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Abstract

Purpose: Dual-energy CT (DECT) has been shown to have a great potential in reducing the 

uncertainty in proton stopping-power-ratio (SPR) estimation, when compared to current standard 

method – the stoichiometric method based on single-energy CT (SECT). However, a few recent 

studies indicated that imaging noise may have a substantial impact on the performance of the 

DECT-based approach, especially at a high noise level. The goal of this study is to quantify the 

uncertainty in SPR and range estimation caused by noise in the DECT-based approach under 

various conditions.

Methods: Two widely referred parametric DECT methods were studied: the Hünemohr-Saito 

(HS) method and the Bourque method. Both methods were calibrated using Gammex tissue 

substitute inserts scanned on the Siemens Force DECT scanner. An energy pair of 80 kVp and 150 

kVp with a tin filter was chosen to maximize the spectral separation. After calibrating the model 

with the Gammex phantom, CT numbers were synthesized using the density and elemental 

composition from ICRU 44 human tissues to be used as a reference, in order to evaluate the impact 

of noise alone while putting aside other sources of uncertainty. Gaussian noise was introduced to 

the reference CT numbers and its impact was measured with the difference between estimated 

SPR and its noiseless reference SPR. The uncertainty caused by noise was divided into two 

independent categories: shift of the mean SPR and variation of SPR. Their overall impact on range 

uncertainty was evaluated on homogeneous and heterogeneous tissue samples of various water 

equivalent path lengths (WEPL).

*Correspondence: Ming Yang., PhD, Department of Radiation Oncology, UT Southwestern Medical Center, 2280 Inwood Road, 
Dallas, Texas 75390-9303, Office: 214-648-5057, Fax: 214-648-9533, ming.yang@utsouthwestern.edu. 

Conflict of interest
The authors have no conflicts to disclose.

HHS Public Access
Author manuscript
Med Phys. Author manuscript; available in PMC 2020 May 01.

Published in final edited form as:
Med Phys. 2019 May ; 46(5): 2251–2263. doi:10.1002/mp.13493.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Results: Due to the algorithms being nonlinear and/or having hard thresholds in the CT number 

to SPR mapping, noise in the CT numbers induced a shift in the mean SPR from its noiseless 

reference SPR. The degree of the mean shift was dependent on the algorithm and tissue type, but 

its impact to the SPR uncertainty was mostly small compared to the variation. All mean shifts 

observed in this study were within 0.5% at a noise level of 2%. The ratio of the influence of 

variation to mean shift was mostly greater than 1, indicating that variation more likely determined 

the uncertainty caused by noise. Overall, the range uncertainty (95th percentile) caused by noise 

were within 1.2% and 1.0% for soft and bone tissues, respectively, at 2% noise with 50 voxels. 

This value can be considered an upper limit as more voxels and lower noise level rapidly 

decreased the uncertainty.

Conclusions: We have systematically evaluated the impact of noise to the DECT-based SPR 

estimation, and identified under various conditions that the variation caused by noise is the 

dominant uncertainty-contributing component. We conclude that, based on the noise level and 

tumor depth, it is important to estimate and include the uncertainty due to noise in estimating the 

overall range uncertainty before implementing a small margin in the range of 1%.

Keywords

stopping-power-ratio (SPR) estimation; dual-energy CT (DECT); random noise; electron density 
ratio (EDR); effective atomic number (EAN)

1. Introduction

Proton radiotherapy has clear theoretical advantages over conventional photon-based 

radiotherapy because of its unique dosimetric characteristics known as the Bragg peak. 

However, the advantages of proton cannot be fully utilized in many cases due to its 

susceptibility to uncertainties, especially range uncertainty.1,2 Range uncertainty not only 

causes healthy tissues to receive unnecessarily high dose because of the extra planning 

margin, but also can result in sub-optimal beam angle selection (e.g., avoiding ideal beam 

angles due to critical organs located closely distal to the target). This prevents fully 

exploiting the high dose gradient at the distal end of the proton beam.

