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Abstract

In vivo mapping of the neurite density with diffusion MRI (dMRI) is a high but challenging aim. 

First, it is unknown whether all neurites exhibit completely anisotropic (“stick-like”) diffusion. 

Second, the “density” of tissue components may be confounded by non-diffusion properties such 

as T2 relaxation. Third, the domain of validity for the estimated parameters to serve as indices of 

neurite density is incompletely explored. We investigated these challenges by acquiring data with 

“b-tensor encoding” and multiple echo times in brain regions with low orientation coherence and 

in white matter lesions. Results showed that microscopic anisotropy from b-tensor data is 

associated with myelinated axons but not with dendrites. Furthermore, b-tensor data together with 

data acquired for multiple echo times showed that unbiased density estimates in white matter 

lesions require data-driven estimates of compartment-specific T2 values. Finally, the “stick” 

fractions of different biophysical models could generally not serve as neurite density indices 

across the healthy brain and white matter lesions, where outcomes of comparisons depended on 

the choice of constraints. In particular, constraining compartment-specific T2 values was 
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ambiguous in the healthy brain and had a large impact on estimated values. In summary, 

estimating neurite density generally requires accounting for different diffusion and/or T2 

properties between axons and dendrites. Constrained “index” parameters could be valid within 

limited domains that should be delineated by future studies.
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1 | INTRODUCTION

Diffusion MRI (dMRI) makes use of the micrometer scale displacement of water molecules 

to detect microstructural alterations in the brain due to disease (Chenevert et al., 2000; 

Horsfield & Jones, 2002; Moseley et al., 1990; Surova et al., 2013; Van Cauter et al., 2012; 

Werring et al., 2000) as well as normal processes such as learning (Sagi et al., 2012; Scholz, 

Klein, Behrens, & Johansen-Berg, 2009) and maturation (Lebel, Walker, Leemans, Phillips, 

& Beaulieu, 2008; Lobel et al., 2009). However, dMRI does not yield tissue quantities 

directly. For example, the fractional anisotropy (FA) parameter of diffusion tensor imaging 

(DTI) (Basser, Mattiello, & LeBihan, 1994) cannot be directly associated to the density of 

anisotropic structures such as axons since it is sensitive to other factors such as their 

orientation coherence (Douaud et al., 2011; Pierpaoli, Jezzard, Basser, Barnett, & Di Chiro, 

1996).

Biophysical models seek to increase the specificity of dMRI by dividing the signal between 

“compartments” to estimate tissue quantities (Alexander, Dyrby, Nilsson, & Zhang, 2017; 

Kiselev, 2017; Nilsson, van Westen, Ståhlberg, Sundgren, & Lätt, 2013; Novikov, Jespersen, 

Kiselev, & Fieremans, 2016; Novikov, Kiselev, & Jespersen, 2018). The target quantity of 

early approaches was the axonal volume fraction in coherent white matter, characterized by 

diffusion in highly anisotropic structures such as “cylinders” with a small but non-zero 

(apparent) radial diffusivity (Assaf & Basser, 2005), or “sticks” with an (apparent) radial 

diffusivity of zero (Behrens et al., 2003). Further developments extended models to non-

coherent white matter by incorporating an orientation distribution function (Jespersen, 

Kroenke, Østergaard, Ackerman, & Yablonskiy, 2007; Kaden, Knösche, & Anwander, 2007; 

Sotiropoulos, Behrens, & Jbabdi, 2012; Tariq, Schneider, Alexander, Wheeler-Kingshott, & 

Zhang, 2016; Zhang, Hubbard, Parker, & Alexander, 2011; Zhang, Schneider, Wheeler-

Kingshott, & Alexander, 2012) or by mimicking complete orientation dispersion through so-

called powder averaging (Kroenke, Ackerman, & Yablonskiy, 2004). Several contemporary 

approaches aspire to encompass also gray matter and to capture the combined volume 

fractions of axons and dendrites (neurites) in a single “neurite density” parameter (Jespersen 

et al., 2007; Kaden, Kelm, Carson, Does, & Alexander, 2016; White, Leergaard, D’Arceuil, 

Bjaalie, & Dale, 2013; Zhang et al., 2012). However, estimating a specific tissue quantity 

such as neurite density from clinical dMRI data necessitates simplifying assumptions whose 

accuracy and generality are unknown. This work focuses on three challenges for scientists 

using biophysical models to estimate the neurite density.
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The first challenge is that mapping neurites requires a correct model for diffusion in both 

axons and dendrites. Biophysical models typically use the “neurite assumption” to represent 

both these structures in a single “stick” compartment with fully anisotropic (one 

dimensional) diffusion. The rationale is that axons and dendrites should exhibit a radial 

diffusivity of approximately zero (Behrens et al., 2003; Kroenke et al., 2004) due to their 

approximately cylindrical shape with diameters that are smaller than the resolution limit 

(Nilsson, Lasič, Drobnjak, Topgaard, & Westin, 2017). Studies have confirmed this property 

for axons (McKinnon, Jensen, Glenn, & Helpern, 2017; Veraart, Fieremans, & Novikov, 

2017) but the evidence is less conclusive for dendrites. Although “stick-like” diffusion has 

been demonstrated in cortical gray matter (Novikov, Jensen, Helpern, & Fieremans, 2014), 

this could merely reflect the presence of myelinated axons, as suggested by the study on 

fixed tissue using histology by Jespersen et al. (2010). Furthermore, the low levels of 

microscopic anisotropy observed in gray matter compared to white matter (Lampinen et al., 

2017; Lawrenz & Finsterbusch, 2018; Novikov, Veraart, Jelescu, & Fieremans, 2018) may 

indicate that the radial diffusivity of dendrites is actually non-zero.

The second challenge is that mapping densities (volume fractions) from signal fractions 

requires accounting for potential differences in T2 relaxation between tissue components. 

Since T2 values cannot be estimated from dMRI data acquired with a single echo time (TE), 

contemporary approaches implicitly assume T2 values to be equal between “neurite” and 

“non-neurite” tissue. We refer to this as the “density assumption.” In white matter, such T2 

differences may indeed be small, seeing that intra- and extra-axonal water pools are not 

clearly distinguishable based on multi-exponential T2 relaxation (Mackay et al., 1994; 

Whittall et al., 1997). Although components with different relaxation and diffusion 

properties have been demonstrated in peripheral nerve (Peled, Cory, Raymond, & Kirschner, 

1999), near negligible effects on diffusion have been observed from varying the TE in 

human white matter (Clark & Le Bihan, 2000; Tax, Rudrapatna, Witzel, & Jones, 2017), as 

well as in rat brain (Does & Gore, 2000) and in cranial nerves of the garfish (Beaulieu, 

Fenrich, & Allen, 1998). However, more recent white matter studies indicate that the T2 

value of intra-axonal water may be longer than that of extra-axonal water (De Santis, Assaf, 

& Jones, 2016; Veraart, Novikov, & Fieremans, 2017). In gray matter, corresponding issues 

are not well investigated. In pathologies, the compartment-specific T2 values could be 

perturbed, for example, by enlargement of the extracellular space in ischemic degeneration 

(Englund & Brun, 1990) or by vascular edemas in conditions with blood-brain barrier 

damage such as tumors and acute MS lesions (Ballabh, Braun, & Nedergaard, 2004).

