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Abstract

Purpose: Accurate and timely organ-at-risk (OAR) segmentation is key to efficient and high-

quality radiation therapy planning. The purpose of this work is to develop a deep-learning-based 

method to automatically segment multiple thoracic OARs on chest CTs for radiotherapy treatment 

planning.

Methods: We propose an adversarial training strategy to train deep neural networks for the 

segmentation of multiple organs on thoracic CT images. The proposed design of adversarial 

networks, called U-Net-generative-adversarial-network (U-Net-GAN), jointly trains a set of U-

Nets as generators and fully convolutional networks (FCNs) as discriminators. Specifically, the 

generator, composed of U-Net, produces image segmentation map of multiple organs by an end-

to-end mapping learned from CT image to multi-organ segmented OARs. The discriminator, 

structured as an FCN, discriminates between the ground truth and segmented OARs produced by 

the generator. The generator and discriminator compete against each other in an adversarial 

learning process to produce the optimal segmentation map of multiple organs. Our segmentation 

results were compared with manually segmented OARs (ground truth) for quantitative evaluations 

in geometric difference, as well as dosimetric performance by investigating the dose-volume 

histogram in 20 stereotactic body radiation therapy (SBRT) lung plans.

Results: This segmentation technique was applied to delineate the left and right lungs, spinal 

cord, esophagus, and heart using 35 patients’ chest CTs. The averaged dice similarity coefficient 

for the above five OARs are 0.97, 0.97, 0.90, 0.75 and 0.87, respectively. The mean surface 

distance of the five OARs obtained with proposed method ranges between 0.4 mm and 1.5 mm on 

average among all 35 patients. The mean dose differences on the 20 SBRT lung plans are −0.001 

to 0.155 Gy for the five OARs.

Conclusion: We have investigated a novel deep-learning-based approach with a GAN strategy to 

segment multiple OARs in the thorax using chest CT images and demonstrated its feasibility and 
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reliability. This is a potentially valuable method for improving the efficiency of chest radiotherapy 

treatment planning.

1. Introduction

Lung cancer is the second most common form of cancer, and the leading cause of cancer 

death for both males and females.1–3 Depending on the stage and cancer type, 30–60% of 

lung cancer patients receive radiation therapy during their treatment.1 Radiotherapy is also 

the standard of care for certain lung cancers.4 The success of radiotherapy depends highly on 

the control of radiation exposure to organs at risk (OARs), such as the normal lungs, 

esophagus, spinal cord and heart, etc. Therefore, accurate normal tissue delineation is crucial 

for the outcome of radiotherapy, especially highly conformal radiotherapy such as intensity 

modulated radiotherapy (IMRT), proton therapy and stereotactic body radiotherapy (SBRT). 

These highly conformal treatments are designed to shape radiation dose to the target volume 

while sparing dose to OARs and are usually planned with sharp dose drop-off. Slight mis-

delineation could result in catastrophically high dose to OARs. In current clinical practice, 

targets and OARs are normally delineated manually by clinicians on CT images, which is 

tedious, time consuming and laborious. CT images provide accurate geometry information 

and electron density for inhomogeneity correction but are of low soft tissue contrast. This 

makes the manual delineation of soft tissues, such as the esophagus, particularly difficult and 

prone to errors arising from inter- and intra-observer variability.5–10 For the last few 

decades, researcher and clinicians have spent enormous effort to develop automatic 

contouring methods to provide accurate and consistent organ delineation.

The atlas-based method11–13 is a straightforward approach for automatic segmentation, 

which is available in several commercial products. This method registers atlas templates that 

contain pre-contoured structures, with the images to be segmented, and the pre-contoured 

structures are propagated to the new images. The segmentation accuracy of this technique 

depends highly on the accuracy of image registration. Because of organ morphology, 

variability across patients and image artifacts, accurate registration is not always guaranteed. 

This issue can be alleviated with a larger and more variable atlas dataset. However, the 

unpredictability of tumor shape makes it difficult to include all possible cases in the 

templates. Moreover, deformable image registration is costly in computation, and a large 

pool of atlas templates increases segmentation accuracy with skyrocketed computational 

cost. The model-based method makes use of statistical shape models for automated 

segmentation.14–16 The accuracy of those methods depends on the reliability of the models. 

While models are built based on anatomical knowledge of established datasets, the 

generalized models show limited performances on irregular images.

