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Abstract

Purpose: Total variation (TV) regularization is efficient in suppressing noise, but is known to 

suffer from staircase artifacts. The goal of this work was to develop a regularization method using 

the infimal convolution of the first- and the second-order derivatives to reduce or even prevent 

staircase artifacts in the reconstructed images, and to investigate if the advantage in noise 

suppression by this TV-type regularization can be translated into dose reduction.

Methods: In the present work, we introduce the infimal convolution of the first- and the second-

order total variation (ICTV) as the regularization term in penalized maximum likelihood 

reconstruction. The preconditioned alternating projection algorithm (PAPA), previously developed 
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by the authors of this article, was employed to produce the reconstruction. Using Monte Carlo-

simulated data, we evaluate noise properties and lesion detectability in the reconstructed images 

and compare the results with conventional total variation (TV) and clinical EM-based methods 

with Gaussian post filter (GPF-EM). We also evaluate the quality of ICTV regularized images 

obtained for lower photon number data, compared with clinically used photon number, to verify 

the feasibility of radiation-dose reduction to patients by use of the ICTV reconstruction method.

Results: By comparison with GPF-EM reconstructed images, we have found that the ICTV-

PAPA method can achieve a lower background variability level while maintaining the same level 

of contrast. Images reconstructed by the ICTV-PAPA method with 80,000 counts per view exhibit 

even higher channelized Hotelling observer (CHO) signal-to-noise ratio (SNR), as compared to 

images reconstructed by the GPF-EM method with 120,000 counts per view.

Conclusions: In contrast to the TV-PAPA method, the ICTV-PAPA reconstruction method 

avoids substantial staircase artifacts, while producing reconstructed images with higher CHO SNR 

and comparable local spatial resolution. Simulation studies indicate that a 33% dose reduction is 

feasible by switching to the ICTV-PAPA method, compared with the GPF-EM clinical standard.

Keywords

fixed-point proximity methods; infimal convolution; noise suppression; penalized maximum 
likelihood optimization total variation regularization; SPECT reconstruction; staircase artifact

1. INTRODUCTION

Tomographic reconstruction of medical images in emission computed tomography (ECT), 

typically performed in a discrete domain, can be characterized as an ill-posed inverse 

problem.1 Solutions for such problems have been successfully implemented by creation of 

approximate mathematical models of ECT imaging systems (system matrices), and by 

application of variational methods combined with efficacious minimization algorithms. Of 

special interest is the Bayesian approach based on statistical considerations. It relies on the 

maximization of a posteriori probability (MAP) of a solution using the negative log 

likelihood of the objective function and a priori knowledge about the solution. Using the 

concept of Gibbs a priori distribution,2 the reconstruction problem can thus be approached 

as a convex optimization problem consisting of three terms.3 The first two terms, 

collectively known as the fidelity term, evaluate and penalize the mismatch between 

expected and observed data (i.e., assess goodness-of-fit), while the last term, known as the 

regularization term, penalizes low a priori probability solutions. The balance between these 

two terms is determined by a regularization parameter.

The regularization term needs to reflect statistical properties of a priori distribution of the 

unobserved radiotracer activity f and should allow preservation of image details including 

sharp edges while suppressing image noise. One of the most popular candidates is total 

variation (TV), introduced by Rudin, Osher, and Fatemi in 1992.4

The TV regularization was introduced to SPECT reconstruction by Panin et al.5 and became 

increasingly popular because of its capability of preserving the original objects. However, 

since it considers only the first derivatives, it tends to create artificial piecewise constant 
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blocky regions with spurious sharp edges called staircase artifacts even if the original image 

contains only smooth gradients of gray values representing ECT activity distribution. In 

order to reduce staircase artifacts while retaining the edge-preservation property of TV, 

modifications of TV using l1 norm of high-order gradients have been proposed in the context 

of image denoising and restoration, including direct addition of a higher order derivative 

term (HOTV),6 infimal convolution of the first- and second-order TV terms (ICTV),7,8 and 

total generalized variation (TGV).9

We have introduced a proximity operator-based fixed-point algorithm — the preconditioned 

alternating projection algorithm (PAPA)10 — that rigorously treats non-differentiable TV 

regularization; and we have implemented this algorithm for SPECT reconstruction with 

high-order TV (HOTV) regularization aiming at reduction or elimination of staircase arti-

facts.11 Even though this attempt was successful, we have continued seeking better TV-

based regularization and, accordingly, have implemented infimal convolution of the first- 

and second-order TV (ICTV) as a penalty term for PAPA. Here we investigate the quality of 

SPECT images reconstructed using the ICTV-PAPA method and compare it with the quality 

of images reconstructed with TV-PAPA method and the conventional EM algorithm with 

Gaussian post filter (GPF). In our previous publications,12,13 we developed a new blockwise 

explicit fixed-point proximity algorithm, instead of PAPA, to solve a class of three-termed 

convex optimization problems. The SPECT reconstruction problem with ICTV penalty term 

can be categorized into this class of problems. In particular, our previous work directly 

replaced the TV term in the SPECT reconstruction model proposed in Ref. [10] with the 

ICTV penalty term, and thus imposed a non-negativity constraint on the sum of the involved 

image components. Moreover, in the aspects of image quality assessment, our previous 

study solely investigated the ability of the ICTV regularization in curing the staircase 

artifacts. In the current work, we require both image components to be non-negative, for the 

two components represent image regions of different smoothness and the radioactivity 

distribution is non-negative in the whole image domain. This yields a more reasonable 

SPECT reconstruction model than that in our previous work. In addition, we perform 

simulation studies to compare all aspects of the reconstructed images and investigate the 

feasibility of radiation-dose reduction to patients by use of the ICTV-PAPA method.