The third challenge is to find the range of conditions, or “domain of validity,” where the 

specific interpretations of biophysical model parameters are accurate. This domain may be 

both small and difficult to delineate for a parameter that is interpreted as the actual physical 

neurite density (fractional voxel volume occupied by neurites). The domain may be 

widened, however, if the parameter is interpreted as an “index” for neurite density (Kaden et 

al., 2016; Zhang et al., 2012), since this acknowledges a multifactorial origin and only 

claims the “ordinal accuracy” to rank observations. Even for neurite density indices, 

however, the domain of validity must be delineated to avoid conditions where factors such as 

T2 relaxation are sufficiently large to “break” the index property and confound the outcome 

of comparisons.
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This work investigates the three above challenges through a “multidimensional” diffusion 

acquisition using the novel “b-tensor encoding” approach (Eriksson, Lasič, Nilsson, Westin, 

& Topgaard, 2015; Eriksson, Lasic, & Topgaard, 2013; Lasič, Szczepankiewicz, Eriksson, 

Nilsson, & Topgaard, 2014) as well as multiple TE (de Almeida Martins and Topgaard, 

2018). First, we examined whether mapping neurites based on the property of microscopic 

diffusion anisotropy is supported by data. Using the high specificity of b-tensor encoding 

and knowledge from histology, we compared the anisotropy between multiple healthy brain 

regions that are substantially different with respect to axonal density but similar with respect 

to the combined axonal and dendritic (thus neurite) density. This tests a prediction of the 

neurite assumption (that microscopic anisotropy should reflect neurite density) against the 

alternative hypothesis that this property is mainly due to axons. Second, we explored 

whether T2 relaxation is likely to confound density estimates in healthy white and gray 

matter as well as in white matter lesions. Using the combined b-tensor and multiple TE data, 

we attempted independent estimation of the “stick” fraction and compartment-specific T2 

values in a minimally constrained biophysical model. This tests the feasibility of 

disentangling density from T2 relaxation and addresses the validity of the density 

assumption. Age-related white matter lesions, thought to be typically of ischemic origin 

(Pantoni & Garcia, 1997), are a suitable material in this context since they may exhibit 

changes to both diffusion anisotropy, through demyelination (Swieten et al., 1991) and 

axonal loss (Englund & Brun, 1990), and to T2 relaxation (Englund, Brun, & Persson, 

1987). Third, we tested whether the domain of validity for neurite density indices encompass 

healthy white and gray matter as well as white matter lesions. Using biophysical models that 

are prevalent in the literature, we compared the resulting rankings of a range of brain regions 

with respect to the “stick” fraction. Since there can be only one true ranking with respect to 

a quantity such as neurite density, disagreement between models signifies a domain of 

validity violation. The results have impact on the standard interpretation of dMRI data, 

which is elaborated on in the discussion.

2 | THEORY

The techniques for data analysis described in this section were employed after arithmetic 

averaging of the signal across diffusionencoding directions, so-called “powder averaging” 

(Callaghan, Jolley, & Lelievre, 1979; Jespersen, Lundell, Sønderby, & Dyrby, 2013; Lasič et 

al., 2014). Provided data is acquired with a sufficient number of directions 

(Szczepankiewicz, Westin, Ståhlberg, Lätt, & Nilsson, 2016), powder averaging yields a 

signal whose orientation-invariant aspects of diffusion are preserved but with an orientation 

distribution that mimics complete dispersion of anisotropic structures.

2.1 | Representation-based analysis

We represent the powder-averaged b-tensor data with a cumulant expansion in b-values, 

according to

log (S) ≈ log S0 − b ⋅ MD + b2 ⋅ MK1 + bΔ
2 ⋅ MKA ⋅ MD2/6, (1)
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assuming cylinder-symmetric b-tensors. Four parameters represent the signal: the non-

diffusion weighted signal (S0), the mean diffusivity (MD), the “isotropic kurtosis” (MKI), 

and the “anisotropic kurtosis” (MKA). Two parameters describe the experiment: the “size” 

(b) and “shape” (bΔ) parameters of the b-tensor, where the former is the conventional b-

value (Le Bihan et al., 1986) and the latter ranges from –0.5 (planar) through zero 

(spherical) to unity (linear) (Eriksson et al., 2015; Topgaard, 2016; Topgaard, 2017). Under 

the assumption that the diffusion process can be described by a set of non-exchanging 

compartments with approximately Gaussian diffusion, the MKI parameter represents 

variance in isotropic diffusivities (“isotropic heterogeneity”) and the MKA parameter 

represents microscopic diffusion anisotropy (Szczepankiewicz et al., 2016; Topgaard, 2017; 

Westin et al., 2016). These properties cannot be separated with data acquired with a single 

shape of the b-tensor (Mitra, 1995; Topgaard, 2017). For example, using only the linear 

tensor encoding (LTE, bΔ = 1) of conventional multi-shell dMRI yields the (powder-

averaged) signal equation of diffusion kurtosis imaging (DKI; Jensen, Helpern, Ramani, Lu, 

& Kaczynski, 2005; Yablonskiy, Bretthorst, & Ackerman, 2003) and three parameters: S0, 

MD, and MK, where MK = MKI + MKA, as a special case. On the other hand, data acquired 

with two or more b-tensor shapes, such as the combination of LTE and spherical tensor 

encoding (STE; bΔ = 0; Lasič et al., 2014; Szczepankiewicz et al., 2015; Szczepankiewicz, 

van Westen, et al., 2016) or LTE and planar tensor encoding (PTE; bΔ = − 1 2; Jespersen et 

al., 2013; Lawrenz & Finsterbusch, 2013), allows estimation of four parameters and 

disambiguating the source for kurtosis.

2.2 | Model-based analysis

Biophysical models express the signal as the sum of signals from different compartments, 

according to

S = Σ Sk = Σ f k ⋅ SPD;k ⋅ AT1; k ⋅ AT2; k ⋅ AD;k, (2)

where, for the k:th compartment, fk is the fraction Σ f k = 1 , SPD;k is the proton density-

weighted signal, AT1;k and AT2;k are the attenuations due to T1 and T2 relaxation, 

respectively, and AD;k is the attenuation due to diffusion. For the powder-averaged signal, 

the diffusion attenuation is solely a function of orientation-invariant aspects of the diffusion 

and the encoding. We represent compartment diffusion with an axisymmetric diffusion 

tensor described by its “size” (isotropic dif- fusivity), D1 = 1/3 ⋅ D + 2/3 ⋅ D⊥ and “shape” 

(anisotropy), DΔ = D −D⊥)/ D + 2 ⋅ D⊥ ∈ [ −½1 ], where D∥ and D⊥ are the axial and 

radial diffusivities, respectively. As we similarly represent diffusion encoding by an 

axisymmetric b-tensor, parameterized by b and bΔ, the compartment diffusion attenuation is 

a function of four scalar parameters, according to (Eriksson et al., 2015; Topgaard, 2016; 

Topgaard, 2017)

AD;k b, bΔ, DI;k, DΔ; k = exp −bDI;k 1 − bΔDΔ; k ⋅ g 3bDI;kbΔDΔ; k , (3)
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where

g(α) = ∫
0

1
exp −αx2 dx = π

4α erf ( α), (4)

and erf(.) is the error function (Callaghan et al., 1979).

We define a minimally constrained biophysical model based on Equation 2 using three 

compartments: a “ball” (B), a “stick” (S), and cerebrospinal fluid (CSF; C). By design, the 

“ball” and CSF compartments feature isotropic diffusion (DΔ;B = 0, DΔ;C = 0) while the 

“stick” compartment features completely anisotropic diffusion (DΔ;S = 1). While proton 

densities and T1 relaxation times are assumed to be equal for all compartments, the T2 

values are free for “balls” (T2B) and “sticks” (T2S). The T2 value of CSF was fixed as T2C = 

1,400 ms, motivated by results from Hopkins, Yeung, and Bratton (1986) and Weigel and 

Hennig (2006). Finally, the isotropic diffusivities of “balls” (DI;B) and “sticks” (DI;S) are 

free parameters, while the isotropic diffusivity of CSF is fixed as DI;C = 3 μm2/ms . In total, 

the model features seven free parameters, summarized in Table 1: S0, fS (the “stick” 

fraction), fC (the CSF fraction), T2B, T2S, DI;B and DI;S. Together with the experimental 

parameters, b, bΔ, and TE, these combine to form the full signal equation, according to

S = S0 ⋅ 1 − f S − f C ⋅ AT2; B ⋅ AD;B + f S ⋅ AT2; S ⋅ AD;S + f C ⋅ AT2; C ⋅ AD;C , (5)

where the attenuations are given by

AT2; B/S/C = exp −TE/T2B/S/C , (6)

AD; B/C = exp −bDI; B/C , (7)

AD;S = exp −bDI;S 1 − bΔ ⋅ g 3bDI;SbΔ , (8)

using g( ⋅ ) from Equation 4. This model thus resembles the “standard model” for white 

matter (Novikov et al., 2016; Novikov, Veraart, et al., 2018)but extended to gray matter (by 

the CSF fraction) and to feature T2 relaxation. Unlike the standard model, however, we 

employ the “ball” constraint of isotropic diffusion outside of “stick-like” structures. The 

choice was made to improve feasibility of model fitting, but limited the subsequent data 

analysis to regions with a low orientation coherence, where this constraint should be valid.

