schneider, 2012; Wyers, 

2005). The accumulation of RNA as a result of exosome mutations can have a variety of 

negative effects on the transcriptome. Aberrant RNA accumulation can negatively impact the 

cell in multiple ways that include: competing with properly processed RNA for RNA 

binding proteins (Coy, 2013), activating antiviral defense mechanisms that trigger 

autoimmunity (Eckard, 2014), or producing DNA-RNA hybrids (R-loops) that induce 

double-stranded DNA breaks and chromatin instability (Wahba, 2013). Mutations in the 

exosome have been linked to a variety of human pathologies, particularly to spinal motor 

neuron disorders such as pontocerebellar hypoplasia type 1B (Boczonadi, 2014; Wan, 2012). 

It has also been seen that Rrp6 mediates the transcriptional silencing of HIV-1 promoter and 

that the loss of Rrp6 function leads to a loss in inhibition of the HIV-1 promoter (Wagschal, 

2012). Additionally, a mouse model with a mutation in the exosome presents with B 

lymphocyte dysfunction (Pefanis, 2014). It has been postulated that the phenotype is due to 

the fact that the exosome is required for class switch recombination and somatic 

hypermutation, both of which are necessary for antibody diversity. The multitude of disease 

phenotypes produced from defects in the exosome highlights the importance of proper 

quality control of nascent RNA transcripts. The following sections will highlight the 
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different RNA processing reactions and their interconnectedness with degradation for proper 

RNA quality control. There are many recent reviews that cover RNA degradation and decay 

in more detail, and a selection is listed here: Bresson, 2018; Karousis, 2016; Palumbo, 2015; 

Schmid, 2018; Schmidt, 2013.

IN BRIEF: 5’ CAPPING AND SPLICING

Co-transcriptional capping and the initiation-elongation transition

Shortly after the 5’ end of the nascent transcript emerges from the RNA exit channel, a 7-

methyl guanosine cap is added (Perales, 2009; Rasmussen, 1993). There are three steps to 

the capping process: conversion of the tri-phosphate group at the 5’ end of the nascent 

transcript to a diphosphate group; attachment of a GMP molecule; and methylation of the 

N7 atom of the guanosine base to produce a mature cap (Furuichi, 2000; Shuman, 1995). In 

yeast, two proteins (Cet1 and Ceg1) form a heterodimer capping complex, while mammals 

have one bifunctional enzyme for the first two steps (Itoh, 1987; Yue, 1997). In the nucleus, 

the 5’ cap protects against 5’−3’ exonucleolysis (Wilusz, 2001) and plays roles in processes 

such as pre-mRNA splicing (Izaurralde, 1994), 3’ end formation (Flaherty, 1997), and RNA 

export (Izaurralde, 1995). A combination of cryo-electron microscopy (Cryo-EM) and 

crosslinking mass spectrometry (XL-MS) determined the open and closed states of the 

capping enzyme (CE) in yeast and illuminated the position CE takes at the end of the 

RNAPII exit tunnel with its active sites facing the nascent RNA (Martinez-Rucobo, 2015). 

Their model provides a structural basis for understanding how capping continuously protects 

the 5’ end of the RNA from exonucleases. For more information on the function of the cap 

and cap-binding proteins refer to (Cougot, 2004; Topisirovic, 2011).

Nuclear decay systems take advantage of co-transcriptional RNA processing to assess the 

quality of nascent RNA and degrade any non-optimal transcripts (Schmid, 2018). Mutations 

that lead to improper capping, whether directly or indirectly, result in mRNA decay and can 

cause premature termination of transcription (Jimeno-Gonzalez, 2010). These degradative 

quality control mechanisms are known to involve the 5’−3’ exonuclease Xrn2 (also known 

as Rat1), the decapping endonuclease Rai1 (also known as Dxo), and the Rai1 homolog 

Dxo1 that has both decapping and 5’−3’ exoRNAse activity (Brannan, 2012; Chang, 2012; 

Jiao, 2010; Xiang, 2009). Rai1 is already known to bind and stimulate the activity of Xrn2 

for RNAPII transcription termination (Kim, 2004b; Xue, 2000). Rai1 has been shown to 

convert the 5’-triphosphate into monophosphates that can target these transcripts Xrn2 for 

degradation (Jiao, 2010; Xiang, 2009). The mammalian Rai1 homolog, DOXO, has 

pyrophosphatase, decapping, and exoribonuclease activity, and has been shown to have the 

ability to prepare both uncapped and unmethylated-capped RNAs for degradation (Jiao, 

2013; Xiang, 2009). Co-deletion of yeast Rai1 and Dxo1 leads to accumulation of 

incompletely capped RNAs; depletion of the human homolog DXO leads to accumulation of 

aberrantly capped, unspliced, and inefficiently 3’ end cleaved RNAs (Chang, 2012; Jiao, 

2013). So, it is thought that Rai1 and Dxo1 play critical roles in terminating RNAPII and 

degrading improperly capped nascent transcripts (Chang, 2012; Xiang, 2009). However, it is 

unknown how this process precisely intersects with the control of promoter proximal pause 

release and/or premature RNAPII termination. The process of decapping is also a major 
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regulatory step for mRNA degradation, but occurs in the cytoplasm, and so it is not 

extensively reviewed here, but is addressed in the following publications: (Coller, 2004; 

Franks, 2008; Grudzien-Nogalska, 2017; Song, 2010; Zhai, 2014).