One major source contributing to the range uncertainty is the uncertainty in proton stopping-

power-ratio (SPR) estimation. Currently, proton SPR is derived from patient’s CT images 

through a calibration curve. The most widely used method of determining the calibration 

curve is the stoichiometric method proposed by Schneider et al.3 The major disadvantage of 

the single calibration curve based method is the degeneracy between CT number and SPR, 

because these two quantities describe two completely different physical interactions and 

hence have no one-to-one correspondence. As a result, the single energy CT (SECT)-based 

method has been shown to be sensitive to potential tissue composition variation between 

different individuals.4

Dual-energy CT (DECT) based approaches have demonstrated their capability of reducing 

this uncertainty,5–8 as well as their clinical applicability and relevance to the patient.9–13 

Various methods have been proposed that estimate proton SPR from CT numbers acquired 

with two different energy spectra. Most methods calculate electron density relative to water 
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(ρe) and effective atomic number (Z) and convert Z to mean excitation energy (I) based on 

an empirical relationship, followed by calculating SPR using Bethe-Bloch equation with 

obtained ρe and I.14,15 Han et al proposed a method that decomposes the images into two 

basis materials and calculates SPR based on the proportion of each material.16 Taasti et al 
proposed a completely empirical approach which fits CT numbers to SPR directly with a 

predefined function.17 Most DECT methods have been shown to be robust against tissue 

composition variation and to achieve uncertainty less than 1% under an ideal condition.18,19

In our recent study, we showed that DECT-based methods are particularly susceptible to 

imaging uncertainty, i.e., a systematic uncertainty (error) in the measured CT number mainly 

caused by the beam hardening effect.20 We chose to omit imaging noise in the uncertainty 

budget because noise was thought to only cause random variation, which will be averaged 

out in range calculation.21 However, a recent study by Brousmiche et al, which evaluated the 

impact of imaging noise on SPR estimation for the SECT stoichiometric method, suggested 

that Gaussian noise may not only cause random variation but also cause systematic error due 

to the existence of hard thresholds in the calibration curve.22 Another recent study by Bar et 
al also investigated the impact of imaging noise to the DECT-based methods and compared 

the performance of DECT-based methods with the SECT-based method under different noise 

levels.23 Their study also demonstrated that random imaging noise can cause systematic 

shift of mean SPR, and pointed out that the DECT-based approach might lose its advantage 

over the SECT-based approach at a high noise level. However, their conclusion was largely 

based on an analysis on the error histogram of one particular simulated pelvic CT slice, 

which has a very specific weight distribution of only a few tissue types and hence is hard to 

be generalized for the whole population. We believe it is important to evaluate this impact 

for each individual tissue type and then derive the overall uncertainty estimate based on the 

weights of each tissue type, i.e., equal weight or weights specific to certain treatment sites. 

Recently, there has been a few publications experimentally demonstrating with real animal 

tissues that the DECT methods can achieve range uncertainty of around 1% or less,5,6,8,24 

which makes it even more important to fully understand the impact from imaging noise 

before applying a tight margin like 1%.

The goal of this study is to systematically evaluate the impact of random imaging noise to 

the accuracy of the DECT-based SPR estimation. This study used two widely referred 

parametric DECT methods: the Hünemohr-Saito (HS) method, a generalized method from 

multiple previous works,19,20,25,26 and the Bourque method, a method proposed by Bourque 

et al.18 Questions to be answered through this study include 1) what is the general behavior 

of the shift of mean SPR for different DECT models; 2) which tissue type suffers the most 

from this systematic uncertainty, 3) how the impact from the mean shift is compared to that 

from random variation; and 4) what is a good/robust estimate of the overall impact from 

imaging noise under different conditions and how it is compared to other uncertainty 

contributing factors of the DECT approach.
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2. Materials and Methods