A compartment-based model (Equation 2) can attain any capacity, using the word as defined 

in Goodfellow, Bengio, and Courville (2016), but it is generally necessary to constrain both 
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the number of compartments and the compartment properties to match the degrees of 

freedom of data and avoid degeneracy in parameter estimation, such as demonstrated in 

Jelescu, Veraart, Fieremans, and Novikov (2016). We here investigate six sets of constraints 

on top of the minimally constrained model (set C0; Table 1), yielding six nested 

“submodels” that represent different contemporary approaches to obtain “stick” fractions.

Set C1 yields an approximation of the spherical mean technique (SMT) model (Kaden et al., 

2016), but extended to feature two free compartment T2 values. It comprises a CSF 

constraint, given by

f C = 0, (9)

and a constraint that calculates the “ball” isotropic diffusivity from the “stick” isotropic 

diffusivity and the “stick” fraction, according to

DI;B = DI;S ⋅ 3 − 2 f S . (10)

Set C2 yields a powder-averaged equivalent of the Ball and stick (Behrens et al., 2003) and 

Ball and rackets (Sotiropoulos et al., 2012) models, but extended to feature free 

compartment diffusivities. It comprises a T2 constraint, given by

T2B = T2S, (11)

and the CSF constraint (Equation 9). Set C3 yields an approximation of the SMT model and 

comprises all the above constraints (Equations 9–11). Set C4 yields the CODIVIDE model 

(Lampinen et al., 2017) and comprises the T2 constraint (Equation 11) and a diffusivity 

constraint, given by

DI;B = DI;S . (12)

Set C5 approximates the powder-averaged NODDI model (Lampinen et al., 2017; Zhang et 

al., 2012) and comprises the relation between isotropic diffusivities and the “stick” fraction 

in Equation 10, the T2 constraint (Equation 11), and a fixed “stick” isotropic diffusivity, 

given by

DI;S = 0.57μm2/ms . (13)

Set C6 equals set C2 but uses a T2 constraint different than Equation 11, given by

T2S = 70 ms, (14)
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a choice inspired by previous estimates of the voxel T2 value in white matter at 3 T 

(Wansapura, Holland, Dunn, & Ball Jr, 1999; Whittall et al., 1997) and results in white 

matter lesions obtained in this work. Note that compared to SMT and NODDI, sets C3 and 

C5 use the “ball” constraint (DΔ = 0) for the “non-stick” compartment rather than defining 

its shape from a tortuosity relation (Szafer, Zhong, Anderson, & Gore, 1995). The difference 

was negligible in the investigated regions herein (see Supporting information). Finally, the 

original NODDI model employs a slight rearrangement of the “stick” and CSF fractions 

(Zhang et al., 2012).

The motivations for the different constraints are related to the data for which the 

corresponding models are intended. One type of constraint concerns compartment relaxation 

times (and proton densities), which cannot be estimated unless the acquisition features 

encoding dimensions sensitive to these properties. Most biophysical models are not designed 

for variable relaxation weighting and typically use the density assumption, given by

SPD;k ⋅ AT1; k ⋅ AT2; k = S0, for all k, (15)

as in sets C2-C5 (with a different T2 for CSF). The dMRI data obtained for multiple TE 

used here, however, allow the constraint of equal “ball” and “stick” T2 values (Equation 11) 

to be tentatively relaxed in the minimally constrained model. Our multiple TE data were 

acquired for b ≤ 0.5 ms/μm2, thus probing the TE dependence of the first cumulant of the 

diffusion attenuation (the mean diffusivity, MD) and yielding the following relation

MD(TE) = 1 − f s′ TE, T2B, T2S ⋅ DI;B + f s′ TE, T2B, T2S ⋅ DI;S, (16)

where f S′ = SS/S
b

= 0 is the relaxation-weighted “stick” signal fraction before diffusion 

attenuation. For simplicity, Equation 16 assumes fC = 0. Together with an estimate of the 

voxel T2 value, this relation may allow estimation of both T2B and T2S. However, the 

gained precision depends on the difference between “ball” and “stick” isotropic diffusivities, 

which is clear when considering that the change in MD with respect to TE,

dMD/dTE = d f s′/dTE ⋅ DI;S − DI;B , (17)

approaches zero as DI;S approaches DI;B.

Another type of constraint concerns diffusion properties. Aside from parameters related to 

variation across orientations, conventional multi-shell dMRI only allows the estimation of 

two diffusion parameters (Kiselev & Ilyasov, 2007), extended to three if multiple shapes of 

the b-tensor are used (Lasič et al., 2014; Lampinen et al., 2017). The minimally constrained 

model (set C0) features four diffusion parameters (fS, fC, DI;B, and DI;S), and thus the sets of 

constraints designed for conventional multi-shell dMRI (C3 and C5) use two diffusion 

constraints and leave two parameters free. Conversely, the sets of constraints designed for b-
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tensor encoding (C2, C4 and C6) use one diffusion constraint and leave three parameters 

free. Finally, set C1 was designed for b-tensor encoding but still uses two diffusion 

constraints. Instead of estimating a third diffusion parameter, set C1 relates diffusion to 

relaxation through the relations in Equations 10 and 16.

3 | METHODS

3.1 | Subjects, acquisition and postprocessing

Data were acquired on a Siemens MAGNETOM Prisma 3T system (Siemens Healthcare, 

Erlangen, Germany) in three subject groups: A (n = 5; age = 32 ± 4 years; all male), B (n = 

20; age = 25 ± 4 years; male/female = 11/9), and C (n = 10; age = 70 ± 10 years; male/

female = 5/5). Subjects in groups A and B were healthy volunteers, who were either scanned 

specifically for this study (group A) or for a previous study (group B; Lampinen et al., 

2017). The elderly subjects in group C were scanned for a larger study that included both 

patients with Parkinson’s disease and controls. These subjects were included to study age-

related white matter lesions regardless of their disease status, wherefore we randomly 

selected five subjects with lesions (patients/controls = 3/2) and five subjects without lesions 

(patients/controls = 4/1).

We performed dMRI with b-tensor encoding using a prototype echo-planar diffusion 

sequence (Szczepankiewicz, Sjölund, Ståhlberg, Lätt, & Nilsson, 2016) with encoding 

gradient waveforms optimized for minimal TE (Sjolund et al., 2015). Data were acquired 

with both LTE and STE. To obtain diffusion-relaxation correlation data, Groups A and C 

were additionally scanned with LTE sequences that repeated the same set of low b-values 

and directions for different TE. T1-weighted MPRAGE images were acquired for 

segmentation purposes. The experiments were approved by the regional ethical review board 

in Lund, and all subjects gave informed consent. Sequence parameters for all diffusion 

acquisitions are shown in Table 2.

The dMRI data were corrected for eddy-currents and subject motion using ElastiX (Klein, 

Staring, Murphy, Viergever, & Pluim, 2010) with extrapolated target volumes (Nilsson, 

Szczepankiewicz, van Westen, & Hansson, 2015). Before model fitting, data were 

arithmetically averaged across diffusion-encoding directions (powder-averaged) for each b-

value and each b-tensor shape. For the purpose of ROI definition and image registration, we 

performed a DTI analysis of LTE data at b ≤ 1 ms/μm2. All processing was performed using 

software available in the multidimensional dMRI toolbox (https://github.com/markus-

nilsson/md-dmri) (Nilsson etal., 2018).

3.2 | Regions of interest

The study used data from 11 bilateral regions of interest (ROIs; Figure 1), including one 

white matter region, with or without lesions, together with two deep gray matter regions, and 

eight cortical gray matter regions. This selection of ROIs is motivated below.

To investigate the variation in microscopic anisotropy against the variation in axonal content, 

the gray matter ROIs were selected to feature either a high or a low myelin content. Myelin 

content was used as a proxy for axonal content, since histology literature provides little 
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information on the latter in gray matter. Deep gray matter was represented by the high 

myelin ventrolateral thalamus and the low myelin mediodorsal thalamus (Danos et al., 

2003). Cortical gray matter with low myelin was represented by the primary auditory cortex 

(Bock, Kocharyan, Liu, & Silva, 2009; Hopf, 1955), primary visual cortex (Bock et al., 

2009), primary motor cortex (Hopf, 1956) and posterior cingulate cortex (Morris, Paxinos, 

& Petrides, 2000), and low myelin cortical gray matter was represented by the insular cortex 

(Öngür, Ferry, & Price, 2003), medial orbitofrontal cortex (Hopf, 1956), polar plane (Hopf, 

1955), and anterior cingulate cortex (Öngür et al., 2003).