2. PENALIZED LIKELIHOOD RECONSTRUCTION WITH THE 

PRECONDITIONED ALTERNATING PROJECTION ALGORITHM

2.A. Penalized likelihood optimization model

In a SPECT system, the detection of gamma photons by a detector element is a random 

process following Poisson distribution (assuming detector dead time can be neglected) with 

its expected value determined by the radioactivity distribution inside the patient body, the 

photon attenuation along the propagation path, and the sensitivity of the detector. Therefore, 

the detected counts at m detector elements, denoted by a vector g ∈ Rm, and the expected 

activity distribution in d volume elements (voxels) of the reconstruction space, denoted by a 

vector f ∈ Rd, can be modeled as:
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g = Poisson(A f + γ), (1)

where A ∈ Rm × d is the system matrix and γ ∈ Rm is the vector of background counts 

originating from the background activity (e.g., scattered photons coming from outside the 

field of view of the gamma camera or from room radioactive background). We assume that f 
and γ are both vectors of expectation values of independent Poisson distributed random 

variables and that γ can be experimentally estimated in the absence of patient in the scanner 

field of view.

Each entry on the nth column of matrix A represents the expected number of photon counts 

detected by the corresponding detector element when a point source with unit activity is 

placed within voxel n, assuming fixed exposure time. The system matrix is determined by 

the gamma camera system geometry, the patient anatomy and physiology and the involved 

radioisotope. Specifically, attenuation coefficients depend on the patient’s tissue 

composition and the energy of the gamma and/or x-ray photons used for imaging. The 

sensitivity of detector elements to a certain voxel depends on the radiological depth, which is 

directly correlated with patient anatomy. Applying the notation used in our previous work,10 

the penalized likelihood optimization model for SPECT reconstruction (1) can be written as:

f * = argmin
f ≥ 0

{〈A f , 1〉 − 〈ln(A f + γ), g〉 + λU( f )} . (2)

In Eq. (2), notation ⋅ , ⋅  denotes the inner product in the Euclidean space, and 1 is an m-

dimensional vector with all its elements equal to 1. The Kullback-Leibler (KL) data 

divergence A ⋅ , 1 − ln(A ⋅ + γ), g , denoted by F in subsequent sections, measures the 

discrepancy between the estimated and the observed data. It is derived from the negative 

logarithm of the Poisson probability density function. Please refer to Ref. [10] for its 

detailed derivation. The penalty term (regularization term) λU is introduced to enforce 

desired smoothness on the estimate. Here, λ is a positive penalty weight, and its practical 

selection is often based on qualitative evaluation of reconstructed images.

2.B. Total variation-based penalty term

In SPECT reconstruction, we frequently use the isotropic definition of TV regularization. 

For a 3D image f of size p × p × q, we have the following discretized representation of 

isotropic total variation (ITV):

UITV( f ): = ∑
k = 1

q
∑
j = 1

p
∑
i = 1

p

f i, j, k − f i − 1, j, k
2 + f i, j, k − f i, j − 1, k

2 + f i, j, k − f i, j, k − 1
2 .

(3)
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In the above definition, we apply the symmetric boundary condition to extend the voxels, 

meaning that the extended voxels are equal to their symmetric voxels along the image 

boundaries. For example, we set f 0, j, k: = f 1, j, k, f i, 0, k: = f i, 1, k, and f i, j, 0: = f i, j, 1 . For 

simplified presentation of the algorithm, we next introduce a first-order derivative matrix 

acting on the 3D image and formulate the ITV penalty term as a composition φ ∘ B with φ 
being a convex non-negative function and B being a matrix. In particular, the α × α 
difference matrix Dα that calculates the discrete first-order derivative of a 1D signal is 

defined as:

Dα: =

0
−1 1

⋱ ⋱
−1 1

. (4)

Using the Kronecker tensor product (represented by symbol ⊗), we define the first-order 

derivative matrix acting on a column-wise vectorized 3D image as:

B1: =

Iq ⊗ I p ⊗ Dp

Iq ⊗ Dp ⊗ I p

Dq ⊗ I p ⊗ I p

, (5)

where In is the n × n identity matrix. The ITV penalty term (3) can then be rewritten as:

UITV( f ) ≡ φ1 B1 f = ∑
i = 1

d
B1 f

i
2 + B1 f

i + d
2 + B1 f

i + 2d
2 , (6)

where d = p × p × q is the number of voxels in the reconstruction space, and 

φ1(z): = ∑i = 1
d ∑ j = 0

2 zi + jd
2  is the d-sum of isotropic vector norms, which is a convex 

function defined on R3d.

Further, the second-order partial derivative matrices can be similarly defined as
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Dxx: = Iq ⊗ I p ⊗ −Dp
T Dp,

Dxy: = Iq ⊗ −Dp
T ⊗ Dp,

Dxz: = −Dq
T ⊗ I p ⊗ Dp,

Dyx: = Iq ⊗ Dp ⊗ −Dp
T ,

Dyy: = Iq ⊗ −Dp
T Dp ⊗ I p,

Dyz: = −Dq
T ⊗ Dp ⊗ I p,

Dzx: = Dq ⊗ I p ⊗ −Dp
T ,

Dzy: = Dq ⊗ −Dp
T ⊗ Ip,

Dzz: = −Dq
T Dq ⊗ I p ⊗ I p .