2.1. DECT-based SPR estimation methods

Many DECT-based methods comprise three steps: 1) estimating EDR (ρe) and EAN (Z) 

from the CT numbers of two energies, 2) converting Z to mean excitation energy (I), and 3) 

calculating SPR using the Bethe-Bloch formula as

SPR = ρe

ln
2mec2β2

1 − β2 − β2 − lnI

ln
2mec2β2

1 − β2 − β2 − lnIw

, (1)

where me is the rest mass of an electron, c is the speed of light, β is the velocity of proton in 

vacuum relative to the speed of light, and Iw is the mean excitation energy of water (i.e., 75 

eV in this study). In the following section, we briefly describe the two selected calibration-

based DECT methods for estimating

ρe and Z. Readers can refer to the respective original publication for further details.

2.1.1. The Hunemohr-Saito (HS) method—Saito et al proposed a linear regression 

based method for estimating ρe in 2012,25 which mainly approximates ρe as a linear 

combination of attenuation coefficients (or CT numbers). Later, Hunemohr et al used a 

similar concept to estimate Z.19 In our previous study, we presented a more generalized 

model and referred it as the “HS method”.20 The generalized model can be succinctly 

expressed as

ρe = a1xL + a2xH + a3, and (2)

ρeZ
n = b1xL + b2xH + b3, (3)

where xi (∀i = L,H ) is the attenuation coefficient of x-ray relative to water (x = μ/μw), n is 

the Mayneord’s exponent (i.e., approximately in the range [3, 3.3], empirically determined), 

and ai and bi (∀i = 1, 2, 3 ) are parameters for calibration. Intuitively, the calibration can be 

viewed as fitting the plane of relative attenuation coefficients to ρe followed by ρeZn, both 

with linear regression.

2.1.2. The Bourque (B) method—Bourque et al proposed a polynomial regression 

based method that uses polynomials of dual-energy index (DEI) or dual-energy ratio (DER) 

to estimate Z (i.e., defined as Zmed in the original publication),27 followed by polynomials of 

Z to estimate ρe. The equations can be summarized as
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Z =
k = 1

K
ckΓk − 1, and (4)

xi = ρe, i
m = 1

M
bm, iZ

m − 1, (5)

where Γ is either DEI ((xL − xH)/xL + xH)) or DER (xL/xH), ck and bm,i are parameters for 

fitting (∀i = L,H ), and K and M are polynomial orders that need to be tuned to balance 

between the accuracy and stability of the algorithm.18,23 After ρe,L and ρe,H are obtained by 

fitting the equation (Eq. 5), ρe is obtained by averaging the two energies as

ρe =
ρe, L + ρe, H

2 . (6)

2.1.3. Z-to-I conversion—ρe and Z can be estimated by using one of the DECT-based 

models mentioned earlier, but to use the Bethe-Bloch equation (Eq. 1) to calculate SPR, I 
must be obtained. Here we introduce three Z-to-I conversions that were proposed by Yang 

(Y), Saito (S), and Bourque (B) (Fig. 1).

Yang et al proposed an empirical Z-to-I conversion that fits Z to ln I linearly with a threshold 

at Z=8.5 to separate soft and bone tissues.28 The fitting can be expressed as

lnI =
C1Z + C2 Z < 8.5(soft)

C3Z + C4 Z ≥ 8.5(bone) .

Saito et al also proposed an empirical Z-to-I conversion similar to Yang’s fitting, but differs 

in that it linearly fits Zn to ln I instead of Z to ln I, with a threshold at Z=8.78.26 The fitting 

can be expressed as

lnI =
C1Zn + C2 Z < 8.78(soft)

C3Zn + C4 Z ≥ 8.78(bone)
. (8)

Bourque et al proposed using a combination of polynomial and linear fitting to make the fit 

continuous.18 Bourque’s fitting can be expressed as
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I =

e1Z + e2 Z < 6.26

e3Z5 + e4Z4 + e6Z2 + e7Z + e8 6.26 ≤ Z ≤ 13.52.
e9Z + e10 Z > 13.52

(9)

Hereafter, for simplicity, we will use “ρe and Z estimation method + Z-to-I conversion 

method” to denote a combination for SPR estimation. For example, HS+Y will denote the 

HS method for ρe and Z estimation and the Yang method for Z-to-I conversion.