Co-transcriptional splicing

The splicing of introns out of mRNA occurs at many genes in eukaryotes coordinately with 

RNAPII transcription elongation (Carrillo Oesterreich, 2016). Alternative splice variants 

provide the opportunity for expanded diversity within the proteome without extensive 

genomic expansion. In order to ensure proper splicing, this processing event is often directly 

coupled to transcription. Electron microscopy studies in both Drosophila melanogaster and 

Chironomus tentans demonstrated that splicing does occur co-transcriptionally (Bauren, 

1994; Beyer, 1988). Sequencing experiments in human (Ameur, 2011; Tilgner, 2012; 

Windhager, 2012), mouse (Khodor, 2012), yeast (Carrillo Oesterreich, 2010), and fly 

(Khodor, 2011) model systems have also shown that an extensive amount of splicing occurs 

co-transcriptionally. In their 2018 paper, Burke et al. developed a sequencing method to 

globally profile spliceosome bound pre-mRNA, intermediates, and spliced mRNA at single 

nucleotide resolution through combining biochemical purification of endogenous 

spliceosomes sequencing (Burke, 2018). This new method provides a tool for quantifiable 

studies of previously hard to identify RNA species and allowed measurement of differential 

splicing between three yeast species. Additionally, this method provides the ability to 

investigate splicing regulation through intron retention, which was previously not possible 

due to the transient nature of these RNA species and mutations that had to be made for 

stabilization. Further advances in our understanding of splicing have occurred through 

recently solved structures characterizing the spliceosome in different forms (Agafonov, 

2016; Bertram, 2017a; Bertram, 2017b, Finci, 2018; Galej, 2016; Nguyen, 2015; Nguyen, 

2016b; Ohi, 2007; Pomeranz Krummel, 2009; Wan, 2016; Yan, 2015). More in-depth 

reviews of structural studies of the spliceosome can be found here: (Fica, 2017; Nguyen, 

2016a). Although not all splicing occurs co-transcriptionally, it is likely that most 

spliceosomes assemble on the nascent transcript (Pandya-Jones, 2009) with support from co-

immunoprecipitation studies using antibodies specific for active spliceosomes that showed 

80% of active spliceosomes to be bound to chromatin in HeLa cells (Girard, 2012). Herzel et 
al. recently reviewed co-transcriptional spliceosome assembly and function (Herzel, 2017).

Intron-containing mRNA is particularly prone to nuclear degradation (Kilchert, 2015). 

Mutations that delay splicing exacerbate this effect, and so unspliced or improperly spliced 

pre-mRNAs have been shown to be rapidly degraded (Danin-Kreiselman, 2003; Gudipati, 

2012; Lemieux, 2011). However, the precise mechanisms that target intron containing 

mRNA for degradation and the factors involved in this nuclear quality control pathway are 

still unknown (Bresson, 2018). Failure to splice pre-mRNA may trigger any of the following 

responses in addition to others: transcription downregulation (Damgaard, 2008); failure of 

mRNA export (Luo, 1999; Reed, 2002); pre-mRNA degradation from the 5’ and 3’ ends by 

either Xrn2 and the nuclear exosome (Bousquet-Antonelli, 2000; Kufel, 2004) or via 

endonucleolysis by Swt1 (Skruzny, 2009); and post-transcriptional anchoring of the 

unspliced pre-mRNA at the NPC via the Mlp proteins (Galy, 2004). It has also been shown 

that defects in snRNP assembly lead to degradation by two distinct quality control 
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mechanisms, either through the actions of the TRAMP complex and the RNA exosome or 

via decapping and 5’ to 3’ decay by Xrn1 (Shukla, 2014). Additionally, depletion of either 

core splicing or transcription termination components in Drosophila have been shown to 

increase the production of circular RNAs which occur through backsplicing reactions 

(Liang, 2017). Considering that many splicing reactions have been shown to occur 

efficiently during transcription elongation, backsplicing should be a rare event that occurs 

only when splicing rates are slowed to an extent allowing production of a downstream splice 

site donor before removal of an upstream intron with an intact splice acceptor (Wilusz, 

2018). While backsplicing could be a normal scenario for some poorly spliced transcripts, 

the creation of circular RNAs may also serve as a fail-safe and/or quality control mechanism 

for a larger number of mRNAs when splicing and/or termination pathways are disrupted. 