To investigate whether T2 relaxation is likely to confound density estimates, the ROIs were 

selected to represent the main categories of healthy brain tissue–white matter, deep gray 

matter, and cortical gray matter–together with an example pathology in the form of white 

matter lesions. The anterior corona radiata was chosen to represent white matter, both 

because it is a typical site for white matter lesions and because it has a low orientation 

coherence (Mollink et al., 2017), which simplified our biophysical modeling.

The ROIs were defined manually for groups A and C, using the S0 and directionally encoded 

color (DEC) maps from DTI, and automatically for group B, using the Desikan-Killany and 

Destrieux parcellations of Freesurfer. The automatic procedure involved registering the S0 

image from DTI to the MPRAGE using rigid-body registration implemented in ElastiX. A 

visual inspection assessed that the registrations yielded proper alignments and that the 

resulting ROIs were located within the cortex and minimally affected by EPI distortions. 

DTI parameters were used to make final adjustments of these ROIs: to reduce contamination 

with CSF and white matter, we excluded voxels with high mean diffusivity (MD > 1.1 

μm2/ms) and high orientation coherence (FA > 0.5). For all ROIs, the signal was averaged 

across voxels before further analysis.

3.3 | Brain patterns of microscopic anisotropy from b-tensor encoding

The level of microscopic anisotropy was assessed for all ROIs (Figure 1) by the MKA 

parameter obtained from the b-tensor encoded data (Table 2) in the representation-based 

analysis using Equation 1. MKA values were compared using paired two-tailed t-tests 

between the high myelin ventrolateral thalamus and the low myelin mediodorsal thalamus 

and between the low and high myelin cortical ROIs. To enable detection of smaller effect 

sizes, the latter comparison used data from the larger group B, and the signal from each 

subject was averaged across the voxels of all four ROIs representing either high or low 

myelin. In addition, we compared the contrast of the MKA maps with a myelin-stained 

coronal brain section obtained from a subject outside of the imaged group. A 6 μm thick 

section was cut at the level of the anterior thalamus and stained for myelin using Luxol fast 

blue together with Cresyl violet counter staining of nuclear structures.

3.4 | Biophysical modeling with compartment-specific T2 values

We first assessed the minimally constrained model’s (Equation 5) precision to estimate the 

“stick” fraction from the b-tensor and multiple TE data (Table 2) from the group A and C 

ROIs (Figure 1). The precision was assessed by plotting a metric of goodness of fit against 

different values of the “stick” fraction, fixed prior to the fitting in 40 steps between zero and 
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one. If data determine all model parameters, the plot should exhibit a clear minimum for 

some “stick” fraction. If data are insufficient, however, multiple “stick” fractions should 

yield a similarly good fit and result in a flatter plot. The CSF fraction was fixed to zero in 

the non-cortical regions. The CSF fraction was free in the cortex, reducing the precision, but 

the procedure still yielded a good representation of the range of data-compatible “stick” 

fractions (see Supporting Information).

Goodness of fit was defined as the normalized residual variance (NRV) obtained by dividing 

the residual variance ( σR
2) by the signal variance due to noise σ noise

2 , according to

NRV = σR
2/ σ noise

2 = Σ npa;i Si − S′i
2/(n − k) / σnoise

2 /nvoxel (18)

where npa;i is the number of powder-averaged directions for the i:th combination of 

measurement parameters (b, bΔ, and TE), Si and Si′ are the powder-averaged signals obtained 

from the measurement and predicted by the fit, respectively, n is the total number of samples 

(Table 2) and k is the number of parameters that were free to vary in the fitting (Table 1). 

The value of σ2
noise  was estimated, for each ROI, as the voxel and b-value average of the 

STE signal variance across the multiple repetitions.

For group C, the model was extended to feature the tissue T1 value T1B/S = T1) and the 

constraint T1C = 5,700 ms to account for the repetition time differences between the b-

tensor data and the multiple TE data (Table 2). The precision in the estimated tissue T1 value 

was likely low given the rather long repetition times used in both sequences, but it was 

included as a nuisance parameter.

3.5 | Brain region rankings by the “stick” fractions of constrained biophysical models

The six constrained “submodels” of the minimally constrained model (Table 1) were fitted to 

the b-tensor and multiple TE data (Table 2) from the group A and C ROIs (Figure 1). First, 

we ensured that the constrained models yielded precise solutions by plotting the goodness of 

fit (Equation 18) against fixed values of the “stick” fraction. Second, we tested whether there 

was a statistically significant disagreement between how the models ranked these regions 

with respect to the “stick” fraction. A metric for disagreement between rankings was defined 

according to

m = ∑
i = 1

I
∑
j = 1

J
rij − ri

2, (19)

where I = 7 and J = 6 are the numbers of regions and models, respectively, rji is the i:th 

region’s ranking from the j:th model, and ri  is the i:th region’s average ranking. To test the 

statistical significance for potential ranking differences between models, we compared the 

observed value for m against a probability distribution simulated under the null hypothesis 

of equal rankings. The simulation created 105 sets of rankings by noising a set of “stick” 
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fractions that equaled those observed but were pre-sorted to agree between models. The 

added noise was distributed as ε ∈ N O, σ /ns , where σ is the standard deviation across 

subjects (ns = 5). Code for performing this procedure is available on https://github.com/

belampinen/ranking_test together with example data. Third, we assessed whether the 

different sets of constraints were compatible with data. To this end, the models were 

compared with respect to the fit quality obtained in different regions, defined as the sum of 

squared residuals (SSR) pooled from the combined fits in all subjects.

4 | RESULTS

4.1 | Brain patterns of microscopic anisotropy from b-tensor encoding

The representation-based analysis (Equation 1) produced high-quality maps of the level of 

microscopic anisotropy (MKA; Figure 2a). A strong contrast in anisotropy was observed 

between white and gray matter, with high levels in white matter and low levels in gray 

matter in general and in the cortex in particular. The level of isotropic heterogeneity (MKI) 

was generally low, except in regions with substantial partial volume effects between tissue 

and CSF. The contrast in mean diffusivity (MD) was flat across the brain tissue with similar 

levels in white and gray matter.

The MKA values were higher in ROIs expected to feature a higher myelin content (Figure 3, 

Table 3). Pure white matter (the anterior corona radiata) featured the highest values of MKA, 

the thalamus featured intermediate values and the cortex featured the lowest values. Within 

the thalamus, the MKA values were significantly higher in the myelin-rich ventrolateral 

thalamus compared to in the myelin-poor mediodorsal thalamus (mean ± SD; 0.71 ± 0.08 vs. 

0.42 ± 0.05; t(4) = 19, p < 0.001). Within the cortex, the MKA values were significantly 

higher in the four combined high myelin regions compared to in the four combined low 

myelin regions (0.37 ± 0.04 vs. 0.20 ± 0.02; t(19) = 31, p < 0.001). Finally, when featuring a 

lesion, the anterior corona radiata exhibited decreased MKA values and increased values of 

MKI and MD, compared to normal-appearing white matter.

There was a correspondence in contrast between the maps of microscopic anisotropy and the 

myelin-stained histology slice (Figure 2b). Both the MKA maps and the myelin-stain were 

bright in white matter and dark in cortical gray matter. The correspondence was seen also 

between substructures, for example, in the intensity gradient between the myelin-poor 

mediodorsal thalamus and the myelin-rich ventrolateral thalamus. The MKA map was 

comparatively hyperintense in some white matter regions, including the internal capsule and 

the corpus callous, possibly reflecting a high orientation coherence and anisotropic diffusion 

in the extracellular space.