2.1.4. Model parameters and adjustments—We set n=3.3 for the HS method and 

K=3 and M=6 for the Bourque method.20,23 The Z-to-I conversion parameters were 

calibrated using the ICRU 44 reference human tissues for both methods.29 A 200 MeV 

proton beam was assumed when calculating the Bethe-Bloch equation. In addition, we 

restrained Z as 6<Z<15 to prevent algorithms from producing negative or complex values of 

ρe, Z, or SPR with noisy CT numbers.

2.2. Data preparation

2.2.1. Calibration—The material inserts provided in Gammex RMI467 phantom 

(Gammex, Middleton, WI) were used for calibration for both the HS method and the 

Bourque method, which include LN300, LN450, AP6, BR12, Water, Solid water, SR2, LV1, 

IB3, B200, CB2–30, CB2–50, and SB3. A small phantom and a large phantom made in-

house were scanned with a Siemens SOMATOM Force DECT scanner (Siemens Healthcare, 

Forchheim, Germany) with 80 kVp and 150 kVp/Sn energy pair.20 The small phantom 

mimicking a pediatric patient was circular with a diameter of 16 cm and the large phantom 

mimicking an adult patient was ellipsoidal with a semi-major axis of 40 cm and a semi-

minor axis of 28 cm. Both phantoms were scanned using clinical DE AP protocol with 

automatic exposure control (AEC). The scan was in helical mode with 5 mm slice thickness 

and 0.6 pitch. For the small phantom, the average tube current time product was 9.5 mAs 

and 8.5 mAs for 80 kVp and 150 kVp/Sn, respectively, with a display field-of-view (DFOV) 

of 200 mm. For the large phantom, the average tube current time product was 358 mAs and 

74 mAs for 80 kVp and 150 kVp/Sn, respectively, with a DFOV of 450 mm. Reconstruction 

kernel was Bf44 with iterative reconstruction strength 3. A 10 mm diameter region of 

interest (ROI) was drawn in the middle of the insert to obtain the mean CT number of the 

insert, and CT numbers from the small phantom and the large phantom were averaged to 

obtain the mean CT number for each insert. These mean CT numbers and the reference 

ground truth ρe, Z, and SPR were used to calibrate each method. Calibrated parameters are 

shown in Table 1.

The Z-to-I conversion parameters Ci and ei can be calibrated using reference human tissue 

data such as ICRU 44. We used the same parameters used in the original publication by Li et 
al and Bourque et al.18,20 with Yang’s fitting values as C1=0.1196, C2=3.4078, C3=0.1033, 

and C4=3.2929. For Saito’s fitting, we used ICRU 44 instead of ICRU 46 (Saito’s original 

publication) and obtained fitting values as C1=2.8578E-04, C2=4.0762, C3=1.0340E-04, and 

C4=4.1478.26
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2.2.2. Data for evaluation—To analyze the impact of noise alone and negate other 

sources of uncertainty, reference CT numbers and SPRs were calculated from ICRU 44 

‘reference’ human tissues using their elemental composition. As the DECT methods take 

two CT numbers as the input and produces ρe and Z as the two outputs, it is possible to 

reverse the calculation and obtain two CT numbers from ρe and Z. By using this approach, 

reference CT numbers were directly mapped to reference SPRs without error. Introducing 

noise to the reference CT numbers enabled us to solely analyze the impact of noise without 

considering other uncertainties. With the elemental composition and mass density, relative 

attenuation coefficients for the HS method were obtained as

xL, HS =
ρe(Z

na2 − b2) − a2b3 + a3b2
a2b1 − a1b2

, and (10)

xH, HS =
ρe(Z

na1 − b1) − a1b3 + a3b1
a1b2 − a2b1

, (11)