This review does not delve in depth into the mechanisms of splicing however the following 

reviews on this topic are recommended: (Kaida, 2016; Sperling, 2017; Wilusz, 2018; 

Woodward, 2017).

THE END OF THE LINE: 3’ END PROCESSING AND DEGRADATION

The mechanisms of termination of RNAPII transcription are still not fully understood in 

eukaryotes although there is a wide array of knowledge on the factors that are required for 

termination to occur (Fong, 2015; Zhang, 2015). Termination of transcription occurs when 

RNAPII stops nucleotide addition to the nascent RNA and both the RNA transcript and 

RNAPII are released from the DNA template. Termination is highly dynamic and can occur 

at multiple sites within a single gene and is also coupled to mRNP export (Gilbert, 2004; 

Johnson, 2009; Luo, 2006). In order to be dynamic and flexible, termination is an extremely 

complex process with pathways that depend on numerous regulatory proteins (>100 proteins 

involved at protein coding genes in humans) (Shi, 2009). These multiple pathways for 

termination involve many proteins required for both for RNAPII termination and for RNA 

processing (Arndt, 2015; Porrua, 2015; Shi, 2009), as termination is inherently tied to co-

transcriptional mRNA 3’ end processing. Many termination factors interact with RNA 

processing and degradation enzymes and will be discussed below. The decision as to which 

termination pathway is utilized has a large influence on the future of an RNA: stabilization 

and protection versus degradation.

Cleavage and polyadenylation of mRNAs

The major 3’ end processing pathway used in the context of mRNAs, but also utilized for 

some ncRNAs, is cleavage followed by polyadenylation of the resulting 3’-OH by polyA 

polymerase (Fig. 2) (Kuehner, 2011; Mischo, 2013; Xiang, 2014). In metazoans, the polyA 

polymerase interacts with a protein complex known as the cleavage and polyadenylation 

specificity factor (CPSF) which contains subunits responsible for recognition of the 

AAUAAA hexanucleotide. The metazoan cleavage complex is also known to contain: 

cleavage stimulation factor (CstF), cleavage factor I (CFI), and cleavage factor II (CFII). 

Similarly, in yeast the cleavage and polyadenylation factor (CPF) is made up of various sub-

assemblies of protein complexes and interacts with a cleavage factor known as cleavage 

factor Ia (CFIa). Recent cryo-EM, XL-MS, and non-covalent nanoelectrospray ionization 

mass spectrometry (nanoESI-MS) studies of yeast CPF revealed a high degree of modularity 
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within CPF, which has also been suggested for mammalian CPSF, by extensive biochemical 

analysis (Casanal, 2017; Hernández, 2007). Three modules were identified for S. cerevisiae 
CPF: nuclease, phosphatase, and polyA polymerase. The polyA polymerase module is very 

similar to the minimal mammalian components of CPSF needed for polyadenylation, 

suggesting high conservation between the yeast and metazoan machinery (Schonemann, 

2014). Several components of the full cleavage and polyadenylation factor-cleavage factor 

(CPF-CF) complex both bind to RNAPII and recognize termination and processing signals 

in the 3’ UTR of the nascent RNA (Baejen, 2014; Pearson, 2014; Xiang, 2014). RNAs 

polyadenylated by CPF-CF are rapidly exported to the cytoplasm if they pass quality control 

steps (Mouaikel, 2013; Zenklusen, 2008). Mutants in the CPF-CF pathway in yeast can lead 

to accumulation of polyA RNA in the nucleus as a consequence of defective coupling of 

transcription termination and mRNA export (Amberg, 1992; Hammell, 2002). Furthermore, 

it was recently shown in human cells that cleavage via the CPSF processing endonuclease 

CPSF73 is required for efficient termination of protein-coding genes, as loss of CPSF73 

activity lead to termination defects and increased readthrough transcription (Eaton, 2018). 

The increased readthrough transcription in mutants in the CPF complex can also lead to 

increased production of exonuclease-resistant circular RNAs, discussed in more detail below 

(Liang, 2017).

Mutations in 3’ end processing factors often cause decreases in transcript levels (Baejen, 

2017; Hilleren, 2001; Libri, 2002; Milligan, 2005; Torchet, 2002). One reason for this 

decrease could be interference with polyA tail addition, exposing the mRNA to 3’-

exonucleocytic attack. This concept is supported by the fact that co-deletion of exosome 

components with 3’ end processing mutants leads to restoration of stable, yet likely 

incorrectly processed, mRNAs (Burkard, 2000; Libri, 2002; Milligan, 2005; Pefanis, 2015; 

Tan-Wong, 2012). The outcome of pre-mRNA 3’ end formation is determined by relative 

efficiencies of polyadenylation versus RNA decay. It has been shown that polyA polymerase 

interacts with Rrp6 (Burkard, 2000) and the exosome might directly influence the activity of 

the polyA machinery (Milligan, 2005; Saguez, 2008). RNAPII pauses downstream of the 

polyA site to allow time for co-transcriptional cleavage and polyadenylation (Glover-Cutter, 

2008; Gromak, 2006). It is possible that this pause favors backtracking, leading to a potential 

‘reverse torpedo’ mechanism to favor coupled termination and RNA degradation via the 

exosome (Fox, 2015; Lemay, 2014; Proudfoot, 2016). This model could be coupled with a 

post-transcriptional RNA cleavage and polyadenylation event to restrict exosome 

degradation (Bresson, 2018).