Deep learning has demonstrated enormous potential in computer vision17. This data-driven 

method explores millions of image features to facilitate various vision tasks, such as image 

classification,18 object detection19, 20 and segmentation.21, 22 Observing the success of deep 

learning in computer vision, researchers extended the deep learning-based techniques to 

medical imaging and developed automated segmentation techniques23–26. Ibragimov and 

Xing proposed a convolutional neural network (CNN)–based algorithm to segment OARs in 

the head and neck region. With conventional CNN and post-processing with Markov random 
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fields, they obtained similar segmentation accuracy to state-of-the-art automatic 

segmentation algorithms.27 Roth et al. modified the conventional CNN with a coarse-to-fine 

scheme, and applied it for pancreas segmentation28. Conventional CNN architectures are 

usually composed of multiple hidden convolutional layers, with each convolutional layer 

followed by rectified linear unit (ReLU) and pooling layers. The deep features obtained by 

these hidden layers are then fed into fully connected layers to generate the output. Long et 
al. proposed a fully convolutional network (FCN) architecture which enables end-to-end 

training and pixel-to-pixel segmentation,21i.e., equal-sized input image patch and output 

segmented patch. FCNs replace the fully connected layers in conventional CNNs with up-

sampling layers. Combining the outputs from contracting layers with up-sampling outputs, 

FCNs improve output resolution with more precise localization information. Ronneberger et 
al. developed U-Net based on FCN,29 which contains more contextual information obtained 

from contracting layers and more structural information obtained from up-sampling layers.

Since its introduction in 2014, generative adversarial network (GAN) has achieved 

remarkable success in generative image modeling and have shown outstanding performances 

in numerous applications.30–33 The architecture of the generative adversarial network 

integrates two competing networks, a generative network and a discriminative network, into 

one framework. The generator is to map given data to synthetic samples, and the 

discriminator is to differentiate the generated synthetic samples from the real samples. The 

two networks are trained sequentially and iteratively in a competing manner to boost the 

performance of the other, and the final goal is to generate synthetic samples that cannot be 

differentiated from real samples.

In this work, we employ the GAN strategy, with U-Net as generator and FCN as 

discriminator and achieve segmentation accuracy superior or comparable to state-of-the-art 

methods. To the best of our knowledge, the proposed method is the first thoracic CT 

automatic segmentation method utilizing GAN technique. The contributions of this work 

are: (1) we formulate a multiple OARs segmentation in thorax CT images with 3D GAN, (2) 

a residual loss function is used to balance the unfairness between large regions and small 

regions, and (3) anatomical constraints are utilized to localize structures of low contrast for 

improved computational cost and segmentation accuracy.

2. Methods

The proposed multiple OARs segmentation algorithm consists of a training stage and a 

segmentation stage. Figure 1 outlines the workflow schematic of our segmentation method. 

For a given set of thorax CT images and its corresponding manually segmented OARs that 

include the heart, left lung, right lung, spinal cord and esophagus, the manual contours were 

used as the deep learning targets of the thorax CT images. Since spinal cord and esophagus 

are much smaller than heart and lungs, it will be hard to simultaneously segment all the 

contours using only one segmentation model. To address this issue, we first train a 3-label-

based segmentation model to simultaneously segment the heart, left lung and right lung. 

Each label of the segmentation model represents a referred region. The segmentation model 

is implemented by a 2.5D end-to-end patch-based GAN model,34 which takes four 

continuous slices of CT images as an input patch, i.e., patch size of 512×512×4, and outputs 
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the equal-sized heart, left lung and right lung segmentations. Esophagus and spinal cord 

segmentation are trained separately with 3D GAN on cropped region of interest (ROI) 

patches. These ROIs are obtained based on the relative position of the esophagus and spinal 

cord to the lungs. We first locate the slice that contains the largest total lung volume, and the 

center of esophagus ROI is set as the centroid (mean position of all points) of the total lung. 

Similarly, the center of spinal cord ROI is set as the midpoint of the two most posterior 

points of left lung and right lung in the same slice. The ROI size is set as 64×64 to ensure 

that the esophagus or spinal cord is included in the cropped region along all CT slices, 

serving as a buffer for anatomical outliers or potential errors in the first network that the 

ROIs are drawn from. The 3D GAN models for esophagus and spinal cord segmentation 

employ the same architecture, which take 64×64×64 CT patches as input and output equal-

sized binary segmentations. For both 2.5 D and 3D GAN models, the input patch is obtained 

by patch cropping with step size 1×1×2, i.e., every two neighboring patches has two slices 

overlapping.

In the segmentation stage, patches consisting of four continuous slices were first extracted 

from new CT images and fed into the first segmentation model to obtain the heart, left lung 

and right lung contours. Then, the ROIs of esophagus and spinal cord were cropped based 

on the lung contours generated by the first model. 3D ROI patches were fed into the well-

trained second and third segmentation models to get the end-to-end esophagus and spinal 

cord contour segmentation, respectively. Finally, all the segmentations had their respective 

locations determined based on the spatial information of the original CT patches. The OAR 

contours are reconstructed with patch fusion and refined by contour refinement, such as 

filling holes, eroding and dilating operations.