4.2 | Biophysical modeling with compartment-specific T2 values

Precise estimation of compartment-specific T2 values was not possible in the brain (Figure 

4a), which precluded accurate estimation of the “stick” fraction. The first row shows 

powder-averaged signal curves in different brain regions (presented by column) with multi-

echo signal curves in inset plots. The second row shows how well the minimally constrained 

model could explain the signal for different fixed “stick” fractions in terms of the NRV 
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(Equation 18). The flat “valleys” in the residual variance corresponded to acceptable “stick” 

fractions between, for example, 0.3 and 0.7 in the anterior corona radiata and between 0.0 

and 0.7 in the primary auditory cortex. The cause for the low precision is seen in the signal 

data. While there was a large effect of varying the b-tensor shape (difference between LTE 

versus STE reveals microscopic anisotropy), the multi-echo data did not reveal any obvious 

TE dependence of the mean diffusivity (change in slope of signal with TE, Equation 16). As 

a result, the data did not support estimation of all parameters of the high-capacity C0 model, 

and thus wide ranges of “stick” fractions could explain data equally well in all regions.

The flat “valleys” were related to wide ranges of acceptable compartment-specific T2 values 

and diffusivities, as shown by the third and fourth rows of Figure 4a. For example, 

acceptable T2 values for the “stick” compartment ranged between 57 and 93 ms in the 

anterior corona radiata and between 44 and 118 ms in the primary auditory cortex. Although 

the isotropic diffusivity was generally higher in the “ball” compared to the “stick” 

compartment, the difference was apparently insufficient to yield precise compartment-

specific T2 values (Equation 17).

Results from white matter lesions stood in contrast to those from the healthy brain. In the 

lesions, data did allow precise estimation of the “stick” fraction, and the ranges of data-

compatible “stick” fractions were narrow (Figure 4b, second row). The signal exhibited a TE 

dependence (first row) and the “ball” compartment featured a longer T2 value (third row) 

and higher isotropic diffusivity (fourth row) compared to the “stick” compartment. These 

results would be expected for lesions of the ischemic type, where histological findings have 

shown a loss of tissue integrity that enlarges the extracellular space (Englund & Brun, 1990).

Table 4 shows parameter values from all five lesions. The “stick” fraction exhibited a 

considerable variation, between approximately 0.25 and 0.45, consistent with white matter 

lesions lying on a spectrum of tissue changes with varying severity (Gouw et al., 2010). 

Despite this apparent heterogeneity, the diffusion and relaxation properties of “sticks” were 

similar across lesions, and the estimated values were similar to values previously reported in 

healthy white matter. The “stick” T2 values were between 60 and 80 ms, similar to those 

reported for this region in Veraart, Novikov, and Fieremans (2017), and the isotropic 

diffusivities were approximately 0.7 μm2/ms, similar to in Veraart, Novikov, and Fieremans 

(2017) and Dhital, Reisert, Kellner, and Kiselev (2017). A possible interpretation of this 

finding is that the remaining axons inside white matter lesions retain properties close to 

those in normal tissue.

4.3 | Brain region rankings by the “stick” fractions of constrained biophysical models

As expected, all constrained models (Table 1) obtained precise solutions when fit to the 

combined b-tensor and multiple TE data. Figure 5a exemplifies how the ranges of “stick” 

fractions that fit data well (low NRV, Equation 18) were narrow (solid lines) compared to for 

the minimally constrained model (C0; dashed line). It also shows that the different 

constraints tended to “prefer” different values of the “stick” fraction (location of curve 

minima).
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Comparing seven regions using the six constrained models yielded rather different patterns 

of “stick” fractions (Figure 5b), with significantly different rankings (p = 0.025, rank-based 

permutation test). As an example of the difference in rankings we use sets C1 and C6, which 

achieved the overall best fits (Figure 5c), and compare the “stick” fractions in the 

mediodorsal thalamus and in white matter lesions. Set C1 indicated significantly higher 

fractions in the former compared with the latter (0.48 ± 0.06 vs. 0.37 ± 0.07, t[5] = 3, p < 

0.028), while set C6 indicated the opposite (0.23 ± 0.02 vs. 0.40 ± 0.06, t[5] = −4, p = 

0.007), using paired two-tailed t-tests. Qualitatively, four different ranking patterns could be 

observed with respect to the “stick” fraction. The ranking obtained with constraint set C1 (as 

arbitrary reference) was contradicted by a switching of the primary auditory cortex and the 

mediodorsal thalamus (using C2-C4) and by comparatively high “stick” fractions in gray 

matter (using C5) and in white matter lesions (using C6).

No constrained model obtained a good fit both in healthy brain and in white matter lesions 

(Figure 5c). All models obtained similar fit qualities in white matter and in the thalamus. In 

the cortex, however, an overall good fit was only obtained using set C4, which features a 

CSF compartment. In general, fits were poorer in the primary auditory cortex, compared to 

in the insular cortex, possibly reflecting differences in partial volume effects with CSF. 

Using set C5 (as in NODDI), however, yielded a poor fit in both cortical regions despite its 

CSF compartment, likely due to relating microscopic anisotropy to mean diffusivity 

(Lampinen et al., 2017). In white matter lesions, models using the assumption of equal 

compartment T2 values (Equation 11; present in C2-C5) yielded comparatively poor fits, 

consistent with the substantial T2 differences demonstrated in Table 4. The fit within lesions 

was particularly poor using set C4, likely due to the invalid assumption of equal 

compartment diffusivities (Table 4).

5 | DISCUSSION

Mapping neurite density requires a correct model for diffusion in both axons and dendrites. 

The conventional neurite assumption is that these structures exhibit highly anisotropic 

(“stick-like”) diffusion. If this is the case, their respective prevalence should contribute 

similarly to microscopic diffusion anisotropy in the brain, and we would expect a contrast in 

MKA that bears similarity to the contrast in neurite density. In cortical gray matter, histology 

studies in mice have reported a rather even split between axons and dendrites and a neurite 

volume fraction of approximately 60% (Braitenberg & Schüz, 1998; Chklovskii, Schikorski, 

& Stevens, 2002; Ikari & Hayashi, 1981). In white matter, histology studies have reported a 

neurite density (intra-axonal volume fraction) of 30–50% in the corpus callosum of macaque 

(Stikov et al., 2015) and mice (Jelescu et al., 2016) and in the rat spinal cord (Xu et al., 

2014). Together with a 20–50% volume fraction of myelin water (Jelescu, Zurek, et al., 

2016; Stikov et al., 2015; Xu et al., 2014) with fast T2 relaxation (Mackay et al., 1994) that 

renders it MR-invisible at our relatively long echo times, an axonal volume fraction of 30–

50% corresponds to an MR-visible neurite signal fraction, Vaxons/ 1 − V myelin , in the 

vicinity of the approximate 60% reported for the cortex. Thus, histology suggests that the 

signal fraction of neurites as observed with dMRI should be similar between gray and white 

matter, wherefore, by the neurite assumption, their respective levels of microscopic diffusion 
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anisotropy should be similar. In contrast, however, we found that microscopic anisotropy 

differs substantially between gray and white matter (Figure 2–3, Table 3). Furthermore, 

regional differences in microscopic anisotropy were associated with myelin content, and 

thus axons, both qualitatively (Figure 2b) and quantitatively (Figure 3, Table 3), consistent 

with previous observations in fixed tissue by Jespersen et al. (2010). These observations 

contradict the neurite assumption and suggests that highly anisotropic diffusion is a feature 

of axons but not dendrites. A non-zero radial diffusivity in dendrites could be due to, for 

example, fast exchange with the extracellular space or between short dendritic segments 

with different orientations. A low axial diffusivity in dendrites is not a sufficient cause, 

however, since it would have manifested in a higher MKI, and constraints that allow an 

independent “stick” diffusivity (such as C2) should have yielded an “adjusted” “stick” 

fraction (Table 1; Figure 5b). Our observations could potentially be explained, however, by a 

low T2 value in dendrites compared to in axons, since that would confound a T2-weighted 

metric such as the MKA. Lipid composition differs substantially between white and gray 

matter (O’Brien & Sampson, 1965), wherefore different degrees of wall relaxation from 

proton exchange could be one possible factor. Notably, such T2 differences would also 

confound volume fraction estimates under the density assumption, leading to the second part 

of our investigation.