Two models for RNAPII release from the DNA template

Following cleavage and polyadenylation of the mRNA, RNAPII transcribes downstream 

~150 nucleotides before being released from the DNA template (Creamer, 2011). The exact 

mechanisms responsible for RNAPII release during termination are still under investigation. 

It is proposed that pausing at the end of a transcription unit couples 3’ end processing to 

termination (Kuehner, 2011; Mayer, 2015; Nojima, 2015; Richard, 2009). Cleavage of the 

mRNA is important for RNAPII release from the template, as cleavage defective mutants 

tend to be impaired for termination, resulting in transcription read-through phenotypes 

(Sadowski, 2003). There are two models proposed for release of RNAPII from the DNA: an 
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allosteric model and a torpedo model. In the allosteric model, binding of the termination 

complex results in a conformational change in the elongation complex as elongation factors 

are lost, leading to a decrease in processivity (reviewed in (Richard, 2009)). Support for this 

is shown by the fact that RNAPII loses elongation factors before being released (Ahn, 2004; 

Baejen, 2017; Kim, 2004a; Mayer, 2010). Also, in vitro studies have indicated that transcript 

cleavage, a key requirement for the torpedo model, is not required for RNAPII transcription 

termination (Zhang, 2015). In the torpedo model, cleavage of the 3’ end of the mRNA by 

CPF-CF provides an entry point for the Rat1/Xrn2 5’−3’ exonuclease to degrade the nascent 

RNA up to RNAPII and displace the elongation complex (Brannan, 2012; Kim, 2004b; 

Pearson, 2013; West, 2004).

Support for the torpedo model has been shown in yeast and humans through the occurrence 

of termination read-through transcription when Rat1 activity is defective, and through the 

use of in vitro termination assays with yeast Rat1 (Park, 2015). However, Rat1 and its 

interacting partner Rai1 may be facilitated in vivo through the CTD binding activity of 

Rtt103, a CTD-interaction domain (CID) protein that has been shown to recruit Rat1/Rai1 to 

3’ end of genes to facilitate the dismantling of the elongation complex (Dengl, 2009; Kim, 

2004b; Lunde, 2010; Luo, 2006). The human homologs of Rtt103, RPRD1a and 1b (also 

known as Kub5/Hera), have been implicated in a wide array of functions including 

interaction with Xrn2 and the serine 5 CTD phosphatase RPAP2 that has also been 

implicated in loss of RNAPII occupancy on protein coding genes in yeast (Hunter, 2016; 

Morales, 2014; Ni, 2014). A unified version of both the torpedo and allosteric models has 

also been proposed where a complex containing both Xrn2/Rat1 and CPF-CF assembles at 

polyA sites mediating cleavage, nascent RNA degradation, and termination through an 

allosteric change in the elongation complex (Baejen, 2017; Lunde, 2010; Luo, 2006). 

Depletion of the Rat1/Xrn2 exonuclease or the CPF subunits Cpsf73 or Symplekin in 

Drosophila cells can cause circular RNA production through the backsplicing of read-

through RNA transcripts with retained introns from upstream genes (Liang, 2017). It is 

unclear, however, if the backsplicing reactions are coupled with fail-safe mechanisms that 

might facilitate RNAPII termination under conditions in which termination factors are 

limited. Perhaps RNAPII pausing associated with RNA backsplicing events (as reported for 

canonical splicing events) may provide an opportunity for alternative termination 

mechanisms to occur such as those discussed in the next section involving the helicase 

Senataxin/Sen1.

Other termination mechanisms

A number of other termination mechanisms have been described that employ additional 

factors for RNAPII termination coordinated with RNA processing and/or RNA decay, often 

in cases of premature or non-polyA dependent transcription termination. These pathways 

may also recruit a number of proteins and/or protein complexes that are involved in the 

polyA dependent termination pathway described above; however, we will focus on the 

unique players involved in these pathways in the following section.

A well-characterized alternate termination pathway exists in budding yeast, the Nrd1-Nab3-

Sen1 (NNS)-dependent pathway (Fig. 3). This pathway is responsible for termination at 
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genes encoding snRNAs and snoRNAs (Steinmetz, 2001) and various types of pervasive 

transcripts such as yeast CUTs (Arigo, 2006b; Schulz, 2013; Thiebaut, 2006; Wyers, 2005). 