Data

The 35 sets of thoracic CT images used in this study are obtained from 2017 AAPM 

Thoracic Auto-segmentation Challenges.35–37 Each scan contains the entire thoracic region, 

and manual contours are delineated according to RTOG1106 guidelines. The detailed 

descriptions of the datasets can be found in references.35, 36

Generative adversarial network

Due to the contrast limitation of CT images, manual contouring, especially contouring 

around organ boundaries, is prone to inter-observer variability. Since manual contours serve 

as the targets of the segmentation network, the contouring variability results in instability of 

end-to-end network models, such as U-Net. GAN models take an end-to-end network as 

generator and introduce extra judgment with discriminator to help generator find the optimal 

solutions. As illustrated in Figure 2, GAN-based segmentation model consists of a generator 

network and a discriminator network. The two networks were optimized one after the other 

in a zero-sum game framework. The generator’s training objective is to increase the judge 

error of the discriminative network (i.e., “fool” the discriminator by producing novel 

segmented contours that are indistinguishable from manual contours). The discriminator’s 

training objective is to decrease the judge error of the discriminator network and enhance the 

ability of differentiating the real from the fake. Back-propagation is applied in both networks 

so that the generator produces more realistic segmentation, while the discriminator becomes 
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more skilled at flagging segmented contours against manual contours. Therefore, we applied 

this well-known network, GAN, in our algorithm.

The details of the proposed GAN model are illustrated as follows. The CT patches were fed 

into the generator network, U-Net29, to get the end-to-end segmented contours. As shown in 

generator architecture part of Figure 1, the generator network consists of a compression path 

(left side), decompression path (right side), and a bridge path (middle side) connecting these 

two paths. The compression path is composed of 2 convolutional layers followed by a 

pooling layer to reduce the resolution. In each convolution layer, feature representations can 

be extracted via 3D convolutions followed by the parametric rectified linear unit (PReLU). 

The decompression path is constructed by 2 convolutional layers followed by a 

deconvolutional layer to enhance the resolution. The decompression path has a similar 

structure to the compression path, except that the compression path has no strided 

convolution. The decompression path uses a bridge path to concatenate features from equal-

sized compression and decompression paths. U-Net with such concatenation, i.e., a dense 

block network, encourages each path to obtain both high-frequency information (such as 

textural information) and low-frequency information (such as structural information) to 

represent the image patch. In order to output equal-sized segmented contour probability 

maps, deconvolutions with 2×2×2 stride size are used. At the end of the generator, 

probability maps of contours are generated with soft-max operators. A threshold was used to 

binarize the probability maps to binary masks of contours, called as generated contours. 

Then, as shown in discriminator architecture part, the discriminator was used to judge the 

authenticity of generated contours against the reference manual contours. The discriminator 

is a typical classification-based FCN, which consists of several convolution layers, each of 

which was followed by a pooling layer. The discriminator outputs a 1×1×1 variable with 1 

denoting real and 0 denoting fake.

The generator loss was computed as the sum of mean squared error (MSE) of the “residual” 

images, and the binary cross entropy loss of contour images. The “residual” images are 

calculated as the element-wise multiplication of the original CT patches with the probability 

maps of generated contours, and the reference “residual” images are calculated as the 

multiplication of CT patches and segmentation masks generated by manual contouring. The 

binary cross entropy is used as the discriminator loss. An Adam optimizer for gradient 

descent was applied to minimize these two losses. The generator and discriminator are 

implemented with the TensorFlow python toolbox. Batch sizes are set to 40 for the 2.5D 

network and 20 for the 3D networks. The training for the three GANs ran for 180 epochs, 

which took 2 hours for the first network and 3.5 hours for the second and third networks on 

a Titan XP 12GB GPU. The network training normally converges after 100 epochs, and we 

added more epochs for robustness.

Residual loss for generator optimization

During training, traditional generators use similarity or dissimilarity loss functions, e.g., 

binary cross entropy or Dice loss to compute the generator loss. However, since the region 

sizes between different labels are usually different, putting them together in one loss will be 

unfair. Therefore, we propose to use residual loss to cope with this unfairness. The 
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“residual” images are generated by computing the element-wise multiplication of probability 

maps of generated contours and original CT patches. The MSE of the ‘residual’ images is 

combined with binary cross entropy loss of contour images to compute the generator loss.