Mapping compartment densities using dMRI with a single TE requires that T2 values are 

approximately equal across tissue components. In white matter lesions, our analysis of b-

tensor and multi-echo data found that water with isotropic diffusivity exhibited a longer T2 

value compared to water exhibiting “stick-like” diffusion (Figure 4b, Table 4). In the healthy 

brain, however, compartment-specific T2 values could not be estimated (Figure 4a) and 

potential confounding effects on the “stick” fraction could not be determined. This lack of 

precision also prevented us from directly assessing whether a low T2 value of neurites may 

explain the low levels of microscopic anisotropy in gray matter. However, the results did 

indicate the approximate ranges of compartment T2 values and diffusivities for which data 

are compatible with this hypothesis. Table 5 shows group-averaged parameter values for the 

solutions in the flat “valleys” from Figure 4a. In short, the “stick” fraction could assume 

values in a vicinity of the expected neurite density (0.5–0.7; area in bold) if the T2 value 

difference between “neurite” and “non-neurite” tissue was small in white matter but large in 

gray matter. For example, ballpark figures would indicate similar T2 values for neurite and 

non-neurite tissue (60–80 ms) in the anterior corona radiata, but much lower T2 values for 

neurites (40–50 ms) compared to non-neurite tissue (80–120 ms) in the cortex. The solutions 

would also imply a higher axial diffusivity of neurites in white matter (approximately 2.1 

μm2/ms in the anterior corona radiata) compared to in gray matter (approximately 1.5 μm2/ 
ms in the cortex). Thus, estimating neurite density may require correcting for such 

differences, which is a difficult task even using multi-shell multi-b-tensor and multi-echo 

data (Figure 4a). Note that application of the density assumption of equal compartment T2 

values yields the heterogenous anisotropy observed in the representation-based analysis 

(Figures 2 and 3; Table 3), and an interpretation that is in apparent conflict with histology. 

These results suggest that estimating neurite density from conventional single-echo dMRI 

has low accuracy. Whether such parameters could still be indices for neurite density was 

explored in the third part of our investigation.
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An index with sensitivity to a physical quantity could be useful even if lacking absolute 

accuracy, for example, by having the ordinal accuracy to allow comparisons between 

regions, conditions, or time points. When confounding effects grow large compared to the 

effect of interest, however, results become increasingly dependent on the choice of model 

constraints. Here, when ranking seven regions with respect to the “stick” fraction, using six 

different sets of constraints yielded significantly different rankings (Figure 5b). From this 

observation, we draw two conclusions concerning the range of conditions represented by the 

healthy brain and white matter lesions. First, as there can only be one true ranking with 

respect to a given quantity, such as neurite density, this range of conditions violates the 

domain of validity for this set of “stick” fractions. Second, this range of conditions likely 

features important confounding factors. We suspect compartmental T2 differences to be one 

such factor, both because of its strong impact on estimated volume fractions (Figure 4), and 

because three different patterns were observed when constraining it in three different ways 

(C1: Equation 10; C2-C5: Equation 11; C6: Equation 14). Another such factor may be 

isotropic heterogeneity, a confounder for microscopic anisotropy (Mitra, 1995) that is 

misrepresented by NODDI (Lampinen et al., 2017), seeing that set C5 yielded a strikingly 

different pattern compared to the other sets using the density assumption (C2-C4; Equation 

11). Note that disagreement in ranking was not always related to difference in quality of fit, 

so fit quality is not enough to rule out invalid constraints. For example, when comparing the 

mediodorsal thalamus with white matter lesions, sets C1 and C6 yielded very different 

results for similar fit qualities, while sets C3 and C4 yielded similar results for very different 

fit qualities. Although this experiment was discouraging for the prospect of finding a widely 

applicable neurite density index, overcoming some of these issues should be possible 

through more extensive acquisitions and/or additional validation work.

Our investigation indicates that accurate estimation of the neurite density requires 

accounting for different diffusion and/or T2 properties between axons and dendrites. As a 

consequence, true neurite density estimation may not be feasible with moderate b-values and 

limited ranges of TE. Obtaining indices of the neurite (or axonal) density may be possible, 

although their usefulness is limited to conditions where confounding factors are small or can 

be reliably constrained. One such condition could be healthy white matter, where the effects 

of T2 relaxation (Clark & Le Bihan, 2000; Tax et al., 2017) and isotropic heterogeneity 

(Dhital, Kellner, Reisert, & Kiselev, 2015; Szczepankiewicz et al., 2015) appear to be small, 

and where excellent (ex-vivo) correlations have been demonstrated between the “stick” 

fraction and histological metrics of axonal density (Jespersen et al., 2010). Thus, in healthy 

white matter, existing methods such as WMTI (Fieremans, Jensen, & Helpern, 2011), 

NODDI or SMT may be able to capture the relative variation of axonal density. However, 

the often used “neurite” label suggests a domain of validity that also encompasses gray 

matter, where neurites may exhibit different diffusion and/or relaxation properties (Table 5) 

and their disentangling may be further complicated by CSF contamination. Extending a 

neurite density index to examine pathology entails additional challenges, including new 

tissue components in tumors (Wen et al., 2015), exchange between tissue components in 

stroke (Lätt et al., 2009), and perturbing effects on T2 relaxation (Figure 4b) in 

demyelination and/or degenerative conditions, where the former could mimic axonal loss 

simply by expanding the pool of MR-visible water with low diffusion anisotropy. In 
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forthcoming searches for the neurite density with dMRI, studies should attempt to elucidate 

the contribution of dendrites to microscopic anisotropy, to inform constraints by exploring 

relations between diffusion and non-diffusion properties, using, for example, correlation 

techniques such as those presented by Benjamini and Basser (2018) or by de Almeida 

Martins and Topgaard (2018), and to delineate the domains of validity for prospective index 

parameters. The current state of evidence suggests that reporting results in terms of the 

“stick” signal fraction, or possibly the axonal density index in healthy white matter, would 

promote the most useful interpretations of clinical studies using biophysical models.

We note several limitations with the present study. First, the waveforms used to produce 

linear and spherical tensor encoding had slightly different timing properties. Lundell et al. 

(2017) demonstrated in ex vivo monkey brain that using waveforms with different “spectral 

content” may confuse time-dependent diffusion for microscopic anisotropy. We investigated 

this by comparing LTE obtained using waveforms that have either “tuned” or “detuned” 

encoding spectra (e.g., similar or different timing properties) with respect to the waveform 

used for STE (see Supporting Information). No systematic effects of diffusion time were 

observed, which is in line with multiple studies showing negligible time dependence in 

living brain tissue for clinically relevant diffusion times, both in humans (Clark, Hedehus, & 

Moseley, 2001; Clark & Le Bihan, 2000; Nilsson et al., 2009) and animals (Niendorf, 

Dijkhuizen, Norris, van Lookeren Campagne, & Nicolay, 1996; Ronen, Moeller, Ugurbil, & 

Kim, 2006). Second, the waveforms used for groups B and C were not optimized for 

negligible concomitant fields, which may induce a positive bias in microscopic anisotropy 

(Szczepankiewicz & Nilsson, 2018). From assessing the data for characteristic gross signal 

errors, however, we do not believe that the effect was large for the waveforms used in this 

study. Furthermore, such bias should have no systematic impact on the intercortical 

comparisons performed with the group B ROIs; and the group C data was only extracted 

from relatively deep parts of the brain (the corona radiata) where the effects of concomitant 

fields should be small (Szczepankiewicz & Nilsson, 2018). Third, due to the SNR penalty 

from studying deep gray matter while using small voxels, we acquired multi-echo data for a 

maximum b-value of 0.5 ms/μm2. Accordingly, we could only rely on a TE dependence of 

the mean diffusivity to separate compartment T2 values (Equation 16), an effect that has 

previously been demonstrated to be small in the healthy brain (Clark & Le Bihan, 2000; Qin 

et al., 2009; Tax et al., 2017; Veraart, Novikov, & Fieremans, 2017). Acquiring multi-echo 

data for higher b-values may be a promising way forward (Veraart, Novikov, & Fieremans, 

2017). Simulations presented in the supporting information indicate that extending our 

dataset with multiple TE to higher b-values could yield sufficient precision. However, the 

strong attenuation associated with such data may necessitate dealing with the Rician noise 

floor (Veraart, Novikov, & Fieremans, 2017) and also complicate motion correction (Nilsson 

et al., 2015). Fourth, our data had some heterogeneity due to being acquired under different 

conditions. For example, group B lacked data for multiple TE and group C contained 

subjects both with and without Parkinson’s disease. We do not believe this an issue, 

however, seeing that the relatively large group B allowed comparisons of the (T2-weighted) 

microscopic anisotropy across healthy cortical regions (Figure 3), and that Parkinson’s 

disease seems to have a subtle impact on diffusion (Surova et al., 2016) compared with the 

effects of white matter lesions studied in group C. Fifth, part of the data analyzed in the 
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cortex were acquired with lower resolution (2 × 2 × 4 mm3; group B) and likely suffered 

partial volume effects with white matter and CSF. The impact on results from CSF was 

likely small, however. While the MKA was almost twice as high in high myelin cortex 

compared to in low myelin cortex, the MKI—a measure of isotropic heterogeneity and 

indirectly of partial volume effects with CSF (Figure 2a)—was similar (Figure 3; Table 3). 