Nrd1-Nab3 binding sites have been shown to be enriched in regions upstream of promoters 

of CUTs and antisense transcription units (Cakiroglu, 2016; Carroll, 2004; Schulz, 2013; 

Wlotzka, 2011). NNS is generally considered to terminate shorter transcripts (typically less 

than 1000 nucleotides) compared to the traditional polyA-dependent pathway (Creamer, 

2011; Gudipati, 2008; Schulz, 2013; Vasiljeva, 2008b). However, Nrd1-Nab3 dependent 

termination has also been shown to provide a fail-safe for transcripts that read past a polyA 

site, restricting mRNAs where 3’ end formation has failed (Rondon, 2009; Vasiljeva, 2006). 

Degradation intermediates originating from unspliced RNA species have also been UV-

crosslinked to Nrd1, Nab3, or Trf4 (Wlotzka, 2011). It is not understood how Nrd1 is 

specifically recruited to aberrant RNAs in order to mediate their degradation by the 

exosome, but there is some evidence that Nrd1 is generally recruited to all RNAPII 

transcripts perhaps through its protein-protein interaction with the RNAPII CTD (Mayer, 

2012; Schulz, 2013). Recently, Bresson et al.demonstrated that NNS and the TRAMP 

complex were targeted to transcripts that were being downregulated in response to glucose 

starvation (Bresson, 2017). This suggests that NNS could be a mechanism for selective 

degradation of RNAs in order to change transcriptional programming under different cellular 

and environmental signaling pathways.

With the major exception of sn/snoRNA transcripts, many of the RNAs terminated by the 

NNS pathway are rapidly degraded after transcription by the RNA exosome and can only be 

fully detected when the exosome is perturbed. Increased recruitment of Nrd1 during 

transcription, even if it does not induce termination, can destabilize a transcript (Honorine, 

2011; Vasiljeva, 2008b). Timely termination of CUTs is important for preventing 

transcription interference with the coding transcriptome. Nrd1 and Nab3 recognize specific 

sequence motifs on the RNA that are crucial to their specificity (Carroll, 2007; Creamer, 

2011; Porrua, 2012; Wlotzka, 2011) and are often clustered with AU-rich sequences, 

contributing to termination efficiency (Porrua, 2012). Nrd1 also interacts with 

phosphorylated Ser5 on the RNAPII CTD (Heo, 2013; Kubicek, 2012; Tudek, 2014; 

Vasiljeva, 2008a), which is the predominant phospho-form during early elongation (Kim, 

2011; Komarnitsky, 2000; Mayer, 2010; Tietjen, 2010). Nrd1 and Nab3 may act to ensure 

efficient and specific Sen1 recruitment since it is present at relatively low levels and appears 

to recognize RNA indiscriminately (Creamer, 2011; Ghaemmaghami, 2003; Porrua, 2013). 

Cleavage of the primary transcript has not been demonstrated for this pathway, although the 

CF protein Pcf11 has been implicated in NNS (Grzechnik, 2015). Human Pcf11 is also 

involved in snRNA gene termination (O’Reilly, 2014). The CTD phosphatases RPAP2/Rtr1 

and Ssu72 have both also been implicated in sn/snoRNA termination control in metazoans 

while Ssu72 plays a major, although mechanistically uncharacterized, role in NNS 

termination in yeast (Dichtl, 2002; Egloff, 2012; Loya, 2012; O’Reilly, 2014). Upon release 

of the RNA transcript from RNAPII as a result of termination aided by Sen1, the exosome 

can facilitate either the processing or degradation of the transcript (Vasiljeva, 2006). In 

budding yeast, the exosome is particularly connected to the NNS-termination pathway, due 

to the type of unstable transcripts typically produced. Rrp6 and Dis3 trim the 3’ end of 

snRNA and snoRNA precursors to convert them into mature species (Allmang, 1999; 
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Gudipati, 2012; van Hoof, 2000) and completely degrade CUTs (Arigo, 2006b; Gudipati, 

2012; Thiebaut, 2006; Wyers, 2005). Nrd1 also recruits TRAMP through direct recognition 

of a CTD mimic in Trf4 of the TRAMP complex (Tudek, 2014). Efficient degradation and 

processing require the TRAMP complex which both catalyzes polyadenylation and 

facilitates degradation by the exosome.

Although a pathway directly homologous to the yeast NNS pathway has not been identified 

in higher eukaryotes, PROMPTs are produced through early RNAPII termination and 

degraded by the exosome (Preker, 2008; Preker, 2011). Furthermore, the human NEXT 

complex has been shown to play a role in RNA surveillance, cryptic transcript degradation, 

and the termination and 3’ end processing of snRNAs (Hrossova, 2015; Lubas, 2011). 