Evaluation

We implemented the proposed method on 35 sets of thoracic CT images with leave-one-out 

cross validation. In other words, we had 34 sets of images for training and validation and the 

remaining set for testing. The proposed network was run 35 times and generated 35 sets of 

test results. The performance of the proposed method was quantified with 6 metrics: dice 

similarity coefficient (DSC), sensitivity, specificity, 95% Hausdorff distance (HD95), mean 

surface distance (MSD), and residual mean square deviation (RMSD). DSC calculates the 

overlapping of ground truth contours and the contours generated with proposed method,

DSC = 2 × X ∩ Y
X + Y (1)

where X and Y are the ground truth contours and the contours obtained with proposed 

method, respectively, and |∙| indicates the volume of contours. Sensitivity and specificity 

quantify the overlapping ratio inside and outside the ground truth volume,

Sensitivity = X ∩ Y
X (2)

Speci f icity = X ∩ Y
X

(3)

where X and Y are the volumes outside the ground truth contours and auto-segmented 

contours respectively. Mean surface distance (MSD) calculates the average of two directed 

mean surface distances,

MSD =
d H, avg(X, Y) + d H, avg(Y , X)

2 (4)

where directed mean surface distance is d H, avg(X, Y) = 1
X ∑x ∈ X miny ∈ Y d(x, y), 

calculating the average distance of a point in X to its nearest neighbor in Y. Directed 95% 

Hausdorff distance measures the 95th percentile distance of all distances between points in X 

and the nearest point in Y, d H, 95(X, Y) = K95 miny ∈ Y d(x, y) . HD95 is calculated as the 

mean of two directed 95% Hausdorff distances,
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HD95 =
d H, 95(X, Y) + d H, 95(Y , X)

2 (5)

RMSD calculates the residual mean square distance between segmented contour and manual 

contour. RMSD is calculated as

RMSD = 1
X ∑x ∈ X miny ∈ Y d x, y 2 + 1

Y ∑y ∈ Y minx ∈ X d y, x 2 (6)

To evaluate the dosimetric impact of the proposed auto-segmentation method, we made 20 

lung SBRT plans with ground truth contours and PTVs which are defined on abnormal spots 

in lungs on each CT image dataset. We then calculated the dose-volume histogram (DVH) 

differences between ground truth contours and auto-segmented contours. Compared to 

conventional fractionated radiotherapy, SBRT usually demonstrates sharper dose drop-off, 

thus demands higher delineation accuracy. Therefore, the evaluation plans are made 

according to SBRT guidance. All 20 plans are prescribed to 10 Gy per fraction for 5 

fractions and normalized as 100% prescription dose to 95% of PTV volume. We calculated 

Dmean, D95, D50, D5, Dmin and Dmax differences between ground truth contours and 

auto-segmented contours to access the clinical feasibility of the proposed method. For total 

lungs, we also calculated more clinically relevant dose metrics, D1000cc and D1500cc.

3. Results

Figure 3 and 4 show the 2D and 3D segmentation results on one patient using the proposed 

U-Net-GAN method. The proposed method segments bilateral lungs, heart and spinal cord, 

and successfully delineates the esophagus. The OARs obtained with our method show great 

resemblance to the ground truth contours.

The quantitative evaluation results are summarized in Figure 5 and Table 1. Figure 5 shows 

six evaluation metrics - DSC, sensitivity, specificity, HD95, MSD and RMSD - calculated on 

all 35 patients, and their mean and standard deviation are listed in Table 1. As illustrated in 

Figure 5 and Table 1, the proposed method achieves superior segmentation accuracy on the 

left lung, right lung and spinal cord, with respective mean DSC of 0.97, 0.97 and 0.90, mean 

HD95 of 2.07 mm, 2.50 mm and 1.19 mm, and all average MSD less than 1mm. Heart 

segmentation is not as straightforward as lung and spinal cord segmentation due to the 

reduced image contrast. The quantitative evaluations demonstrate close matching of the 

proposed method and the ground truth on heart delineation. The mean DSC is 0.87, mean 

HD95 is 4.58 mm and mean MSD is 1.49 mm. Esophagus is of the lowest contrast among 

the five OARs on CT images, thus the most difficult one to delineate. The proposed method 

obtains 0.75±0.08 DSC, 4.52±3.81 mm HD95 and 1.05±0.66 mm MSD on esophagus 

segmentation. Sensitivity evaluates the true OAR volume overlapped by the volume obtained 

from the proposed method, and specificity quantifies the overlapped portion outside the true 

volume. The proposed method achieves average segmentation sensitivity of 0.74~0.97, with 
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the highest on bilateral lungs, and the lowest on esophagus. Specificity of all five OARs is 

close to unity. The mean RMSD ranges from 0.8 mm to 3.1mm on the five OARs.