With that said, future studies could benefit from CSF nulling by the use of an inversion 

pulse. Sixth, our minimally constrained model featured the “ball” constraint, thus assuming 

isotropic diffusion outside of “stick-like” structures, which may be inaccurate in regions 

with high orientation coherence (Fieremans et al., 2011; Novikov, Veraart, et al., 2018; 

Reisert, Kellner, Dhital, Hennig, & Kiselev, 2017). As a consequence, our white matter 

investigation was limited to the low-coherence anterior corona radiata. Seventh, our 

minimally constrained model assumed T1 relaxation and proton density to be equal across 

compartments. Although we believe that these effects may be important and should be 

considered in future studies, they were outside the scope of the current work. Finally, we 

point out a limitation intrinsic to most biophysical models that describe complex tissue with 

a few parameters: bias due to simplification. For example, the neurite interpretation could be 

biased if the “stick” compartment captures water in the tree-like processes of protoplasmic 

astrocytes that are closely associated with gray matter dendrites, or water in the long 

processes of fibrous astrocytes that accompany white matter axons (Sun & Jakobs, 2012). 

Although we believe water diffusion not to appear “sticklike” in astrocytes due their fast 

aquaporin-facilitated exchange (Badaut et al., 2011), we acknowledge that more work is 

needed in this arena.

6 | CONCLUSIONS

This work investigated three challenges associated with estimating the neurite density with 

dMRI. Analysis of data from brain regions with low orientation coherence and white matter 

lesions suggested that neurite density estimation requires accounting for different diffusion 

and/or T2 properties between axons and dendrites, which is not feasible with conventional 

multi-shell dMRI acquired with a single echo time. Obtaining parameters that index the 

neurite (or axonal) density may be possible, but confounding factors may prevent their use in 

particular outside healthy white matter. Finding a reliable neurite density index in gray 

matter or pathology likely requires finding correlations between diffusion and non-diffusion 

properties as well as an improved understanding of diffusion in dendrites.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Regions of interest (ROIs). The study used 11 bilateral ROIs, representing white matter with 

or without lesions, together with deep and cortical gray matter with high or low myelin 

content. In group A (n = 5), we manually defined five ROIs: white matter (anterior corona 

radiata), deep gray matter with high myelin (ventrolateral thalamus) and low myelin 

(mediodorsal thalamus), and cortical gray matter with high myelin (primary auditory cortex) 

and low myelin (insular cortex). In group B (n = 20), we used the Desikan-Killany and 

Destrieux parcellations of Freesurfer to define eight cortical ROIs: four with high myelin 

(primary auditory cortex, primary visual cortex, primary motor cortex, and posterior 

cingulate cortex) and four with low myelin (insular cortex, medial orbitofrontal cortex, the 

polar plane and anterior cingulate cortex). In group C (n = 10), we defined the anterior 

corona radiata as in group A but classified it as either “normal-appearing” (NA; n = 5) or 

“lesion” (n = 5). All ROIs were bilateral. The anterior corona radiata of group A is shown on 

a DEC map from DTI and the remaining group A and C ROIs are shown on top of DTI S0 

images. The group B ROIs are shown on top of MPRAGE images
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FIGURE 2. 
Parameter maps from the representation-based analysis (Equation 1) of b-tensor data. (a) 

The mean diffusivity (MD) contrast was similar between white and gray matter. The level of 

isotropic heterogeneity (MKI) was generally low but higher in regions with partial volume 

effects from CSF. The level of microscopic anisotropy (MKA) was high in white matter and 

low in gray matter such as the cortex. (b) The level of microscopic anisotropy reflected the 

level of myelination seen in a coronal myelin-stained histology slice (obtained from a 

different subject). From left to right: (1) the myelin-poor mediodorsal thalamus, (2) the 

myelin-rich ventrolateral thalamus, and (3) the internal capsule. Voxels with MD ≥ 2 

μm2/ms are colored blue. The shown example is from group A
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FIGURE 3. 
Parameter values from the representation-based analysis (Equation 1) of b-tensor data. The 

parameter representing microscopic anisotropy (MKA) yielded the overall strongest contrast 

between regions, and the MKA values were higher in regions expected to feature a higher 

myelin content. In general, the MKA values were highest in white matter, intermediate in the 

thalamus and lowest in the cortex. In particular, the MKA was significantly higher in the 

myelin-rich ventrolateral thalamus compared to in the more myelin-poor mediodorsal 

thalamus (p < 0.001; group A) and in the combined high myelin cortical regions compared 

to in the combined low myelin cortical regions in (p < 0.001; group B). Meanwhile, no clear 

trend was observed in the parameters representing the mean diffusivity (MD) and the 

isotropic kurtosis (MKI). White matter featuring a lesion (the anterior corona radiata; group 

C) exhibited reduced MKA values and increased MKI and MD values compared to normal-

appearing (NA) white matter
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FIGURE 4. 
Compartment densities could be estimated independently from T2 relaxation in white matter 

lesions, but not in the healthy brain. (a) In the healthy brain, different regions (sorted by 

column) exhibited rather different levels of microscopic anisotropy, as seen by the difference 

between the powder-averaged LTE and STE signal curves (first row). The slopes of the 

signal curves for different TE (inset plots) revealed no clear echo-time dependence of mean 

diffusivity (Equation 16), however, and the regions were not clearly separable by the “stick” 

fraction of the minimally constrained model (Equation 5). The goodness of fit plot (second 

row; Equation 18) showed wide ranges of data-compatible (fixed) “stick” fraction values, 

reflecting wide ranges of data-compatible compartment-specific T2 values (third row). For 

most “stick” fractions, however, the isotropic diffusivity was higher in the “ball” 

compartment compared to in the “stick” compartment (fourth row). (b) In white matter 

(anterior corona radiata) with a lesion, precise estimation of the “stick” fraction together 

with compartment-specific T2 values was possible. The “ball” compartment featured a 

longer T2 value and a considerably higher isotropic diffusivity compared to the “stick” 

compartment, resulting in a sufficient echo-time dependence of diffusion to yield a narrow 

range of data-compatible “stick” fractions. The plots use shaded lines for individual subjects 

and thick lines for group-averages
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FIGURE 5. 
Using different constraints yielded different rankings with respect to the “stick” fraction. (a) 

The constrained models (solid lines, here C1 and C4; Table 1) yielded precise estimates of 

the “stick” fraction, seen by the narrow ranges of (fixed) values that yielded a high goodness 

of fit (Equation 18) compared to for the minimally constrained model (dashed line, C0). (b) 

the six constrained models yielded rather different “stick” fraction patterns, and produced 

significantly different rankings (p = 0.025). Thus, this set of “stick” fractions lacks ordinal 

accuracy across the domain represented by the healthy brain and white matter lesions, and 

using these models to index the neurite density may yield constraint- dependent results. For 

example, while constraint set C1 would indicate a higher “neurite density” in the 

mediodorsal thalamus compared to in white matter lesions, set C6 would indicate the 

opposite. The error bars indicate standard errors. (c) The quality of fit (in terms of a low sum 

of squared residuals, SSR) was generally high in white matter and in the thalamus, but not 

always in the cortex or in white matter lesions. In the cortex, only set C4, which featured a 

CSF compartment, obtained a good fit. In white matter lesions, only sets allowing different 

compartment T2 values (C1 and C6) obtained a good fit. Note that quality of fit is not 

enough to rule out poor constraints. For example, using sets C1 and C6, comparing the 

mediodorsal thalamus with white matter lesions yielded similar fit qualities but different 

results, while using sets C3 and C4 yielded the opposite

Lampinen et al. Page 29

Hum Brain Mapp. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lampinen et al. Page 30