NEXT contains hMTR4, the zinc-finger protein ZCCHC8, the RNA-binding factor RBM7. 

Unlike NNS, which is highly sequence specific, RBM7 seems only to prefer U-rich regions 

and tends to be promiscuous (Hrossova, 2015; Lubas, 2015). NEXT mainly targets 

unprocessed transcripts and recent publications have provided evidence for a poly-A tail 

exosome targeting (PAXT) connection (Meola, 2016). Both NEXT and PAXT have been 

shown to have physical linkages to the cap-binding complex and its associated factors 

(Andersen, 2013; Lubas, 2015; Meola 2016), suggesting mechanisms for recruiting the 

exosome to capped transcripts. TRAMP, NEXT, and PAXT all contain hMTR4, suggesting a 

possible mechanism in which the exosome can target different transcripts through 

substitution of adaptors containing hMTR4 (Meola, 2016). The conservation of TRAMP and 

the role of the NEXT complex in recruiting the exosome to short transcripts suggests 

comparable mechanisms for early RNAPII termination and coupled RNA decay exist 

throughout eukaryotes.

Speed of transcription affects the genomic position at which RNAPII termination occurs and 

accordingly, pausing of RNAPII may provide the opportunity for Sen1 to locate RNAPII and 

aid in the termination of transcription via the Nrd1-Nab3-Sen1 (NNS) pathway (Hazelbaker, 

2013; Jamonnak, 2011; Schaughency, 2014). Sen1 has also been shown to trigger forward 

translocation of stalled RNAPII complexes (Han, 2017). Sen1 also functions independently 

of NNS in yeast since: 1) Sen1 has been shown to bind to a number of polyA dependent 

termination sites (Creamer, 2011; Jamonnak, 2011), 2) Sen1 is sufficient to displace the 

elongation complex DNA in vitro through interaction with the nascent RNA which requires 

its ATP-dependent helicase activity (Han, 2017; Leonaite, 2017; Porrua, 2013), and 3) Sen1 

inactivation (using an anchor away approach) leads to RNAPII accumulation at the 3’ end of 

both coding and noncoding genes (Schaughency, 2014). Human and yeast Senataxin/Sen1 

have been shown to trigger RNAPII termination to resolve R-loops (Mischo, 2011; Skourti-

Stathaki, 2014; Skourti-Stathaki, 2011), which occur in numerous cellular contexts (see 

Santos-Pereira, 2015 for review). R-loops can cause various types of genome instability and 

have recently been found to be required for efficient double strand break repair (Ohle, 2016). 

R-loops can also be formed by circular RNAs that are retained in the nucleus (Conn, 2017). 

However, it remains to be seen if the circular RNAs that are retained in the nucleus can 

facilitate RNAPII termination through existing R-loop resolving pathways. Interestingly, an 

R-loop resolution pathway has been characterized in human cells line in which the RNA-

binding protein SMN binds to arginine 1810 symmetric dimethylation on the RNAPII CTD 

for stable Senataxin recruitment. Recruitment of Senataxin through SMN leads to both R-
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loop resolution and recruitment of Xrn2 to trigger premature RNAPII termination (Zhao, 

2016). It is possible that circular RNAs could work in a similar way to form R-loops at 

particular genomic regions thereby recruiting R-loop binding proteins and Senataxin to 

specific sites to trigger RNAPII termination. R-loop resolution pathways may have both 

basal and fail-safe roles in the regulation and protection of the genome (Chédin, 2016; 

Santos-Pereira, 2015). Recent work has also shown that yeast Sen1 levels are tightly 

controlled by the anaphase-promoting complex likely for overall genome maintenance and 

control of RNAPII termination (Mischo, 2018). In addition, it was shown that 

overexpression of Sen1 leads to cellular fitness defects. It remains to be determined if Xrn2 

is required for Sen1/Senataxin regulated RNAPII termination and vice versa, although 

previous studies have indicated that both Senataxin and Xrn2 may be required for torpedo 

function at a model polyA dependent terminator (Kawauchi, 2008; Mischo, 2011; Rondon, 

2009; Skourti-Stathaki, 2011), as is suggested for other R-loop resolution pathways (Zhao, 

2016).