Figure 6 shows linear regression analysis between ground truth and the proposed methods of 

the five OAR volumes. The linear correlations, R2 are larger than 0.84, and all P values are 

less than 0.001, which indicates strong statistical correlations between the ground truth 

volumes and those obtained with the proposed method.

We also evaluate the dosimetric impact of the contours obtained with the proposed automatic 

segmentation method. As shown in Figure 7, the DVH of the all five OARs of an exemplary 

patient obtained from manual contouring and the proposed method match well. We 

calculated Dmean, D95, D50, D5, Dmin and Dmax differences on all five OARs obtained 

from manual contouring and the proposed method for all 20 plans. The mean, standard 

deviation and corresponding P-value of dose differences calculated on ground truth OAR 

doses and auto-segmented OAR doses are summarized in Table 2. 26 of all 32 dosimetric 

metrics show P-values larger than 0.05, indicating no statistically significant dose 

differences between ground truth OAR and auto-segmented OAR. The mean differences of 

Dmean, D95, D50, D5 and Dmin of all five OARs are all less than 0.7Gy. The mean Dmax 

differences range from −0.06 Gy to 1.5 Gy. The average dose differences on D1000cc and 

D1500cc of total lung are less than 0.02Gy, with both P-values larger than 0.05.

4. Discussion

Target and OARs delineation is the prerequisite for treatment planning, especially for highly 

conformal radiotherapy, since those treatment plans are optimized and evaluated based on 

the dose constraints on targets and OARs. Delineation accuracy directly impacts the quality 

of treatment plans. Manual contouring suffers from the notorious inter- and intra-observer 

variability, and contouring quality highly depends on the expertise and experience of 

clinicians. The proposed automatic segmentation method provides accurate and consistent 

organ delineations that are independent of observers. While manual contouring usually takes 

from about half an hour to several hours depending on anatomical sites, the well-trained 

automatic segmentation method can finish multiple OAR contouring in several seconds. This 

greatly shortens the preparation process for treatment planning, and the saved time can be 

used to either obtain a better treatment plan or accelerate the treatment of fast-growing 

tumors. Automatic segmentation also shows the potential to facilitate online adaptive 

radiotherapy (ART). Online ART adapts the daily changes with patients on table. The entire 

process, from daily imaging to organ contouring, re-planning and plan QA, needs to 

conclude in 10–20 minutes, therefore it is desirable to minimize the processing time for each 

step. The proposed method was performed on an NVIDIA TITAN XP GPU with 12GB of 

memory and segments all five organs within 6 seconds. With the help of more powerful 

GPUs, the segmentation time could be further reduced.

U-Net-GAN improves upon the U-Net approach by introducing a discriminator. To offer a 

concrete display of improvement, we conducted a leave-one-out experiment to compare the 

results generated by U-Net with and without the adversarial network, shown in Table 3. All 

parameters of U-Net were set based on the parameters that offered the best performance. As 
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shown in the table, with the help of the adversarial network, majorities of the evaluation 

metrics are improved (DSC, Specificity and Sensitivity increased; HD95, MSD and RMSD 

decreased).

The datasets used in this work are obtained from 2017 AAPM Thoracic Auto-segmentation 

Challenges. Ref35 shows the segmentation results from 7 institutes. 5 out of 7 institutes 

developed deep-learning-based methods, and the other two (institute #4 and #6) used multi-

atlas-based methods. We compared the segmentation results using our proposed method with 

results from the 7 groups and listed the comparison results in Table 4. Our method generates 

similar DSC on bilateral lungs, heart and spinal cord, but outperforms all seven methods on 

esophagus segmentation. MSD and HD95 obtained with proposed method are superior to all 

seven methods on all five OARs.

To evaluate the dosimetric impact of the auto-segmented contours, we made 20 Lung SBRT 

plans with ground truth contours and compared the dose of OARs from manual contouring 

and auto-contouring. Among the 32 evaluation dose metrics, 29 metrics calculate the 

average dose difference to be less than 0.5 Gy, and 24 calculate the difference to be less than 

0.1Gy. 26 of 32 metrics have P-value larger than 0.05, indicating no statistically significant 

differences. For the six dose metrics with P-value smaller than 0.05, Table 5 lists their mean 

dose values on both ground truth contours and auto-segmented contours. The esophagus 

Dmin, D95, D50, Dmean and left lung D95 on both ground truth contours and auto-

segmented contours are all less 1.4 Gy, and the dose differences are less than 0.2Gy. Though 

the P-values are less than 0.05, the dose differences of 0.03–0.2Gy are minimal. The average 

Dmax difference for right lung is 1.527Gy with P-value of 0.03. Dmax is sensitive to 

contour edges, especially when OAR lies in the region of sharp dose drop-off. 16 out of the 

20 plans have PTV lying in the right lung, therefore it is within expectation that the Dmax as 

well as Dmax differences for right lung are larger than those of other OARs. As shown in 

Table 5, the average Dmax of right lung is 44.4Gy, and 1.5 Gy counts only for 3.4% relative 

difference. Moreover, clinicians place more emphasis on D1000cc and D1500cc of total lung 

when evaluating SBRT plans, and these two metrics show very minimal difference 

(<0.02Gy, p>0.05).