TA
B

L
E

 1

Pa
ra

m
et

er
s 

an
d 

se
ts

 o
f 

co
ns

tr
ai

nt
s 

fo
r 

th
e 

m
od

el
-b

as
ed

 a
na

ly
si

s

C
on

st
ra

in
t 

se
t

n p
ar

S 0
f s

f C
T

2 B
T

2 s
D

I;
B

D
I;

S

C
0 

(m
in

im
al

ly
 c

on
st

ra
in

ed
)

7
-

-
-

-
-

-
-

C
0 

ite
ra

te
d 

no
n-

co
rt

ex
5

-
It

er
at

ed
a

0
-

-
-

-

C
0 

ite
ra

te
d 

co
rt

ex
6

-
It

er
at

ed
a

-
-

-
-

-

C
1 

(S
M

T
b,

c )
5

-
-

0
-

-
E

qu
at

io
n 

10
-

C
2 

(B
al

l a
nd

 s
tic

k/
ra

ck
et

sd,
e )

5
-

-
0

-
T

2 B
-

-

C
3 

(S
M

T
c )

4
-

-
0

-
T

2 B
E

qu
at

io
n 

10
-

C
4 

(C
O

D
IV

ID
E

)
5

-
-

-
-

T
2 B

-
D

I;
B

C
5 

(N
O

D
D

Ic,
e )

4
-

-
-

-
T

2 B
E

qu
at

io
n 

10
0.

57

C
6 

(B
al

l a
nd

 s
tic

k/
ra

ck
et

sd,
e,

f )
5

-
-

0
-

70
-

-

R
el

ax
at

io
n 

tim
es

 a
re

 in
 m

s 
an

d 
di

ff
us

iv
iti

es
 a

re
 in

 μ
2 /

m
s;

 T
he

“-
” 

de
no

te
 f

re
e 

pa
ra

m
et

er
s.

a f s
 ∈

 [
0,

 0
.0

12
5,

 0
.0

37
5,

 …
, 0

.9
87

5]
.

b Fe
at

ur
in

g 
tw

o 
fr

ee
 T

2 
pa

ra
m

et
er

s.

c W
ith

 a
 “

ba
ll-

sh
ap

ed
” 

(D
Δ

 =
 0

) 
“n

on
-s

tic
k”

 c
om

pa
rt

m
en

t.

d Fe
at

ur
in

g 
tw

o 
fr

ee
 is

ot
ro

pi
c 

di
ff

us
iv

ity
 p

ar
am

et
er

s.

e Po
w

de
r-

av
er

ag
ed

.

f U
si

ng
 a

 d
if

fe
re

nt
 T

2 
co

ns
tr

ai
nt

.

Hum Brain Mapp. Author manuscript; available in PMC 2019 June 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lampinen et al. Page 31

TA
B

L
E

 2

D
if

fu
si

on
 s

eq
ue

nc
es

 u
se

d 
in

 th
e 

st
ud

y

B
-t

en
so

r 
en

co
di

ng
 (

LT
E

 +
 S

T
E

)
M

ul
ti

pl
e 

T
E

 (
LT

E
)

G
ro

up
 A

G
ro

up
 B

G
ro

up
 C

G
ro

up
 A

G
ro

up
 C

T
R

 (
m

s)
7,

00
0

4,
00

0
5,

20
0

7,
00

0
6,

90
0

T
E

 (
m

s)
10

0
10

6
10

6
50

,9
0,

12
0,

15
0

50
,8

5,
12

0,
15

5

M
at

ri
x 

si
ze

11
0 

×
 1

10
12

8 
×

 1
28

12
8 

×
 1

28
11

0 
×

 1
10

12
8 

×
 1

28

N
um

be
r 

of
 s

lic
es

30
27

35
30

35

R
es

ol
ut

io
n 

(m
m

2 )
2 

×
 2

2 
×

 2
2 

×
 2

2 
×

 2
2 

×
 2

Sl
ic

e 
th

ic
kn

es
s 

(m
m

)
2

4
4

2
4

PI
 f

ac
to

ra
2

2
2

2
2

Pa
rt

ia
l F

ou
ri

er
0.

75
0.

75
0.

75
0.

75
0.

75

b-
va

lu
es

 (
m

s/
μm

2 )
0.

1,
0.

5,
1.

0,
1.

5,
2.

0b
0.

1,
0.

5,
1.

0,
1.

5,
2.

0b
0.

1,
0.

5,
1.

0,
1.

5,
2.

0b
0.

1,
 0

.5
c

0,
 0

.5
c

b Δ
-v

al
ue

s
1 

an
d 

0
1 

an
d 

0
1 

an
d 

0
1

1

# 
di

re
ct

io
ns

/b
-v

al
ue

6,
 1

0,
 1

2,
 1

6,
 2

0
6,

 6
, 1

0,
 1

6,
 3

0
6,

 6
, 1

0,
 1

6,
 3

0
6,

 6
1,

 6

N
um

be
r 

of
 s

am
pl

es
12

8
13

6
13

6
12

12

Sc
an

 ti
m

e 
(m

in
)

15
.5

9
12

7
4.

5

M
ax

w
el

l c
om

pe
ns

at
io

nd
Y

es
N

o
N

o
Y

es
N

o

H
ea

d 
co

il 
ar

ra
y

64
 c

h
20

 c
h

20
 c

h
64

 c
h

20
 c

h

D
at

a 
pr

ev
. p

ub
lis

he
d

N
o

Y
es

e
N

o
N

o
N

o

a G
R

A
PP

A
.

b A
ll 

ac
qu

ir
ed

 u
si

ng
 b

ot
h 

LT
E

 a
nd

 S
T

E
.

c B
ot

h 
ac

qu
ir

ed
 u

si
ng

 L
T

E
 f

or
 a

ll 
T

E
.

d Sz
cz

ep
an

ki
ew

ic
z 

an
d 

N
ils

so
n 

(2
01

8)
.

e L
am

pi
ne

n 
et

 a
l. 

(2
01

7)
.

Hum Brain Mapp. Author manuscript; available in PMC 2019 June 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lampinen et al. Page 32

TABLE 3

Parameter values from the representation-based analysis (Equation 1) of b-tensor data (Figure 1 ROIs), with 

means and inter-subject standard deviations

MD (μm2/ms) MKI (1) MKA(1)

Group A

 Anterior corona radiata 0.92 (0.03) 0.27 (0.06) 0.82 (0.08)

 Ventrolateral thalamus 0.82 (0.01) 0.32 (0.03) 0.71 (0.08)

 Mediodorsal thalamus 0.86 (0.02) 0.40 (0.02) 0.42 (0.05)

 Primary auditory cortex 0.91 (0.04) 0.43 (0.08) 0.32 (0.04)

 Insular cortex 0.85 (0.02) 0.22 (0.05) 0.27 (0.04)

Group B (cortex)

 Primary auditory 1.01 (0.02) 0.51 (0.03) 0.32 (0.06)

 Primary visual 0.99 (0.03) 0.45 (0.04) 0.43 (0.05)

 Primary motor 0.96 (0.02) 0.38 (0.04) 0.43 (0.05)

 Posterior cingulate 0.92 (0.02) 0.37 (0.03) 0.36 (0.04)

 Insular 1.00 (0.01) 0.45 (0.02) 0.19 (0.02)

 Medial orbitofrontal 0.95 (0.02) 0.41 (0.03) 0.24 (0.03)

 Polar plane 1.00 (0.03) 0.47 (0.05) 0.19 (0.03)

 Anterior cingulate 0.96 (0.02) 0.39 (0.03) 0.21 (0.03)

Group C (anterior corona radiata)

 Normal-appearing 0.92 (0.05) 0.22 (0.05) 0.74 (0.18)

 White matter lesion 1.52 (0.15) 0.36 (0.04) 0.26 0.06)
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TABLE 4

Best-fitting solutions for the minimally constrained model in the five white matter lesion ROIs (Figure 4b)

fs T2B T2s DI;B DI;S

0.46 173 63 1.73 0.71

0.43 137 67 1.72 0.71

0.43 123 70 1.63 0.67

0.35 110 84 1.56 0.74

0.24 169 83 1.78 0.75

Relaxation times are in ms and diffusivities are in μm2/ms.
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