In metazoans, the multi-subunit Integrator complex is responsible for 3’ end formation and 

processing of snRNAs (Baillat, 2005). Integrator has been shown to be recruited to a Ser2-

P / Ser7-P CTD phosphoform of RNAPII with Ser5-P being inhibitory for recruitment 

(Egloff, 2010). As such, the recruitment of Integrator may have a dependence on the activity 

of the two conserved Ser5-P CTD phosphatases RPAP2 (known as Rtr1 in yeast) and Ssu72 

which have both been shown to regulate Ser5-P levels in both yeast and mammalian cells 

(Egloff, 2012; Hunter, 2016; Mosley, 2009; Ni, 2014). In fact, knockdown studies for either 

phosphatase resulted in decreased snRNA processing efficiency, indicating that native levels 

of both RPAP2 and Ssu72 are required for proper recruitment/regulation of Integrator 

(Egloff, 2012; O’Reilly, 2014; Wani, 2014). Incorrect processing by Integrator could lead to 

exosome-dependent degradation of the nascent snRNA similar to defects caused by 

improper snRNP formation in SMN deficient cells (Shukla, 2014). The Integrator complex 

has also been implicated in the termination of numerous other noncoding RNAs including 

promoter proximal transcripts in a mechanism that terminates DSIF (Spt4/Spt5)- associated 

RNAPII elongation complexes and enhancer RNAs (Lai, 2015; Skaar, 2015). Considering 

that polyA-dependent termination factors are temporally recruited after dissociation of the 

core elongation machinery, which includes DSIF, it is possible that Integrator could also 

carry out premature RNAPII termination of pervasive transcripts in metazoans similar to the 

NNS termination pathway in yeast (Mayer, 2012; Mayer, 2010). It has been shown that 

Senataxin and Xrn2 are not required for RNAPII termination at U1 and U2 snRNA genes 

(O’Reilly, 2014). However it has not been determined if RNAPII termination of pervasive 

transcripts in mammalian cells requires Senataxin and/or Xrn2; but both proteins have been 

implicated in kinetic competition models of termination that could be facilitated by RNAPII 

pausing as a consequence of engagement of RNA processing machinery such as Integrator 

(Fong, 2015; Hazelbaker, 2013). The kinetic competition models provide a strong 

mechanistic foundation for the intimate coupling of RNA processing and RNAPII 

termination.

The mechanisms of transcription termination including some additional examples of unique 

pathways are reviewed in more detail in the following publications: (Kuehner, 2011; Porrua, 

2016; Proudfoot, 2016).
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Conclusions

Recent work has begun to reveal how intimately coupled the processes of transcription and 

RNA processing are, particularly in the regulation of RNA quality control pathways. The 

clearest example of this important connection is the requirement for both 5’ and 3’ 

exonucleases for proper control of RNAPII termination and RNA transport. The rate of 

RNAPII transcription and phosphorylation of the RNAPII CTD are both critical for the 

recruitment of the RNA processing machinery and this coupling of processes in return likely 

ensures proper quality control of the transcribed RNAs to maintain proper gene expression 

and cellular health. As discussed in this review, capping, splicing, and 3’ end processing are 

inherently tied to the site of transcription, while the basal transcription machinery 

coordinately plays a significant role in managing checkpoints of RNA quality control and 

degradation in the nucleus. Future work is needed to define the proteins and mechanisms 

involved in the coupled transcription – RNA quality checkpoints which remain poorly 

understood throughout eukaryotes.

Cutting-edge structural biology and sequencing method development have greatly 

contributed to a gain in the understanding of the molecular mechanisms that underpin how 

these processes work both individually and cooperatively. Cryo-EM in particular has helped 

to make a number of recent advances in mechanistic knowledge of the transient, and 

subsequently hard to study, RNA processing pathways. However, there are still many open 

questions when it comes to understanding the mechanisms of these processes, and full 

structures of the mRNA 3’ end processing machinery have not been reported. The precise 

interplay between RNA processing machine assembly/disassembly and RNAPII 

transcription elongation is still poorly understood. As discussed, a number of recent 

observations of RNAPII pausing at splice sites and termination sites suggests an intimate 

crosstalk between RNAPII progression and RNA processing that likely provides coordinated 

regulation of alternative splicing and polyadenylation.
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PolyA Binding Protein Nuclear 1: A common resource for RNA processing 
and decay

A good example of the interconnectedness of processing and degradation for quality 

control is polyA binding protein nuclear 1 (PABPN1). PABPN1 interacts with polyA 

polymerase to aid in the addition of the polyA tail to transcripts (Kerwitz 2003). One way 

in which PAPBN1 functions in quality control of RNAs is through regulation of 

alternative cleavage and polyadenylation (APA) (Jenal, 2012). Similar to alternative 

splicing, APA can provide a way in which multiple transcripts can be produced from a 

single gene, with as many as 50% of human genes derived in this manner (Tian, 2005). 