Compared to atlas-based and model-based methods, deep-learning based methods are 

developed on large amounts of data with a substantial number of features, therefore have the 

potential to provide a better solution for problems with large variations. In applying the 

established image segmentation methods in computer vision to medical imaging, the first 

challenge is the lack of training data. Those established methods are built on anywhere from 

several thousand up to several million training samples, which is impractical for medical 

imaging. In this work, with leave-one-out cross validation, only 34 sets of thoracic CT are 

available for training. To supplement training data, we applied data augmentation 

techniques, such as shifting, mirroring, flipping, scaling and rotation on the available CT 

images.29 With intensive augmentation, the performance of the proposed method tends to 

stabilize when more than 20 sets of CT data are used for training. This approach also has 

realistic indications. Patient movement, such as translation and rotation, doesn’t change the 

relative position between organs. Including the transformed data could help avoid overfitting 

and help the segmentation algorithm learn this invariant property.
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It is worth noting that the performance of the proposed method is not uniform across all 35 

patients. The segmentation accuracy for some patients, such as patients #11, #17 and #33, is 

inferior to others. Patient #11 suffered left lung collapse, and right lung extended across the 

midline. The proposed method mislabeled part of the right lung as left lung. Patient #17 and 

#33 had large lung lesions, and the proposed method labeled the lesions differently from 

manual contouring. As noted, the proposed network tends to mislabel organs when unusual 

structures exist. This issue can be alleviated by including more diverse and variable data for 

training.

Due to the dimension differences and variation between patients, it is difficult to balance the 

loss function between the four organs. Integrating all the segmentations into one network 

complicates the training process and reduces segmentation accuracy. To simplify the 

method, we group OARs of similar dimensions, and utilize three sub-networks for 

segmentation, one for lungs and heart, and the other two for esophagus and spinal cord, 

respectively. This approach improves segmentation accuracy at the cost of computation 

efficiency. It could be an issue if we want to apply the proposed method to segment more 

OARs. In the future, we will explore the possibility of multiple organ segmentation in a 

single network.

Manual contouring uncertainty causes errors in plan optimization and results in non-optimal 

or unacceptable plans. Fiorino et al. performed a study on the intra- and inter-observer 

variation in prostate and seminal vesicles delineation, and found that 2–3 mm contouring 

variation resulted in 4% and 12% variation of mean dose on bladder and rectum, and 10% 

uncertainty on volume received 95% prescription doses.38 Nelms et al. also observed 

substantial dosimetric impacts due to OAR contouring variation on a head and neck patient, 

where the mean dose ranged from −289% to 56%, and maximum dose from −22% to 35%10. 

Similar uncertainty was observed for brachytherapy, where OAR contouring variation 

resulted in 10% uncertainty in D2cc.39 In this work, we assessed the feasibility of using 

auto-segmented contours to evaluate treatment plans. To further validate the daily clinical 

implementation of the proposed method, we will evaluate the reliability of treatment 

planning using auto-segmented contours.

5. Conclusion

We have investigated a novel deep-learning-based approach with a generative adversarial 

network strategy to segment multiple OARs in the thorax using chest CT images. 

Experimental validation has been performed to demonstrate its clinical feasibility and 

reliability. This multiple OAR segmentation could be a useful tool for improving the 

efficiency of the lung radiotherapy treatment planning.
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Figure 1. 
Schematic flow chart of the proposed algorithm for thoracic CT multi-organ segmentation. 

The upper part (white) shows the training stage of the proposed method, which consists of 

three GANs. The lower part (light blue) shows the segmentation stage. In segmenting stage, 

CT patches are fed into the three well-trained models to get OAR segmentations.
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Figure 2. 
An example illustrating the process of GAN.
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Figure 3. 
(a) Three transverse CT slices on one patient and the corresponding OAR contours obtained 

from (b) manual contouring (ground truth) and (c) the proposed method
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Figure 4. 
3D visualization the OAR contours on the same patient in Figure 3 obtained with (a) manual 

contouring and (b) the proposed method
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Figure 5. 
The six evaluation metrics, (a) DSC, (b) Sensitivity, (c) Specificity, (d) HD95, (e) MSD and 

(f) RMSD of the five OARs calculated on 35 patients.
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Figure 6. 
Linear regression analysis of (a) esophagus, (b) heart, (c) left lung, (d) right lung, and (e) 

spinal cord volumes obtained with manual contouring (ground truth) and proposed method. 

Blue circles indicate individual patient measurement; and the dashed red line is the line of 

identity.
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Figure 7. 
Dose distribution on one patient with (a) ground truth contours and (b) auto-segmented 

contours, and (c) the corresponding DVHs. Window width for (a) and (b): 0.1–1Gy.
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Table 1.

Mean and standard deviation of DSC, Sensitivity, Specificity, HD95, MSD and RMSD. The minimum and 

maximum values are listed in parentheses.

Esophagus Heart Left Lung Right Lung Spinal Cord

DSC 0.75±0.08
(0.55, 0.89)

0.87±0.05
(0.72, 0.95)

0.97±0.01
(0.92, 0.99)

0.97±0.01
(0.93, 0.99)

0.90±0.04
(0.81, 0.95)

Sensitivity 0.74±0.10
(0.48, 0.92)

0.89±0.07
(0.66, 0.97)

0.97±0.02
(0.91, 0.998)

0.96±0.02
(0.90, 0.99)

0.93±0.03
(0.86, 0.97)

Specificity 0.9997±0.0001
(0.9993, 0.9997)

0.9977±0.0020
(0.9922. 0.9999)

0.9989±0.0010
(0.9946, 0.9999)

0.9992±0.0007
(0.9969, 0.9999)

0.9998±0.00001
(0.9996, 0.99995)

HD95 (mm) 4.52±3.81
(1.58, 17.56)

4.58±3.67
(1.33, 15.77)

2.07±1.93
(0.67, 9.43)

2.50±3.34
(0.33, 16.58)

1.19±0.46
(0.67, 3.50)

MSD (mm) 1.05±0.66
(0.46, 2.83)

1.49±0.85
(0.40, 3.62)

0.61±0.73
(0.16, 4.62)

0.65±0.53
(0.13, 2.43)

0.38±0.27
(0.15, 1.51)

RMSD (mm) 2.24±1.36
(0.82, 6.03)

3.14±2.19
(0.82, 8.39)

2.12±2.32
(0.46, 14.24)

2.66±2.46
(0.35, 10.24)

0.82±0.85
(0.33, 3.95)

Med Phys. Author manuscript; available in PMC 2020 May 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Dong et al. Page 21

Table 2.

The mean and standard deviation (STD) of dose differences and p-value calculated with ground truth OARs 

dose and auto-segmented OARs dose on 20 SBRT plans

Dmin D95 D50 D5 Dmean Dmax

Esophagus

Mean (Gy) 0.010 0.012 0.048 0.213 0.145 1.003

STD (Gy) 0.016 0.017 0.068 0.626 0.240 2.740

P-value 0.012 0.007 0.005 0.146 0.014 0.118

Heart

Mean (Gy) −0.001 −0.002 0.002 0.280 0.056 0.247

STD (Gy) 0.006 0.010 0.028 1.092 0.173 2.926

P-value 0.528 0.385 0.815 0.266 0.162 0.710

Left Lung

Mean (Gy) 0.003 0.005 0.014 0.063 0.025 0.147

STD (Gy) 0.012 0.009 0.054 0.222 0.059 0.871

P-value 0.254 0.035 0.257 0.219 0.073 0.461

Right Lung

Mean (Gy) −0.002 0.004 0.027 0.668 0.155 1.527

STD (Gy) 0.023 0.001 0.118 1.698 0.341 2.924

P-value 0.695 0.088 0.319 0.095 0.057 0.031

Spinal Cord

Mean (Gy) 0 0.001 0.002 0.028 −0.001 −0.055

STD (Gy) 0 0.002 0.015 0.144 0.065 0.203

P-value N/A 0.330 0.659 0.394 0.973 0.241

D1000cc D1500cc

Total Lung

Mean (Gy) 0.017 0.005

STD (Gy) 0.043 0.025

P-value 0.095 0.427
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Table 3.

The segmentation comparison between U-Net and U-Net-GAN, the proposed method, with the mean and 

standard deviation of DSC, Sensitivity, Specificity, HD95, MSD and RMSD listed.

Esophagus Heart Left Lung Right Lung Spinal Cord

DSC
U-Net 0.71±0.08 0.85±0.05 0.97±0.01 0.96±0.01 0.83±0.05

U-Net-GAN 0.75±0.08 0.87±0.05 0.97±0.01 0.97±0.01 0.90±0.04

Sensitivity
U-Net 0.71±0.09 0.94±0.05 0.97±0.02 0.96±0.02 0.97±0.01

U-Net-GAN 0.73±0.10 0.89±0.07 0.97±0.02 0.96±0.02 0.93±0.03

Specificity
U-Net 0.9996±0.0002 0.9958±0.0029 0.9989±0.0010 0.9992±0.0007 0.9995±0.0001

U-Net-GAN 0.9997±0.0001 0.9977±0.0020 0.9989±0.0010 0.9992±0.0007 0.9998±0.00001

HD95 (mm)
U-Net 4.91±4.13 6.45±4.03 2.07±1.92 2.50±3.33 1.98±1.52

U-Net-GAN 4.52±3.81 4.58±3.67 2.07±1.93 2.50±3.34 1.19±0.46

MSD (mm)
U-Net 1.09±0.67 1.91±0.95 0.61±0.73 0.65±0.53 0.54±0.29

U-Net-GAN 1.05±0.66 1.49±0.85 0.61±0.73 0.65±0.53 0.38±0.27

RMSD (mm)
U-Net 2.37±1.40 3.68±2.24 2.12±2.32 2.66±2.45 1.08±1.32

U-Net-GAN 2.24±1.36 3.14±2.19 2.12±2.32 2.66±2.46 0.82±0.85
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Table 4.

The segmentation comparison of the proposed method with the seven methods participated in 2017 AAPM 

Thoracic Auto-segmentation Challenges.

Method Esophagus Heart Left Lung Right Lung Spinal Cord

DSC 1 0.72±0.10 0.93±0.02 0.97±0.02 0.97±0.02 0.88±0.037

2 0.64±0.20 0.92±0.02 0.98±0.01 0.97±0.02 0.89±0.042

3 0.71±0.12 0.91±0.02 0.98±0.02 0.97±0.02 0.87±0.110

4 0.64±0.11 0.90±0.03 0.97±0.01 0.97±0.02 0.88±0.045

5 0.61±0.11 0.92±0.02 0.96±0.03 0.95±0.05 0.85±0.035

6 0.58±0.11 0.90±0.02 0.96±0.01 0.96±0.02 0.87±0.022

7 0.55±0.20 0.85±0.04 0.95±0.03 0.96±0.02 0.83±0.080

Proposed 0.75±0.08 0.87±0.05 0.97±0.01 0.97±0.01 0.90±0.04

MSD(mm) 1 2.23±2.82 2.05±0.62 0.74±0.31 1.08±0.54 0.73±0.21

2 6.30±9.08 2.42±0.82 0.61±0.26 0.93±0.53 0.69±0.25

3 2.08±1.94 2.98±0.93 0.62±0.35 0.91±0.52 0.76±0.60

4 2.03±1.94 3.00±0.96 0.79±0.27 1.06±0.63 0.71±0.25

5 2.48±1.15 2.61±0.69 2.90±6.94 2.70±4.84 1.03±0.84

6 2.63±1.03 3.15±0.85 1.16±0.43 1.39±0.61 0.78±0.14

7 13.10±10.39 4.55±1.59 1.22±0.61 1.13±0.49 2.10±2.49

Proposed 1.05±0.66 1.49±0.85 0.61±0.73 0.65±0.53 0.38±0.27

HD95(mm) 1 7.3+10.31 5.8±1.98 2.9±1.32 4.7±2.50 2.0±0.37

2 19.7±25.90 7.1±3.73 2.2±10.79 3.6±2.30 1.9±0.49

3 7.8±8.17 9.0±4.29 2.3±1.30 3.7±2.08 2.0±1.15

4 6.8±3.93 9.9±4.16 3.0±1.08 4.6±3.45 2.0±0.62

5 8.0±3.80 8.8±5.31 7.8±19.13 14.5±34.4 2.3±0.50

6 8.6±3.82 9.2±3.10 4.5±1.62 5.6±3.16 2.1±0.35

7 37.0±26.88 13.8±5.49 4.4±3.41 4.1±2.11 8.1±10.72

Proposed 4.52±3.81 4.58±3.67 2.07±1.93 2.50±3.34 1.19±0.46
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Table 5:

The average dose on ground truth contours and auto-segmented contours, and corresponding differences for 

the six DVH metrics with P-value less than 0.05 listed in Table 2.

Esophagus
Dmin

Esophagus
D95

Esophagus
D50

Esophagus
Dmean

Left Lung
D95

Right Lung
Dmax

Ground Truth (Gy) 0.030 0.053 0.278 1.222 0.080 43.447

The Proposed (Gy) 0.040 0.064 0.326 1.367 0.084 44.964

Difference (Gy) 0.010 0.012 0.048 0.145 0.005 1.527
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