(7)

We then stack the above matrices together and propose the following complete second-order 

derivative matrix:

B2: = Dxx
T Dxy

T Dxz
T Dyx

T Dyy
T Dyz

T Dzx
T Dzy

T Dzz
T T . (8)

Here Dxx
T  denotes the transpose of the matrix Dxx. By defining a convex function 

φ2:R9d R as φ2(z): = ∑i = 1
d ∑ j = 0

8 zi + jd
2 , we can calculate the second-order TV penalty 

term as composition φ2 ∘ B2 .

Next, we present the definition of infimal convolution. For proper, convex functions 

ψ i:Rn R ∪ + ∞ , i = 1, 2, …, N, N ≥ 2, their infimal convolution is the function ψ defined 

by

ψ( f ) = (ψ1 ⊡ … ⊡ ψN)( f ): = inf f = f 1 + ⋯ + f N
∑

i = 1

N
ψi f i .

If (a) the ψ i, i = 1, 2, …, N are also lower semicontinuous; (b) one of the ψi is coercive and the 

others are all bounded below, then ψ is proper, convex and lower semicontinuous, and the 

infimum in the definition of ψ(f) is attained for any f ∈ Rn. In this case, the infimum 

operation can be replaced by the minimization operation. We remark that the first- and 

second-order TV are both proper, convex, continuous functions that are coercive and 

bounded below by 0. Hence, with the above definition and properties of infimal convolution, 

the ICTV function is also proper, convex and lower semicontinuous, which is well-defined 

by
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UICTV( f ) = min
f = f 1 + f 2

λ1φ1 B1 f 1 + λ2φ2 B2 f 2 . (9)

In Eq. (9), the first term has a small value if component f1 is piecewise constant, while the 

second term favors a piecewise linearly varying component f2. Thus, f1 has the appearance 

of TV-regularized reconstructed images, with sharp edges and piecewise constant regions, 

while f2 resembles HOTV reconstructed features, with smoother radioactivity distribution. 

Accordingly, the infimal convolution-regularized SPECT reconstruction problem amounts to 

a two-variable optimization problem. Moreover, the two variables f1 and f2 represent image 

regions of different smoothness, and thus should both be non-negative.

The main justification for ICTV functional as a penalty term used in SPECT reconstruction 

is its adaptiveness. Instead of enforcing a single penalty criterion, e.g., ITV penalty, on the 

whole image f, only part of f that has piecewise constant regions with sharp edges is 

penalized by the ITV penalty term. Part of the image with smooth distribution is more likely 

to be penalized by the second-order TV. The decomposition of radioactivity distribution 

estimate f into components f1 and f2 is determined adaptively. ICTV can preserve both 

smooth and piecewise constant features of an image. On the other hand, the ITV penalty 

term tends to reconstruct smooth regions as a collection of piecewise constant regions. This 

phenomenon, known as staircase artifacts, may limit clinical use of the ITV regularization. 

In sum, the ICTV regularization is more suitable for images consisting of regions with very 

different characteristics, e.g., some parts of the image are very smooth while some other 

parts have piecewise constant features, as compared to the ITV regularization only. 

Moreover, as per discussed above, the ICTV function is convex, so the existence of solutions 

of the model (2) is guaranteed. In the present study, for the purpose of simplifying the 

evaluation process, we fixed the ratio of λ1 to λ2 to be 1, i.e., λ1/λ2 = 1, in the ICTV 

penalty term (9). We leave the rigorous discussion of parameter variation between λ1 and λ2 

to future study.

2.C. Preconditioned alternating projection algorithm

The TV regularization was first introduced to the field of SPECT reconstruction by Panin et 

al.5 in the framework of the one-step-late algorithm.14 In their approach, the non-

differentiability of TV was dealt with by using its smooth approximation via the introduction 

of an ad hoc parameter.5 However, such an approximation of TV by differentiable function 

may lead to a loss of image resolution and contrast, as well as the instability in solutions.10 

In contrast, our proposed preconditioned alternating projection algorithm (PAPA)10 

rigorously tackles the issue of non-differentiability, avoids any ad hoc smoothing 

parameters, and provides a robust efficient iterative scheme for solving model (2) with 

penalty term in the form of φ ∘ B . Here, φ is a convex non-negative function, and B is a 

matrix.

Preconditioned alternating projection algorithm has been successfully applied to TV10 and 

HOTV11 regularization problems. Since ICTV can be formulated as a composition ϕ ∘ B
(Table I), the proposed algorithm can also be used to efficiently solve the ICTV 
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regularization problem. In particular, we set u: =
f 1
f 2

∈ R2d, and define a differentiable 

function F :R2d R as F(u): = F f 1 + f 2 . Recalling the definition of F, we have 

F(u) = A f 1 + f 2 , 1 . With the above preparation, we propose an iterative scheme for 

penalized likelihood SPECT reconstruction with ICTV penalty term:

h(k) = P+ u(k) − S∇F u(k) − SBTTb(k) ,

b(k + 1) = I − proxφ
T−1

b(k) + Bh(k) ,

u(k + 1) = P+ u(k) − S∇F u(k) − SBTTb(k + 1) .

(10)

In scheme (10), b ∈ R12d is the dual variable; S is a 2d × 2d diagonal positive-definite 

preconditioning matrix that accelerates the resultant algorithm and T : = diag μ1I3d, μ2I9d  is 

a 12d × 12d diagonal matrix with positive parameters μ1, μ2. Motivated by the original 

PAPA, we choose the preconditioning matrix as the diagonal matrix S(k): = diag S1
(k), S2

(k)  at 

the kth iteration, where S1
(k): = diag f 1

(k)/AT1 and S2
(k): = diag f 2

(k)/AT1 . The reconstructed 

image at each iteration is then given by f (k): = f 1
(k) + f 2

(k) .