Moreover, usage of alternative polyadenylation sites can lead to differing lengths in 3’ 

UTRs, which can have effects on mRNA stability, localization, and translation efficiency 

by changing targets for RNA binding proteins and miRNAs (Andreassi, 2009; Fabian, 

2010). APA has been described in more detail in the following reviews (Elkon, 2013; Di 

Giammartino, 2011; Lutz, 2011; Tian, 2013). PABPN1 and polyA polymerases have also 

been shown to have a role in RNA decay via the exosome (Beaulieu, 2012; Bresson, 

2013; Bresson, 2015; Lee, 2009). This functional connection between PABPN1 and the 

exosome has been further supported by the discovery of a protein that physically links 

PABN1 to the human NEXT complex (Meola, 2016). The fact that this PABN1 plays 

important roles in both 3’ end processing and targeting transcripts to the exosome 

highlights how quality control is managed through the balance between processing and 

degradation.
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The race between RNAPII and termination factors

The DNA:RNA helicase Sen1 and the 5’−3’ exonuclease Xrn2 are required for various 

termination pathways. In models of kinetic competition between RNAPII and Sen1/Xrn2, 

it has been proposed that slower-moving RNAPII will be able to be caught earlier in 

transcription, while fast-moving RNAPII won’t be caught until later in the gene. Pausing 

of RNAPII could provide an increased probability for termination via either Xrn2 or Sen1 

(Fig. 4) (Mischo, 2013). Use of RNAPII trigger loop mutants (Fast mutant: rpb1-
E1103G, Slow mutant: rpb1-N488D) has demonstrated that slow elongation leads to 

earlier termination, while fast elongation lead to later termination (Malagon, 2006). 

Growth and termination defects in some Xrn2 mutant cells can be overcome by RNAPII 

slow mutants (Fong, 2015; Jimeno-Gonzalez, 2010). Similarly, Sen1 mutants display 

read-through termination defects which can be suppressed by the introduction of slow 

RNAPII (Hazelbaker, 2013). In both cases, the slow RNAPII mutants provide a larger 

window of opportunity for proper termination by the mutant termination factors. In 

complementary work, it has recently been shown that Sen1 protein levels are modulated 

by the cell cycle (Mischo, 2018). Overexpression of Sen1 leads to a decrease in ncRNA 

production and an increase in efficiency of mRNA termination, with changes observed in 

both the occupancy of RNAPII and the position of termination (Mischo, 2018). The 

toxicity of Sen1 overexpression is likely caused by excess termination. This model is 

supported by the fact that mutations in other termination factors suppress this phenotype 

(Mischo, 2018).
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Figure 1: RNA processing and degradation.
Processing and degradation factors are recruited to the site of transcription. Shown are two 

polymerases moving in opposite directions demonstrating each of the major RNA processing 

pathways (as described in the key).
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Figure 2: Cleavage and polyadenylation.
Cap binding complex (CBC) binds 5’ guanosine cap. Cleavage factor 1A (CF1A) is 

recruited to Ser2 phosphorylated CTD of RNAPII. Cleavage and polyadenylation factor 

(CPF) is recruited and cleaves RNA after polyadenylation signal. Poly(A) polymerase 

polyadenylates 3’ end of RNA following cleavage. Xrn2 degrades 5’ end of uncapped RNA 

and removes RNAPII from the DNA template.
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Figure 3: Nrd1-Nab3-Sen1 Termination.
Nrd1 is recruited to the site of transcription by Ser5 phosphorylated CTD. Nab3 and Nrd1 

form a heterodimer and bind to RNA via their RNA recognition motif domains. Nab3 and 

Nrd1 are thought to be able to recruit Sen1, which then catches RNAPII and unwinds the 

DNA/RNA hybrid (also known as R-loop). TRAMP unwinds RNA and its subunit Trf4 

polyadenylates the 3’ end of RNA for processing and/or degradation. The exosome complex 

then degrades the RNA 3’−5’.
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Figure 4: Kinetic competition between RNAPII and Sen1/Xrn2.
The rate of transcription varies, due to factors that influence RNAPII kinetics and passage 

through chromatin, and these variations in rate can affect the termination window. In 

general, it is thought that slower elongation rates promote earlier termination, while faster 

elongation rates lead to termination spreading further downstream. The faster RNAPII 

moves along a gene, the harder it will be for the termination machinery to catch up, and how 

long it takes for RNAPII to be caught will help determine what termination pathway is used. 

Two termination-associated proteins thought to be tasked with catching RNAPII are Xrn2 

(also known as Rat1) and Sen1 (yeast homolog of Senataxin). Pausing of RNAPII would 

promote termination via either Xrn2 or Sen1 by providing the ability for them to catch up to 

the elongation complex (Mischo, 2013).

Peck et al. Page 39

Wiley Interdiscip Rev RNA. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Graphical Abstract
	Introduction
	RECRUITMENT 101: UTILIZING THE C-TERMINAL DOMAIN AND PAUSING
	Phosphorylation of the RNAPII CTD
	Pausing of RNAPII

	THE RNA EXOSOME: THE CLEAN-UP CREW
	IN BRIEF: 5’ CAPPING AND SPLICING
	Co-transcriptional capping and the initiation-elongation transition
	Co-transcriptional splicing

	THE END OF THE LINE: 3’ END PROCESSING AND DEGRADATION
	Cleavage and polyadenylation of mRNAs
	Two models for RNAPII release from the DNA template
	Other termination mechanisms

	Conclusions
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:

