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Abstract

Colorectal cancer is known to arise from multiple tumorigenic pathways; however, the underlying 

mechanisms remain not completely understood. Metabolomics is becoming an increasingly 
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popular tool in assessing biological processes. Previous metabolomics research focusing on 

colorectal cancer is limited by sample size and did not replicate findings in independent study 

populations to verify robustness of reported findings. Here, we performed a ultra-high 

performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-

QTOF-MS) screening on EDTA plasma from 268 colorectal cancer patients and 353 controls 

using independent discovery and replication sets from two European cohorts (ColoCare Study: 

n=180 patients / n=153 controls; the Colorectal Cancer Study of Austria (CORSA) n=88 patients / 

n=200 controls), aiming to identify circulating plasma metabolites associated with colorectal 

cancer and to improve knowledge regarding colorectal cancer aetiology. Multiple logistic 

regression models were used to test the association between disease state and metabolic features. 

Statistically significant associated features in the discovery set were taken forward and tested in 

the replication set to assure robustness of our findings. All models were adjusted for sex, age, BMI 

and smoking status and corrected for multiple testing using False Discovery Rate. Demographic 

and clinical data were abstracted from questionnaires and medical records.

A total of 691 metabolic features significantly discriminated between colorectal cancer patients 

and controls in the discovery stage, of which 97 features remained for replication. Metabolite 

identification yielded 28 annotated metabolites including: taurine, hypoxanthine, valine, leucine, 

bilirubin, 1-methylnicotinamide, and several glycerophospholipids. Our study provides novel 

insights regarding metabolic changes associated with colorectal cancer.

Keywords

Colorectal cancer; Metabolomics; Discovery-Replication approach; UHPLC-QTOF-MS

Background

Colorectal cancer is a major public health concern worldwide, with 1.4 million new cases 

and an estimated 700,000 deaths annually.1 Colorectal cancer is characterized by a distinct 

metabolic phenotype and changes in key metabolic pathways such as glycolysis or the 

tricarboxylic acid (TCA) cycle.2, 3 Yet, underlying mechanisms involved in colorectal 

carcinogenesis are still unclear4.

Metabolomics is a powerful approach to unravel metabolic changes associated with disease 

and is gaining momentum in the field of cancer epidemiology.5–7 Compared to other ‘-

omics’ techniques, metabolomics is more closely related to a measured clinical phenotype 

and is increasingly applied as the method of choice to screen for potential metabolites 

associated with disease status.8, 9 Moreover, metabolomics can help to understand the 

underlying aetiology of cancer development.10

Differences in metabolic profiles have been reported between colorectal cancer patients and 

colorectal cancer-free individuals using nuclear magnetic resonance techniques,11 gas 

chromatography,12–15 and liquid chromatography-mass spectrometry methods.16

Various amino acids, such as aspartic acid, have been shown to be more abundant in cases in 

different, relatively small, studies, including a study by Nishiumi and colleagues comparing 
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serum metabolite levels of 60 colorectal cancer patients and 60 healthy volunteers using gas-

chromatography time-of-flight (TOF) mass spectrometry.13 Similarly, a study by Denkert et 
al. examined metabolic profiles in colon tissue and normal mucosa samples of 27 colorectal 

cancer patients and 18 colorectal cancer-free individuals.15 In addition to amino acids, serum 

taurine was shown to be more abundant among colorectal cancer patients compared to 

colorectal cancer-free individuals. Another study among 101 newly diagnosed colorectal 

cancer patients reported a clear difference between serum glutamine, fatty acids, and the 

urea and TCA cycle metabolites compared to 102 colorectal cancer-free controls.17

The majority of these previous studies have been limited by sample size and did not perform 

replication of their findings in independent study populations. As metabolomics studies 

often identified a wide range of metabolites due to the variety of analytical platforms, 

clinical protocols, and sample handling procedures used, leveraging an independent 

population for replication using the same platform and similar protocols is essential to 

ensure robustness of findings. To date, only few studies have used a discovery-replication 

design to reproduce results in independent study populations.16, 18, 19 Two of these studies 

investigated metabolic differences between colorectal cancer patients and apparently healthy 

individuals;16, 18 a third study evaluated metabolomic differences between matched tumour 

and healthy colon tissue samples from colorectal cancer patients.19 In addition, a very recent 

study investigating metabolic profiles in adenomas, colorectal cancer cases and controls 

conducted analysis in two datasets utilizing different metabolomic approaches, but with both 

sample sets deriving from the same hospital and cohort.20

To complement current research, we utilized a powerful combination of untargeted 

metabolomics analysis, able to reveal (novel) metabolites, a rigorous discovery-replication 

design, leveraging samples deriving from two independent study populations, as well as 

relatively large sample sizes to obtain sufficient statistical power. The overall purpose of our 

study was to discover, and replicate plasma metabolites associated with colorectal cancer to 

improve knowledge regarding potential disease aetiology.

Methods

Study populations

We utilized data from two cohort studies embedded in the MetaboCCC Consortium, a 

consortium of four independent European cohorts to investigate metabolic profiles across the 

continuum of colorectal carcinogenesis: (1) the Heidelberg site of the international ColoCare 

Study (ClinicalTrials.gov Identifier: NCT02328677) and (2) the Colorectal Cancer Study of 

Austria (CORSA). The CORSA and ColoCare studies were selected given the availability of 

samples from colorectal cancer patients as well as controls. EDTA plasma samples from 621 

participants were analysed, consisting of 268 patients with newly diagnosed colorectal 

cancer and 353 controls. We applied independent discovery (ColoCare Study: n=180 

patients / n=153 controls) and replication (CORSA Study: n=88 patients / n=200 controls) 

sets using an identical metabolomics platform (Supplementary Figure S1).

The ColoCare Study, in Heidelberg initiated in 2010, is an ongoing, international, multi-

centre prospective study including women and men newly diagnosed with primary colorectal 
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cancer. Patients are recruited at the University Hospital of Heidelberg and the National 

Center for Tumor Diseases in Heidelberg, Germany. Participants provided consent prior to 

tumour resection if they met the following inclusion criteria: newly diagnosed colorectal 

cancer (both colon (ICD-10 C18) and rectal or recto-sigmoidal cancer (ICD-10 C19/C20)), 

any stage of the disease, 18+ years at the time of diagnosis, and German-speaking. EDTA 

blood samples from colorectal cancer patients were collected prior to surgery. Control 

participants were enrolled in the PRAEVENT Study, a population-based study subjected to 

similar protocols and procedures, conducted at the National Center for Tumor Diseases in 

Heidelberg, Germany. All participants consented to take part in this study and EDTA blood 

samples were collected during a visit at the National Center for Tumor Diseases at 

recruitment (usually the same day after the consent dialogue and after signing the informed 

consent form).

In the ongoing CORSA Study participants are recruited in cooperation with the province-

wide screening project “Burgenland Prevention Trial of Colorectal Disease with 

Immunological Testing” (B-PREDICT), since 2003. All inhabitants of the Austrian province 

Burgenland aged between 40 and 80 years are invited annually to participate in faecal occult 

blood testing. Positive faecal occult blood tested individuals are subsequently offered a 

complete colonoscopy, and EDTA blood samples are collected prior to examination. 

Additional colorectal cancer patients are recruited at the General Hospital of Vienna 

(Department of Surgery), and at three additional hospitals in Vienna. All colorectal cancer 

patients included in the CORSA Study are individuals with histologically confirmed, 

sporadic colorectal cancer. CORSA controls are individuals who received a complete 

colonoscopy within the B-PREDICT screening but exhibited no pathological findings of 

disease.

All colorectal cancer samples selected for inclusion into the presented study were collected 

prior to any clinical treatment, including surgery or neo-adjuvant therapy, and did not have a 

prior history of cancer. Controls included in the study can be considered as ‘cancer-free’; 

having no prior history of cancer. Patients and controls were 95% of Caucasian origin, 

recruited within the last fifteen years and selected to be matching according to their 

recruitment time point. Clinical data, including tumour location, staging, and treatment 

history were abstracted from medical records. Demographic characteristics (e.g. age, weight, 

height and smoking status) were assessed by study-specific questionnaires. All clinical and 

demographic data were harmonized across all cohorts.

Sample collection and analysis

In both cohorts, non-fasted EDTA blood samples were collected and processed within four 

hours, according to identical processing protocols, and stored at −80°C. Samples at each 

respective study site were shipped on dry ice to the International Agency for Research on 

Cancer (IARC) in Lyon, France for analysis. Samples were analysed with a ultra-high 

performance liquid chromatography- quadrupole time-of-flight mass spectrometry (UHPLC-

QTOF-MS) system (Agilent Technologies) consisting of a 1290 Binary LC system, a Jet 

Stream electrospray ionization (ESI) source, and a 6550 QTOF mass spectrometer. Samples 
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from each study centre were analysed in cohort-specific batches, which consisted of five and 

six 96-well plates for CORSA and ColoCare, respectively.

A detailed overview of the sample preparation and a complete description of sample analysis 

by UHPLC-QTOF-MS, pre-processing of metabolomics data can be found in Supplemental 

File S1. A summary of the data processing workflow is shown in Supplementary Figure S1.

Data Analysis

Features with missing values in >50% of either colorectal cancer patient or control samples 

in both populations were excluded from analysis. The remaining maximum 50% of missing 

values were not imputed according to the recommendations of Di Guida et al. 21. Blank 

adjustment was applied for the ColoCare and CORSA samples separately; features that had 

a minimum relative mean intensity below the relative mean intensity of blank samples were 

removed. “Features” were defined as chromatographic peaks formed by specific ions, while 

“compounds” or “metabolites” referred to a confirmed molecule that can consist of one or 

more features (adducts, clusters and fragments).

Feature intensities were log transformed using the natural logarithm prior to statistical 

analysis, to prevent heteroscedasticity.21, 22 Demographic and clinical characteristics are 

presented as medians with the interquartile range (IQR), or as numbers with corresponding 

percentages. Body mass index (BMI) was calculated as weight (kg) divided by the square of 

height (m2). BMI status was categorized based on the recommendations from the World 

Health Organization (WHO): underweight (<18.5 kg/ m2), normal weight (18.5 – 24.9 kg/

m2), overweight (25.0 – 29.9 kg/m2) and obese (≥30.0 kg/m2). Smoking status was 

categorized as current, former, and never.

Discovery stage—The discovery analysis was conducted in ColoCare samples. Log 

standardized odds ratios (OR.std) and 95% confidence intervals (CIs) were calculated using 

multiple logistic regression models with disease state as dependent variable to test the 

association with feature intensities. The OR.std represents the change in colorectal cancer 

occurrence when there is a one standard deviation (SD) change in metabolite intensity, 

allowing comparison of effect sizes between different features. Since odds ratios were 

standardized, the SD of the controls were used to calculate the OR.std. Sex, age, BMI 

(continuous), and smoking status were included as covariates in the final model. Features 

that showed significant differences between colorectal cancer patients and controls after 

correction for multiple testing, using False Discovery Rate (FDR) correction, in the 

discovery stage were carried forward to the replication stage. A priori, an FDR p-value 

<0.05 was considered statistically significant.

Replication stage—The replication stage was conducted in CORSA Study samples. 

Significant features (FDR p<0.05) from the discovery stage were analysed in the replication 

stage using the same modelling approach as in the discovery stage. Features were tested if 

they point in the same direction as the corresponding effects in the discovery stage (one-

sided testing). Analyses were checked for any influence by analytical batch, but no marked 

effect could be identified in both stages. Features with significant test results were selected 

for identification using authentic chemical standards at IARC. A detailed overview of 
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metabolite identification is explained in Supplemental Table S1. When more than one mass 

spectrometry feature corresponded with a metabolite, the feature with the highest intensity 

was selected and presented in the manuscript (Supplementary Table S2).

Spearman correlation analysis was used to identify metabolite-metabolite correlations 

among all identified metabolites and to understand the intra-relation of metabolites. 

Spearman correlation coefficients were calculated for all pairs of annotated features for 

samples from the discovery and replication set to account for deviations from linearity. All 

statistical analyses were performed in R, version 3.3.3.23

Results

Participant characteristics

Characteristics of the study population are summarized in Table 1. The ColoCare cohort 

consisted of 63% men in the colorectal cancer group and 38% men in the control group. In 

addition, ColoCare controls had on average less participants classified as overweight 

compared to the colorectal cancer patients.

The CORSA cohort consisted of 68% men in the colorectal cancer group and 65% men in 

the controls group. Control patients from the CORSA cohort had on average slightly more 

participants categorized as overweight compared to colorectal cancer patients.

In both cohorts control groups consisted of more participants categorized as never smokers 

than compared to the colorectal cancer patients. In general, the distributions of covariates 

were relatively comparable between the discovery and replication cohorts. Controls from the 

ColoCare cohort were 13 years younger than controls from the CORSA cohort. The majority 

of participants have a BMI classified as overweight, except for the controls from ColoCare.

Metabolic profiles discriminating between colorectal cancer patients and controls

Metabolomics analysis yielded 10,015 mass spectrometry features, defined as a 

chromatographic peak formed by specific ions that were identified across all study samples. 

After data pre-processing, 1,156 and 1,148 features were carried forward for ColoCare and 

CORSA samples, respectively.

Next, 691 out of 1,156 features were found to be statistically significantly associated with 

disease state (discovery stage) after FDR correction and adjustment for age, sex, BMI, and 

smoking status. The 691 significant features were subsequently analysed in the replication 

dataset, i.e. the CORSA Study samples. Of these features, 97 differed between CORSA 

patients and controls.

The 97 replicated discriminating mass spectrometry features corresponded to 28 metabolites, 

defined as a confirmed molecule that can consist of one or more features (adducts, clusters 

and fragments) (Supplementary Table S2). Six metabolites (taurine, hypoxanthine, valine, 

leucine, bilirubin, and 1-methylnicotinamide) were identified using authentic standards 

resulting in a level 1 identification according to the Metabolomics Standards Initiative 

(MSI), nine compounds (seven lysophosphatidylcholines (LysoPCs) and two 
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lysophosphatidylethanolamines (LysoPEs)) reached MSI level 2 identification, and 14 

compounds could not be identified (unknown metabolites, MSI level 4). The intensity of 

these 15 identified metabolites exhibited significant differences between colorectal cancer 

patients and controls in both the discovery and replication set (Figure 1). Taurine, 

hypoxanthine, LysoPE (20:4), and LysoPE (22:6) showed higher relative mean intensity 

values in the colorectal cancer group compared with controls, representing a OR.std higher 

than one (Table 2). Valine, leucine, bilirubin, 1-methylnicotinamide, and seven LysoPCs 

(LysoPC(15:0), LysoPC (16:0), LysoPC(16:0) isomer, LysoPC(P-16:0), LysoPC(16:1), 

LysoPC(17:0), LysoPC(18:0)) showed higher relative mean intensity values in the control 

group compared to the colorectal cancer patient group, indicating an OR.std lower than one 

(Table 3).

Correlation analysis

Spearman correlation analysis was used to identify potential metabolite-metabolite 

correlations among all identified metabolites (Figure 2). Correlation patterns demonstrated 

similar results across the discovery (Figure 2A) and replication stage (Figure 2B). For both 

stages, all LysoPCs were positively correlated (Spearman correlation coefficient range [rs]: 

0.40 – 0.91) but showed only a weak correlation to LysoPE (22:6) and LysoPE (20:4). Valine 

and leucine were highly correlated (discovery stage rs: 0.73, replication stage rs: 0.78). In 

addition, the majority of replicated compounds annotated as unknown (n=13) were 

correlated with each other but showed only weak correlations with the other annotated 

compounds. Spearman correlation coefficients are shown in Supplementary Table S3.

Discussion

In this study, we identified plasma metabolites that are associated with colorectal cancer and 

which were replicated in an independent study population. We found 28 metabolites 

associated with disease state in two independent study cohorts, the ColoCare and CORSA 

studies. In total, 15 out of 28 metabolites could be identified. Taurine, hypoxanthine, valine, 

leucine, LysoPCs, and LysoPEs have been reported to be linked with colorectal cancer in 

previous metabolomics studies. All LysoPCs were positively correlated, valine and leucine 

were highly correlated, and the majority of unidentified metabolites were correlated with 

each other. Except for valine and leucine, the identified metabolites were only slightly or not 

correlated with each other.

Taurine was previously shown to be increased in serum of 60 colorectal cancer patients 

compared to 60 apparently healthy individuals 13 and in tumour tissue of 16 colorectal 

cancer patients; 24 which is in agreement with our findings. Recent studies have suggested 

taurine as a microbiota-associated metabolite playing a mediating role in microbiome-host 

interactions.25, 26 Given the knowledge that gut microbiota differ between colorectal cancer 

patients and healthy individuals, and that microbial composition is linked to colorectal 

cancer risk,27 taurine presents a promising candidate for further investigation.

Hypoxanthine has been previously reported to be increased in tumour tissue of colorectal 

cancer patients compared to normal tissue of healthy individuals.15 In contrast, a recent 

study, published by Long et al. reported decreased levels of hypoxanthine in colorectal 
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cancer and polyps compared to controls.20 Like taurine,5 hypoxanthine is an antioxidant and 

increased levels reported in the current study may be the result of increased oxidative stress,
28 which is recognized as an important process in carcinogenesis, including colorectal 

cancer.29, 30 Inconsistent findings in hypoxanthine levels may be due to the type of specimen 

analysed, or lack of statistical power because of lower sample numbers included. 

Furthermore, a possible reason for the inconsistent hypoxanthine levels may be caused by 

red blood cell haemolysis during the preparation of serum samples utilized in the Long study 

in contrast to plasma used in the present analysis.31

With respect to branched-chain amino acids (BCAAs), we observed that valine was reduced 

among colorectal cancer patients compared to controls. This result is consistent with two 

prior studies; Ma and colleagues compared serum of 30 colorectal cancer patients to 30 

colorectal cancer-free controls,12 and Farshidfar et al. investigated metabolomic signatures 

in colorectal cancer serum of stage I-IV patients.14 Comparable to valine, decreased plasma 

levels of leucine were also reported in our colorectal cancer patients compared to controls. 

Decreased blood levels of BCAAs could reflect increased requirement for amino acids due 

to the high protein turnover in the malignant setting.15, 19, 32

Moreover, seven LysoPCs were detected at lower levels among colorectal cancer patients 

compared to controls. LysoPC (16:0) and LysoPC (18:0) were reported before to be lower in 

the plasma of colorectal cancer patients versus control individuals.33, 34 There seems to be a 

general trend of lower levels of LysoPCs among colorectal cancer patients in existing 

studies,17, 33, 35 which is in line with the findings reported in our study. This pattern might 

reflect an increased degradation rate of LysoPCs as a result of the accelerated cell 

proliferation rate of cancerous cells.36 It has been suggested that decreased levels of 

LysoPCs could result from weight loss and possibly inflammatory processes related to 

cancer.37, 38 While the majority of our study participants were classified as overweight, we 

did not have data on changes in body weight among patients prior to a colorectal cancer 

diagnosis.

LysoPE (20:4) and LysoPE (22:6) were increased in colorectal cancer patients compared to 

controls. LysoPEs belong to the group of signalling lipids and are constituents of cell 

membranes. Recently, serum LysoPEs were found to be elevated among breast cancer 

patients.39 However, knowledge is limited regarding the role of LysoPEs in healthy and 

diseased individuals.

We also identified a notable decrease in MNA, an inactive metabolite of nicotinamide,40 

among colorectal cancer patients compared to controls. MNA has been reported in vivo to be 

involved in the COX-2/PGI2 pathway,40 which plays a major role in inflammation and 

colorectal carcinogenesis.41, 42 In addition, this is the first metabolomics study to report 

lower plasma bilirubin levels in colorectal cancer patients compared to controls. Previously, 

a European study analysing genomic alterations in promoter variants involved in bilirubin 

homeostasis, and another study investigating serum bilirubin levels in a large U.S. 

population have proposed a protective effect of bilirubin against colorectal carcinogenesis; 
43, 44 our metabolomics findings carefully support this hypothesis. The underlying 

mechanisms of the relationship between bilirubin and colorectal cancer remain unclear.
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Untargeted metabolomics is an elegant approach for the discovery of metabolites associated 

with cancer. However, one may wonder whether the seemingly small differences between 

colorectal cancer patients and controls are biologically relevant. It is important to keep in 

mind that findings presented are log transformed relative values. As a consequence, reported 

results hint towards the direction of the association and quantification of the metabolites is 

needed to be able to interpret absolute differences. Our results for taurine, hypoxanthine, 

valine, leucine, bilirubin, and 1-methylnicotinamide suggest future research to investigate 

the underlying biological mechanism of these metabolites in relation to colorectal cancer.

A strength of the present study is the use of a discovery-replication design leveraging two 

independent, relatively large, patient cohorts, both including patients of Caucasian origin, 

from two different countries. In general, untargeted methods typically yield data with high 

amounts of noise and non-biological information.45 This makes replication of untargeted 

metabolomics findings within ethnically homogenous cohorts extremely valuable, as it 

enables the exclusion of features that are not robustly associated with the case-control status.

A limitation of the current study is that due to recruitment procedures we tend to have more 

early stage colorectal cancer cases (stage I-II) compared to advanced metastatic patients 

(stage IV). This may indicate that our findings are mostly associated with early metabolic 

changes in colorectal carcinogenesis rather than with metastatic formation. Furthermore, 

findings are derived from cross-sectional data. Therefore, it is not possible to explore to 

which extent metabolites are causally related to cancer or cancer-related changes. Lastly, 

although our study was performed using a single stringent metabolomics approach across 

two independent populations, we acknowledge that metabolomics assays can be conducted 

using a variety of analytical platforms. As such, future studies should include multiple 

platforms to ensure the highest analytical coverage of the metabolome. Technical progress 

and the development of more comprehensive metabolite databases will also be needed to 

improve annotation of unknown compounds, including the unknown metabolites in the 

current study. Future targeted approaches, allowing the quantitative measurement of 

metabolites, would allow quantification of their absolute concentrations.46, 47

In summary, this study provides new evidence of associations of colorectal cancer with 

plasma metabolites and also confirms some evidence of previous findings.

The combination of an untargeted metabolomics approach, a rigorous discovery-replication 

design utilizing large sample sizes from independent cohorts, led to the identification and 

replication of 28 metabolites associated with colorectal cancer, including 15 metabolites that 

could be identified. These 15 identifiable metabolites should be carried forward as 

candidates for targeted analysis in prospective cohort studies, preferably derived from a 

colorectal cancer screening program, to verify their discriminating or potential predicting 

properties. Our study provides important leads for further studies focusing on metabolic 

differences between colorectal cancer-free individuals, and patients with different stages of 

colorectal cancer. Together, our findings emphasize the power of metabolomics as a strong 

molecular approach for gaining novel insights regarding metabolic changes associated with 

colorectal cancer.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Geijsen et al. Page 10

Int J Cancer. Author manuscript; available in PMC 2020 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Q)TOF (Quadrupole) time-of-flight

SD Standard deviation

TCA Tricarboxylic acid

UHPLC Ultra-high performance liquid chromatography

WHO World Health Organization
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Novelty and Impact

Colorectal cancer is characterized by distinct changes in key metabolic pathways. 

However, underlying mechanisms involved in colorectal carcinogenesis are still unclear. 

Therefore, a metabolomics discovery-replication approach was conducted to investigate 

circulating plasma metabolites in colorectal cancer within two European cohorts to verify 

robustness of the findings. This study reports 28 metabolites associated with colorectal 

cancer. These findings highlight the potential of metabolomic approaches to gain novel 

insights regarding metabolic changes associated with colorectal cancer.
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Figure 1. 
Box plots of the 15 annotated metabolites differentiating colorectal cancer patients (CRC) 

and controls for the discovery and replication set. The boxplot presents the minimum, first 

quartile, median, third quartile and maximum log transformed relative intensity values and 

potential outliers of taurine, hypoxanthine, valine, leucine, bilirubin, 1- methylnicotinamide 

(MNA), LysoPC (15:0), LysoPC (16:0), LysoPC (16:0) isomer, LysoPC (P-16:0), LysoPC 

(16:1), LysoPC (17:0), LysoPC (18:0), LysoPE (20:4) and LysoPE (22:6), respectively.
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Figure 2. 
Metabolite-metabolite correlation analysis of replicated metabolites. Positive correlations 

are highlighted in blue, negative correlations are highlighted in red. Unknown compounds 

are indicated as monoisotopic mass@retention time. Metabolites are ordered by hierarchical 

clustering. (A) Spearman correlation analysis plot of the discovery dataset. (B) Spearman 

correlation analysis plot of the replication dataset.
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