Implementation of (10) also requires the closed forms of P+ and proxφ
T−1

. The operator P+ is 

a projection operator onto the closed set y ∈ R2d : yi ≥ 0, i = 1, 2, ⋯, 2d . Indeed, for x ∈ R2d,

we have P+(x)
i

= max xi, 0 . Furthermore, recalling the definition of convex function φ in 

Table I, we know that for ICTV regularization, φ(z) = λ1φ1 z1 + λ2φ2 z2 , where 

z1 ∈ R3d and z2 ∈ R9d denote, respectively, the 1/4 upper and 3/4 lower elements of the 

vector z ∈ R12d . We can see that the function φ is separable with respect to its two variables 

z1 and z2. Hence, according to our previous work,12 the proximity operator of φ has the 

following block form:

proxφ
T−1

(z) =
prox

λ1/μ1 φ1
z1

prox
λ2/μ2 φ2

z2
. (11)

In this case, the calculation of the proximity operator of φ amounts to the calculation of 

prox
λ1/μ1 φ1

z1  and prox
λ2/μ2 φ2

z2 . Recalling Example 2.5 in Micchelli et al.,15 we can 

compute the elements of a vector y1: = prox
λ1/μ1 φ1

z1  by
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y1i
= max Z1i

−
λ1
μ1

, 0
Z1i
Z1i

, i = 1, 2, ⋯, d . (12)

Here y1i
= y1i

, y1i + d
, y1i + 2d

T
and Z1i

= z1i
, z1i + d

, z1i + 2d

T
 are two 3D vectors. For the 

calculation of the elements of the vector y2: = prox
λ2/μ2 φ2

z2 , we only need to replace 

y1i
and Z1i

 in Eq. (12) by two 9D vectors 

y2i
= y2i

, y2i + d
, …, y2i + 8d

T
and z2i

= z2i
, z2i + d

, …, z2i + 8d

T
, respectively, as well as λ1/μ1 

by λ2/μ2. The Appendix shows detailed pseudo-code of PAPA designated for the ICTV 

regularization problem.

The most time-consuming parts of iterative SPECT reconstruction are the forward and 

backward projections (i.e., multiplying system matrices A and AT). All other calculations 

involved are inexpensive in comparison. For all reconstruction methods considered in the 

current work, their convergence rates are comparable, so the numbers of forward and 

backward projections needed are similar. Hence, the computational times for all the 

competing methods are very similar.

We remark that the popular alternating direction method of multipliers (ADMM) can also 

solve the underlying optimization problem, which has a compact form of 

min
f

F(A f ) + φ(B f ) + ψ( f ) with a Lipschitz differentiable function F. When applying standard 

ADMM to this problem, it requires an evaluation of the proximity operators of 

F ∘ A and ϕ ∘ B, which is complicated by the presence of matrices A and B, especially when 

these matrices are high dimensional and without simple structure.

On the other hand, PAPA is developed based on a fixed-point characterization of the solution 

of the underlying convex optimization problem. Because of this, PAPA provides four 

interesting and useful features. First, it allows us to deal with the functions involved in the 

optimization problem either through their proximity operators or through their gradients. In 

fact, for non-differentiable functions, the proximity operator can be a very powerful tool, 

however, for smooth functions, the gradient may be easier to implement. Second, PAPA does 

not require matrix inversion, which is an advantage when solving large-scale reconstruction 

problems where matrix inversion can be quite expensive. Third, PAPA introduces only one 

dual variable (12 times the image size), which is the minimum storage necessary for solving 

the above non-differentiable problem. Finally, through the preconditioning technique, PAPA 

suggests the search for the solution to follow the direction of the search in the classical EM 

algorithm and thus speeds up the original convergence.
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3. METHODS

3.A. Experimental Design

3.A.1. Phantom simulations—To quantify the performance of the reconstruction 

methods, we conducted numerical experiments with Monte Carlo-simulated data. Two 

numerical voxelized phantoms were created: a reference cylinder with lumpy background 

[warm Gaussian blobs, Fig. 1(d)–1(f)] and targets absent; and a cylinder with identical 

background with targets present: a set of hot Gaussian blobs [Fig. 1(c)], a set of point 

sources [Fig. 1(b)], and a set of piecewise constant cold spheres [Fig. 1(a)], respectively. 

Both phantoms were of the size 128 × 128 × 128 voxels, with voxel size set to 2.2 × 2.2 × 

2.2 mm3. The six Gaussian blobs had the same maximum-activity-to-mean-background ratio 

of 3:1 with radii (FWHM) of 4, 5, 6, 7, 8, and 9 mm.

Projection data were simulated using the SIMIND Monte Carlo simulation package.16 Up to 

fourth-order scatter photons were considered in the simulation. A Siemens e.cam gamma 

camera with low-energy parallel-hole (LEHR) parallel-beam collimators was simulated. We 

set the detector element size to 2.2 × 2.2 mm2 and the active detector size 28.2 × 28.2 cm2. 

The radius of rotation was set at 13 cm, and 120 projections were simulated for each 

phantom. The isotope simulated was Tc-99 m. The main energy window and scatter energy 

window were set at 127–155 keV and 123–127 keV, respectively. A total of 3.9 × 109 photon 

histories per view were simulated to create approximately “noise-free” data.

Poisson noise was added to the simulated projection data. Three different scenarios 

corresponding to 40,000, 80,000, and 120,000 counts per view, respectively, were 

considered. A hundred noise realizations at each noise level were created for each phantom. 

Poisson noise was added to photopeak-window data and scatter-window data according to 

count level. Scatter correction was implemented by adding estimated scatter counts in 

forward projection during each iteration. Scatter counts were estimated using scatter-window 

data.17

A wide range of penalty weights have been tested (Section 3). Smoothing parameters were 

chosen by four radiologists based on lesion detectability by their judgment. The penalty 

weights chosen in this fashion for the TV-PAPA and ICTV-PAPA methods were λ = 0.15, 

and λ1 = 0.2, λ2 = 0.2, respectively. The Gaussian post-filter size was selected by 

radiologists to be FWHM = 7.3 mm.

3.A.2. Patient data—To test the performance of the reconstruction methods in real 

clinical applications, we reconstructed anonymized patient data. The projection data 

consisted of 128 projection views in a 128 × 100-dimensional detector matrix with 3.9 × 3.9 

mm2 detector element. The imaging was performed on a Siemens e.cam SPECT gamma 

camera with LEHR collimators. Imaging time was set at 20 s per view. A total number of 2.2 

× 108 photons were recorded within the selected (20%) energy window. Reconstruction 

space voxel size was 3.9 × 3.9 × 3.9 mm3.
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3.B. Image quality metrics

3.B.1. Contrast recovery coefficient, spatial variability, and Bias—The contrast 

recovery coefficient (CRC) is defined as

CRC =
Crecon

Cgroundtruth
, C = L − B

B
, (13)

where L and B represent ensemble averaged values of selected “lesion” and background 

region, respectively. The ideal CRC value is 1 for both hot and cold lesions. Spatial 

variability (SV) is defined as the standard deviation of reconstructed activity in the selected 

background regions averaged over the whole ensemble reconstructions. For cold spheres, 

spatial variabilities are measured in relative activity units; for hot spheres, spatial 

variabilities are quantified as the percentages of the mean value (similar to the definition of 

coefficient of variation). For the phantoms investigated, the lowest values for spatial 

variabilities were 0.0110 (22.7%) and 0.0087 (17.6%) for cold (hot) lesion and background, 

respectively. The non-zero lowest values of spatial variability were due to background 

lumpiness. The CRC vs. background variability curves provide insight into the tradeoff 

between contrast recovery and image noise for various penalty parameters. Bias is defined as 

the difference between the reconstructed activity and the true value. Bias describes the 

reconstruction accuracy in terms of activity estimation.

3.B.2. Local noise power spectrum—The noise power spectrum is an effective 

method for evaluation of image noise properties. However, noise in SPECT reconstructed 

images is nonstationary.18 Therefore, we used a relatively small local region-of-interest 

(ROI) to obtain data on local noise power spectrum (LNPS). It was estimated using the 

method described in ICRU Report 54.19 We used 100 reconstructed noise realizations to 

obtain each LNPS.

3.B.3. Local point spread function—Due to nonstationary properties of reconstructed 

images, we evaluated local point spread function (LPSF) using the approach proposed in 

Ref. [20]. Point sources were introduced as background perturbations at different radial 

distances from the phantom’s central axis [Fig. 1(b)]. We reconstructed images for 100 noise 

realizations for each phantom and obtained average images of the phantom with point 

sources and of the reference phantom. We then obtained a difference image by subtraction of 

the latter image from the former. The local PSF vs. radial location was then evaluated using 

the difference image.

3.B.4. Channelized hotelling observer—The channelized Hotelling observer (CHO) 

technique21–23 is a well-established method of measuring the task-based performance of 

imaging systems. By simulating the response of the human visual system at various spatial 

frequencies, CHO has been shown to correlate well with human observer performance in 

numerous studies.24–27 CHO with internal observer noise was used to evaluate the 

performance of our regularization methods. The sparse difference of Gaussian (S-DOG) 

channels was implemented following Abbey et al28 and applied to our data.
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4. RESULTS AND DISCUSSION

4.A. Reconstructed Images

Figure 2 shows images reconstructed for Monte Carlo-simulated SPECT projection data 

described in Section 3.A. All three algorithms were used to reconstruct the simulated 

120,000 counts/view (120 kc/view) SPECT projection data. Additionally, the ICTV-PAPA 

method was used to reconstruct the simulated 40 and 80 kc/view SPECT projection sets. 

Figure 3 showcases the flexibility of the proposed methods: Fig. 3(a) shows the f1 

component of the reconstruction that has piecewise constant features; Fig. 3(b) shows the f2 

component that is smooth; Fig. 3(c) shows the combined final image that has low noise and 

reduced staircase artifact, compared with TV reconstructed images shown in Fig. 2(d).

4.B. Contrast recovery coefficient (CRC), background variability and bias

Reconstructions of ten noise realizations for 120 kc/view simulated SPECT data were 

performed. Six hot-sphere ROIs and four largest cold spheres ROIs were used to estimate 

mean values of CRC, background variability, and bias (Fig. 4). Each point on the curves was 

calculated for penalty parameters selected in the 0.01–200 range for TV-based algorithms 

and Gaussian post-filter radii in the 1.1–7.1 mm range for GPF-EM. Only parameters that 

resulted in images with more than four visible spheres (hot spheres and cold spheres 

combined) were selected.

Analysis of Fig. 4 shows that both TV-based methods out-perform the GPF-EM method in 

terms of (a) preserving contrast recovery coefficient while reducing the background spatial 

variability [Fig. 4a and 4(b)], and (b) bias-background variability tradeoff [Fig. 4c and 4(d)]. 

In Fig. 4(a) and Fig. 4(b), we notice that the TV-PAPA method produces smaller background 

variability than both ICTV-PAPA and GPF-EM methods for lower contract recovery 

coefficient reconstructions. However, low background variability no longer correlates with 

high-quality image reconstructions in that parameter range, because the ground truth 

background variability is actually higher than the TV-PAPA reconstructed results, and TV-

PAPA generates images with substantial piecewise constant artifacts. Figure 4(d) shows that 

all reconstruction methods produce identical bias-CRC tradeoff, due to the fact that for cold 

lesions the definitions of these two metrics are the same. When penalty parameters or post-

filter sizes are reduced to zero, all methods are equivalent to the MLEM algorithm. 

Therefore, all curves converge to the same points in the plots.

Note that the images reconstructed by the ICTV-PAPA method exhibit somewhat anomalous 

behavior for larger penalty parameters. They never reach the background spatial variability 

below a particular threshold (17% for hot and 21% for cold spheres, respectively), even 

when a large smoothing parameter is used and the CRC is decreasing. Further, they never 

cross certain maximum levels of bias (0.027 for hot and 0.048 for cold spheres, 

respectively). In contrast, CRC (bias) of TV-PAPA and GPF-EM decreases (increases) when 

the background spatial variability decreases.
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4.C. Local noise power spectra

We analyzed LNPS using a small ROI located at the isocenter for simulated SPECT data 

with 120 kc/view. Examples of Local noise power spectra (LNPS) are shown in Fig. 5. We 

observe similar “donut” shapes of LNPS for all investigated methods. The donut shape of 

NPS is typical for reconstructed images in CT and SPECT. Essentially, the donut shape is 

due to the lack of noise in low spatial frequency and high spatial frequency. NPS was 

acquired with zero-mean noise images, which are reconstructed images sub-tracted by the 

ground truth. Therefore, the zero-frequency component is exactly 0. The high spatial 

frequency component is also small due to the fact that the reconstructed images are 

relatively smooth. We observe that the corresponding mean and maximum noise power 

amplitudes are an order of magnitude higher for GPF-MLEM, compared to the TV-based 

methods (Table II). Furthermore, the ICTV-PAPA method produces lower mean noise power 

amplitude than TV-PAPA. The full width at half maximum (FWHM) of LNPS for GPF-EM 

is larger than that for the TV-based methods and does not depend on radial location. 

Examples of average radial profiles through LNPS are shown in Fig. 6.

4.D. Channelized Hotelling observer

CHO detectability indices, shown in Figs. 7 and 8, indicate that the ICTV-PAPA method is 

capable of providing images with higher conspicuity of hot and cold “lesions,” compared to 

the GPF-EM method. The CHO signal-to-noise ratio (SNR) obtained for simulated “lesions” 

at 80 kc/view using the ICTV-PAPA method is higher than CHO SNR obtained for 120 kc/

view data using the GPF-EM method.

4.E. Local point spread function

Plots of local PSF components vs. radial distance are shown in Fig 9. The transaxial local 

spatial resolution improves approximately monotonically with increasing radial distance 

from the center of the cylindrical phantom toward the edges. The GPF-EM-reconstructed 

images have lower FWHM near the center of the phantom, while TV-based methods 

reconstructed images have lower FWHM near the edge of the phantom. GPF-EM-

reconstructed images have more uniform (less steep slope) local FWHM throughout the 

reconstruction space, compared with TV-based methods. The tangential FWHM is lower 

than radial FWHM. The actual local FWHM strongly depends on selected penalty 

parameters.

4.F. Reconstruction of clinical data

To evaluate the performance of the reconstruction methods in a realistic setting, a projection 

set for a SPECT Tc-99 m clinical parathyroid study29 was reconstructed using all of the 

methods. Analysis of Figs. 10–12 shows that images reconstructed using the TV-PAPA and 

ICTV-PAPA methods with physician determined penalty parameters both have higher spatial 

resolution and lower background variability, compared with the GPF-EM and clinical 

OSEM methods (HOSEM, by Hermes30,31). In addition, the ICTV penalty term effectively 

reduces staircase artifacts.

Considering the clinical workflow, penalty parameters should be decided based on a 

template once a scan is scheduled. For given tasks, the optimal parameter should be roughly 

Zhang et al. Page 13

Med Phys. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the same. Alternatively, an unsupervised method that utilizes the discrepancy principle has 

been proposed to customize the penalty parameters to each scan.32 However, if 

computational time is not a concern (e.g., if GPUs are in use for image reconstruction tasks), 

the better approach may be to reconstruct multiple images with multiple penalty weights and 

provide radiologists several reconstructed images instead of one image.

5. CONCLUSIONS

In our pursuit for superior regularization for ECT image reconstruction, we implemented 

infimal convolution of the first-and second-order gradient TV (ICTV) regularization, using 

our PAPA algorithm. We investigated the quality of SPECT images reconstructed using the 

ICTV-PAPA method and compared it with the quality of images reconstructed with the TV-

PAPA method and the conventional EM algorithm with GPF.

Numerical experiments and initial clinical data reconstructions and analyses indicate that our 

proposed ICTV-PAPA reconstruction method outperforms the TV-PAPA and GPF-EM 

methods. The local noise power spectra (LNPS) comparison shows that the ICTV-PAPA 

method efficiently suppresses the noise while preserving edges without creating staircase 

artifacts. The maximum and mean amplitudes of LNPS for the TV-based methods for 120 

kc/view SPECT data are 5–8 times lower than that for the GPF-EM method. The ICTV-

PAPA method permits a better tradeoff of contrast recovery vs. background variability. Thus, 

with properly selected parameters, the ICTV-PAPA-reconstructed images can simultaneously 

achieve higher contrast and lower noise (without creating staircase artifacts), compared with 

the GPF-EM and clinical HOSEM methods. We also found that the TV-based methods 

exhibit higher CHO SNR for hot and cold simulated “lesions” of various sizes, compared 

with the GPF-EM method. These findings are also confirmed by quantitative analysis of the 

reconstructed clinical images.

Imaging performance of simulated lower count (higher noise) SPECT data reconstruction 

using the ICTV-PAPA method was also investigated. Even with only 67% of the number of 

photons used in the GPF-EM reconstruction, the hot and cold “lesions” CHO SNR in ICTV-

PAPA-reconstructed images still surpassed GPF-EM CHO SNR, indicating that a 33% 

radiation-dose reduction per patient might be possible.

We conclude that the ICTV-PAPA method exhibits better noise suppression, lower local 

FWHM, higher contrast recovery and higher lesion detectability than that of the GPF-EM 

and clinical HOSEM methods. Consequently, it could allow reduction of the radiation dose 

to patients in clinical SPECT studies.
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APPENDIX: PSEUDO-CODE FOR SOLVING THE ICTV-PAPA 

REGULARIZATION PROBLEMS

The ICTV penalty term can be formularized as:

Φ(z): = min λ1φ1 B1 f 1 + λ2φ2 B2 f 2 (A1)

where B1 and B2 denote first-order TV, and second-order discrete derivative, respectively. 

Following the notation used in Section 2.B, the objective function of the ICTV-PAPA 

method is:

f = argmin f ≥ 0{〈A f , 1〉 − 〈ln(A f + γ), g〉
+min λ1φ1 B1 f 1 + λ2φ2 B2 f 2 .

(A2)

Assuming both f1 and f2 are non-negative components of f, (17) becomes:

[ f 1, f 2] = argmin f 1 ≥ 0, f 2 ≥ 0 A f 1 + f 2 , 1

− ln A f 1 + f 2 + γ , g

+λ1φ1 B1 f 1 + λ2φ2 B2 f 2 .

(A3)

With element-wise division and multiplication respectively represented by “./” and “.*”, the 

pseudo-code for ICTV-PAPA is as follows:

1 Set maximum iteration number N and regularization hyperparameter λ;

2 Allocate memory for six vectors: f 1
(0), f 2

(0)h1
(0), h2

(0), b1
(0), and b2

(0) . Initialize f(0) = 1, b1
(0) = 0, 

b2
(0) = 0 (Note that b1 has 3 times the size of f, and b2 has 9 times the size of f), and set γ = 0.000001, K 

= 10;

3 Backproject 1 to reconstruction space, get AT1;

4 for n = 0 to N−1, do

 EM step:

5   calculate preconditioner S1 = f 1
(n) ⋅/ AT1 , S2 = f 2

(n) ⋅/ AT1 ;

6   backproject g . / A f (n) + γ  and get update U = AT g . / A f I
(n) + f 2

(n) + γ ;

7   f 1
(n + 1/2) = S1 ⋅* U, f 2

(n + 1/2) = S2 ⋅ * U;

 TV step:

8   update reconstruction parameters: β1 = 16 * λ1 * max S1 , β2 = 64*λ2 * max S2

9   for k = 1 to K, do
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10
  h1 = f 1

(n + 1/2) − λ1/β1 BTb1 1 · * S1;

  h2 = f 2
(n + 1/2) − λ2/β2 BTb1 1 · * S2;

11   update b1, b2: b1 = b1 + Bh, b2 = b2 − BTBh;

  b1 = b1 − max b1 − λ1β1, 0 * b1/ b1 ,

  b2 = b2 − max b2 − λ2β2, 0 * b2/ b2 ,.

12
  f 1

(n + 1) = h1 − λ1/β1 BTb1 1 ⋅ * S1,

  f 2
(n + 1) = h2 − λ2/β2 BTBb2 1 ⋅ * S2;

13 Return image estimate f (N) = f 1
(N) + f 2

(N) .
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FIG. 1. 
Transaxial cross-sections of a phantom with: (a) six cold (no activity) piecewise constant 

spheres with radii of 4, 5, 6, 7, 8, and 9 mm, (b) eight point sources with maximum-activity-

to-mean-background ratio of 100:1 at different radial distances from the central axis of the 

phantom, (c) six hot Gaussian blobs with radii (FWHM) of 4, 5, 6, 7, 8, and 9 mm with 

maximum-activity-to-mean-background ratio of 3:1 and (d–f) reference phantom containing 

warm Gaussian blobs only. Both phantoms were of the size 128 × 128 × 128 voxels, with 

voxel size set to 2.2 × 2.2 × 2.2 mm3.
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FIG. 2. 
Transaxial cross-sections of images for Monte Carlo-simulated SPECT data for phantom 

shown in Fig. 1, reconstructed by: (a) the ICTV-PAPA method for 40 kc/view data, λ1 = 0.4, 

λ2 = 0.4; (b) the ICTV-PAPA method for 80 kc/view data, λ1 = 0.3, λ2 = 0.3; (c) the ICTV-

PAPA method for 120 kc/view data, λ1 = 0.2, λ2 = 0.2; (d) the TV-PAPA method for 120 kc/

view data, λ = 0.2; and (e) the GPF-MLEM method using 120 kc/view data, FWHM = 7.3 

mm. For all images, reconstructions were stopped at 100 iterations. Left column: hot spheres 

with Gaussian activity distribution (see text). Right column: cold spheres with zero activity.
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FIG. 3. 
Components of the ICTV-PAPA-reconstructed images obtained at 100 iterations for 

simulated SPECT data with 120 kc/view, λ1 = 0.2, and λ2 = 0.2: (a) f1 component, (b) f2 

component, and (c) final combined image (f = f1 + f2). Top row: cold spheres with zero 

activity. Bottom row: hot spheres with Gaussian activity distribution (see Fig. 1 and text).
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FIG. 4. 
(a) Mean CRC vs. background variability for hot spheres; (b) Mean CRC vs. background 

variability for cold spheres; (c) Mean CRC vs. bias for hot spheres; (d) Mean CRC vs. bias 

for cold spheres; (e) Bias vs. background variability for hot spheres; (f) Bias vs. background 

variability for cold spheres. Each point on the curves was calculated for penalty parameters 

selected in the 0.01–200 range for TV-based algorithms and Gaussian post-filter radii in the 

1.1–7.1 mm range for GPF-EM. Only the four largest spheres were considered among cold 

spheres. The true background spatial variability for selected ROIs is 17.6% for the 

background in the cross-section with hot spheres and 22.7% for the cross-section with cold 

spheres due to the lumpy background.
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FIG. 5. 
Local noise power spectra (LNPS) obtained for the central location of small ROI: (a) the 

GPF-EM method; (b) the TV-PAPA method; and (c) the ICTV-PAPA method all obtained for 

simulated SPECT data with 120 kc/view. Noise variance values of the selected ROI and 

penalty parameters are displayed at the bottom of each image.
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FIG. 6. 
Average radial profiles for local noise power spectra shown in Fig. 5. The profiles were 

obtained by averaging the data every 10°.
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FIG. 7. 
CHO detectability indices of (a) hot; and (b) cold spheres vs. cross-sectional area of the 

spheres and vs. the number of counts per view in the simulated SPECT data. The ICTV-

PAPA method for 40 kc/view data, λ1 = 0.4, λ2 = 0.4; the ICTV-PAPA method for 80 kc/

view data, λ1 = 0.3, λ2 = 0.3; the ICTV-PAPA method for 120 kc/view data, λ1 = 0.2, λ2 = 

0.2; the TV-PAPA method for 120 kc/view data, λ = 0.2; and the GPF-MLEM method using 

120 kc/view data, FWHM = 7.3 mm. The reconstructions were stopped at 100 iterations. 

The solid lines connecting the data points are provided as a visual guide only.
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FIG. 8. 
CHO detectability indices estimated (solid circles) for the fourth largest sphere (1.4 cm2 

cross-sectional area) for images reconstructed with three photon levels (40, 80, and 120 kc/

view) using the ICTV-PAPA method and the GPF-EM method (solid squares) at 120 kc/view 

level. The solid lines connecting the data points are provided as a visual guide.
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FIG. 9. 
(a) Radial full width at half maximum (FWHM) and (b) tangential FWHM of transaxial 

local point spread function (LPSF) as a function of radial positions of point sources. The 

SPECT data were simulated for 120 kc/view. Reconstructions were performed with the 

following penalty parameters: the ICTV-PAPA method for 40 kc/view data, λ1 = 0.4, λ2 = 

0.4; the ICTV-PAPA method for 80 kc/view data, λ1 = 0.3, λ2 = 0.3; the ICTV-PAPA 

method for 120 kc/view data, λ1 = 0.2, λ2 = 0.2; the TV-PAPA method for 120 kc/view data, 

λ = 0.2; and the GPF-EM method using 120 kc/view data, FWHM = 7.3 mm. 

Reconstructions were stopped at 100 iterations. The solid lines are linear regression fits.
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FIG. 10. 
Transaxial views of reconstructed images obtained for clinical Tc-99 m Sestamibi SPECT 

parathyroid, late-phase study: the clinical Hermes HOSEM method (a); the GPF-EM method 

(b); the TV (c, d); and ICTV-PAPA (e, f) methods, each with two sets of penalty parameters.
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FIG. 11. 
Coronal views of reconstructed images obtained for clinical Tc-99 m Sestamibi SPECT 

parathyroid late-phase study: the clinical Hermes HOSEM method (a); the GPF-EM method 

(b); the TV (c, d); and ICTV-PAPA (e, f) methods, each with two sets of penalty parameters.
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FIG. 12. 
One-channel-wide line profiles through reconstructed transaxial images of clinical Tc-99 m 

Sestamibi parathyroid scan image shown in Fig. 10. The location of the profile is shown in 

the inset. Penalty weights were set as: the TV-PAPA method: λ = 2, the ICTV-PAPA 

method: λ1 = 2, λ2 = 2.
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TABLE I.

Representation of TV and ICTV penalty terms as the composition of a convex function φ and a matrix B.

Penalty term Convex function φ Matrix B Expected image f

TV  φ1 B1 f

ICTV  λ1φ1 + λ2φ2

B1 0
0 B2

f 1
f 2
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TABLE II.

Mean and maximum amplitudes of LNPS obtained for the simulated SPECT data with 120 kc/view.

Mean values
of LNPS

Maximum values
of LNPS FWHM

GPF-EM 1.90 × 10−3 0.0557 at 0.28 cm−1 0.48 cm−1

TV-PAPA 3.75 × 10−4 0.0182 at 0.27 cm−1 0.37 cm−1

ICTV-PAPA 3.07 × 10−4 0.0192 at 0.27 cm−1 0.32 cm−1
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