Similarly, for the Bourque method with K=3, Γ was obtained using the quadratic formula as

Γ =
−c2 + c2

2 − 4c3(c1 − Z)
2c3

, (12)

and relative attenuation coefficients as

xL, BQ =
2ρe( m = 1

M bm, 1Zm − 1
m = 1
M bm, 2Zm − 1)

m = 1

M
bm, 2Zm − 1 + 1 − Γ

1 + Γ m = 1

M
bm, 1Zm − 1

, (13)

and

xH, BQ = 1 − Γ
1 + Γ

μ1, BQ . (14)

For each of the two methods, CT numbers calculated with the corresponding method were 

used to evaluate the impact of noise. Reference CT numbers are summarized in Table 2. 

Note that all CT numbers presented in this paper are shifted CT numbers that is +1000 from 

the original HU definition (i.e., HU=1000x/xw). This way, the relative change of HU is 

directly proportional to the change of linear attenuation coefficient.
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To diversify the ‘reference’ tissues for our test, the ICRU 44 ‘reference’ human tissues were 

given variations in mass density, as well as hydrogen and calcium percentage for soft and 

bone tissues, respectively, to account for compositional variations among individuals.4 2000 

‘individualized’ human tissue samples generated this way had CT numbers slightly deviated 

from the ICRU 44 ‘reference’ human tissue samples. This dataset covers a wider patient 

population and helps to reach a more generalized conclusion.

To validate that our calculated CT numbers closely represent real CT numbers, we compared 

the calculated and measured CT numbers of the tissue substitute inserts (Fig. 2). For CT 

numbers calculated with the HS method, the RMS difference of 80 kVp was 7.17 HU and 

19.91 HU for soft and bone tissues, respectively, and the RMS difference of 150 kVp/Sn was 

4.11 HU and 4.16 HU for soft and bone tissues, respectively. For CT numbers calculated 

with the Bourque method, the RMS difference of 80 kVp was 6.96 HU and 11.22 HU for 

soft and bone tissues, respectively, and the RMS difference of 150 kVp/Sn was 7.79 HU and 

6.68 HU for soft and bone tissues, respectively. These differences demonstrated the 

‘imperfectness’ of the DECT model, which were categorized as the modeling uncertainty in 

our previous study.20

2.3. Evaluation of the impact of noise

Throughout the paper, we mainly used HS+Y (HS method with Yang’s Z-to-I conversion) 

and B+B (Bourque method with Bourque’s Z-to-I conversion) to evaluate the impact of 

noise to these originally proposed algorithms. This way the results are consistent with our 

previous work and can be directly referred to.20 Only at the end of the study we compared 

different combinations of “ρe and Z estimation” and “Z-to-I conversion” to identify the 

dependence of two steps.

Two components that arise from the noise, i.e., the shift of mean SPR and the variation of 

SPR, were individually analyzed to gauge each of their impact. The shift of mean SPR can 

be regarded as a measure of the accuracy of SPR estimation because it measures the 

systematic error. The variation of SPR, on the other hand, serves as a measure of the 

precision of SPR estimation because it measures the random error (fluctuation). The degree 

of mean shift is dependent on the nonlinear components (i.e., hard thresholds and nonlinear 

curvatures) in the CT number to SPR mapping. The degree of variation is dependent on the 

steepness of the slope in the mapping. These two constitute the SPR uncertainty caused by 

noise.

For a given pair of reference CT numbers, 100k samples with Gaussian random noise of a 

specified percentage were generated. The noise was applied to either HUL,HUH, or both 

(uncorrelated between HUL and HUH) to identify the impact of low and high energy CT 

numbers independently. This way we were able to identify which of the two energies (i.e., 

80 kVp or 150 kVp/Sn) had a larger impact on SPR estimation under the same noise level. 

This can provide additional information when the noise ratio between low and high energy 

pair is not exactly one as considered in this study, and may help optimizing the imaging dose 

by adjusting the noise ratio. With these samples, the mean shift was calculated as the 

difference from the mean of the SPR to the SPR of the mean CT numbers, expressed as
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ΔSPR (%) =
SPR − SPR|xi = xi

SPR|xi = xi

× 100, (15)

where SPR is the mean of SPR, and SPR|xi = xi
 (∀i = L,H ) is the SPR of the mean CT 

number. The variation was evaluated as the standard deviation of the SPR relative to the 

shifted mean, expressed as

σSPR(%) = std(SPR)
SPR × 100. (16)

The mean shift and variation were assessed for each tissue. Tissues were grouped into soft 

and bone tissue and root-mean-squared error (RMSE) was taken for each group for group-

wise assessment. This result reflects the uncertainty due to noise in an individual voxel for a 

specific tissue type.

To evaluate the overall impact of noise on range uncertainty, the number of voxels and tissue 

heterogeneity were considered to estimate its realistic impact. Uncorrelated Gaussian noise 

was added to 50, 100, or 300 voxels (i.e., 5, 10, and 30 cm with 1mm/pixel resolution) of 

homogeneous or heterogeneous tissues for both HUL and HUH. For homogeneous tissues, 

each of the 34 tissues were evaluated individually and RMS was taken to derive the group 

average for soft and bone tissues separately. For heterogeneous tissues, each voxel was first 

assigned to a particular tissue group and then a random tissue was drawn from that particular 

group with uniform probability to fill that voxel. The number of voxels assigned to each 

tissue group was based on the weight of that specific tissue group for a specific tumor site. 

The weight of each tissue group was calculated by dividing the water-equivalent-pathlength 

(WEPL) by the average SPR of each tissue group and renormalized (i.e., 

Voxel weight = (WEPLi/SPRi)/∑(WEPLi/SPRi), where i is the lung, soft, and bone tissue). 

Three tumor sites, i.e., prostate, lung, and head-and-neck (HN) were considered in study. 

Table 3 lists the WEPL weights of lung, soft and bone tissue groups for each tumor site used 

in this study, which was based on our previous studies.4,20 100,000 samples were simulated 

for both homogeneous and heterogeneous tissues to calculate the 95th percentile. In this 

study, the notion of 95th percentile and 2σ were used interchangeably for simplicity.

3. Results

3.1 Behavior of the DECT methods in the presence of Gaussian noise

We have calculated and plotted the parameters (ρe, Z, and SPR) for all possible CT number 

combinations within the range [0, 3000] (Fig. 3), which covers the CT number range of a 

typical patient CT dataset. This was used to obtain an overall picture of the DECT model 

behavior, especially the possible non-linearity and hard thresholds existing in the DECT 

calculations. In generating this plot, we found negative and complex values in Z calculation 
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for both methods, which produced large errors. Because of this, we decided to implement 

the regularization of 6<Z<15 in our calculation. This improved the stability of both methods 

in the presence of noise.

The main difference between these two methods existed in the ρe map; the CT number-to-ρe 

map of the HS method was linear while that of the Bourque method was not. In the HS 

method, ρe was calculated first with a linear combination of HUL and HUH, independent of 

Z, so the calculated ρe fell on a perfect linear plane for all HU combinations, except for the 

values near boundaries where ρe was forced to zero to avoid negative values. On the 

contrary, in the Bourque method, Z was calculated first and then ρe was calculated based on 

Z (Eq. 4, 5, and 6), so the non-linear curvature and the regularization used in Z calculation 

are passed onto ρe. The CT number-to-SPR map resembles the ρe map closely for both 

methods, due to the dominance of ρe in the SPR calculation. The overall SPR distribution of 

the HS+Y method appears more linear than that of the B+B method.

Because the nonlinear regions relevant to the tissue of interest were not clearly visible in the 

3-D plot in Fig. 3, we plotted line profiles of SPR around an example tissue (adipose) to 

better illustrate the hard thresholds and non-linear curvatures in the SPR estimation (Fig. 4). 

Two hard thresholds were observed for the HS+Y method, whereas one hard threshold was 

observed for the B+B method. The hard threshold visible in both methods was caused by the 

regularization of 6<Z<15. The other hard threshold only visible in the HS+Y method was 

Zth=8.5 for separating soft and bone tissues in the Z-to-I conversion. The polynomial 

function used in the Bourque’s Z-to-I conversion produced a smooth transition from soft to 

bone tissues, which prevented an abrupt change of SPR near the boundary.

Fig. 5 shows the distribution of SPR in the presence of Gaussian noise, which became 

asymmetric due to the nonlinearities shown in Figs. 3 and 4. The asymmetric SPR 

distribution created a difference between the SPR of the mean CT number (black solid lines) 

and the mean of the SPR (red dashed lines), which is the root cause of the shift of mean 

SPR. The shift of mean SPR increased with the noise level, as a larger proportion of CT 

numbers were affected by the nonlinear regions. Similar shift of mean SPR was also 

reported by Brousmiche et al for the SECT stoichiometric method and Bar et al for DECT 

methods. Their magnitudes were reported to vary depending on the algorithm, tissue type, 

and noise level.22,23 Unlike the SPR variation due to noise, the mean shift impacts the SPR 

systematically and cannot be mitigated by averaging a number of voxels.

3.2. Uncertainties due to noise: mean shift and variation

Fig. 6 visualizes the degree of SPR mean shift for each combination of of HUL and HUH. 

The regions covered by ‘reference’ human tissues and ‘invidualized’ human tissues were 

highlighted with markers and shades. For the HS+Y method, soft tissues were 

predominantly affected by the hard thresholds caused by the Z-to-I conversion line located 

lower right from most soft tissues and Z>6 regularization line located upper left from most 

soft tissues, as also seen in Fig. 4. Bone tissues, on the other hand, had a small mean shift 

because no hard thresholds or non-linearity existed nearby. For the B+B method, soft tissues 

were only affected by the Z>6 regularization line, but the degree was much smaller than that 

of the Z-to-I conversion line of the HS+Y method. Unlike the HS+Y method, bone tissues 
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experienced a nonlinear curvature in the B+B method, although the degree was small as the 

cortical bone with the largest mean shift still had less than 0.5% mean shift at 5% noise.

Fig. 7 shows the distribution of the mean shift for ‘individualized’ tissue populations in the 

presence of 2% imaging noise. For the HS+Y method, some soft tissues had a high mean 

shift (c.f., thyroid was the highest with 1.34%) but bone tissues only had a sharp peak near 

zero because bone tissues were far away from the nonlinear regions as seen in Fig. 6. For the 

B+B method, we saw an opposite result as soft tissues had smaller mean shift than bone 

tissues. The high mean shift of the HS+Y method for thyroid is not surprising as thyroid had 

a mean Z=8.41 that is close to the threshold of Zth=8.5 employed in Yang’s Z-to-I 
conversion.

The magnitude of SPR mean shift for soft and bone tissues are shown as a function of noise 

level in Fig. 8 (a). Noise was added to either HUL, HUH, or both to specify the contribution 

from each of the two energies. For the HS+Y method, soft tissues had mean shifts of 0.47% 

at 2% noise and 0.90% at 5% noise, which were much higher than those of bone tissues: 

0.02% at 2% noise and 0.12% at 5% noise. For the B+B method, soft tissues had mean shifts 

of only 0.04% at 2% noise and 0.54% at 5% noise. Bone tissues had higher mean shifts of 

0.07% at 2% noise and 0.41% at 5% noise. The growth of mean shift was observed to be an 

exponential function of noise level except for the soft tissue group with the HS+Y method, 

putatively due to the influence from double hard thresholds with opposite sign cancelling out 

each other. For both methods, HUL and HUH contributed with a similar degree to the mean 

shift.

The standard deviation (i.e., variation) of SPR for soft and bone tissues are also shown as a 

function of noise level (Fig. 8 (b)). Both methods showed a similar trend and similar values 

for soft and bone tissues. The degree of variation of SPR has been previously shown to be 

linearly proportional to the variation of CT numbers.20,21,30 Unlike the mean shift, however, 

the varation was dominated by HUH, shown by the fact that adding noise only to HUH and to 

both HUL and HUH showed a similar degree of variation.20

3.3. Range uncertainty due to noise in homogeneous/heterogeneous tissues

Due to the stochastic nature of the random variation, its overall impact to the range 

uncertainty depends on the number of samples. Thus, scenarios with varying number of 

voxels and tissue heterogeneity were studied to estimate the overall range uncertainty.

Fig. 9 (a) plots the range uncertainty (95th percentile or 2σ) caused by the imaging noise, 

including the contribution from both the mean shift and the random variation. Since the 

range uncertainty caused by the variation depends on the number of voxels (tumor depth), 

we considered three scenarios with homogeneous tissue samples comprising 50, 100, or 300 

voxels. The range uncertainty increased with the noise level for both methods and both 

tissue groups. However, the HS+Y method produced a larger range uncertainty for soft 

tissues than the B+B method, while both methods showed similar range uncertainty for bone 

tissues.
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To further compare the relative impact of the mean shift and variation, we plotted the ratio of 

the overall range uncertainty caused by the variation to that by the mean shift in Fig. 9 (b). 

As expected, we found the ratio of variation to mean shift decreases as the number of voxels 

increases. In addition, we found this ratio decreases rapidly as the noise level increases, 

which indicates that the mean shift increases faster than the variation, except for the HS+Y 

method when applied to soft tissues. It is also seen in Fig. 9 (b) that the ratio of variation to 

mean shift is substantially larger than 1 under most conditions for both methods, except for 

the combination of 300 voxels of soft tissues with the HS+Y method which had a ratio 

slightly smaller than 1. This indicates that the systematic shift only exist in certain 

conditions and the stochastic variation is usually the dominant uncertainty contributing 

factor in most conditions.

To confirm the trend seen with homogeneous tissues, we also estimated the range 

uncertainty (2σ) for heterogeneous tissues for three different tumor sites (Table 4). We chose 

50 voxels to demonstrate a worst-case scenario which will result in the largest overall range 

uncertainty among studied conditions. Even though multiple different tissues were 

arbitrarily distributed within a set of 50 voxels, averaging effect still came into play for 

variation, effectively reducing the range uncertainty in a similar manner as for homogeneous 

tissues. As the soft tissue was the greatest contributor for all three tumor sites, the range 

uncertainty (2σ) for heterogeneous tissues were close to that of homogeneous soft tissues. In 

a realistic condition of 2% noise, the RMSE of three tumor sites was 1.10% with the HS+Y 

method and 0.83% with the B+B method, which were between the values of homogeneous 

soft and bone tissues but closer to the soft tissue value.

3.4. Comparison of HS+Y and B+B to other combinations of methods

We also investigated different combinations of “ρe and Z estimation” and “Z-to-I 
conversion” on SPR mean shift and variation to study the dependence between these two 

steps (Fig. 10). It is seen that there is a substantial difference in the mean shift among 

different combinations. By contrast, the variation was rather stable for a given ρe and Z 
estimation method. We can confirm that the degree and location of hard thresholds impacts 

the mean shift largely, but not the variation. The HS+Y method had the largest mean shift 

among the combinations we tested, whereas the variations were rather comparable for any 

HS or B method.

4. Discussion

In this study, we have systematically evaluated the impact of noise on SPR estimation with 

the DECT algorithms for a generalized tissue population. We evaluated noise as the sole 

source of uncertainty while leaving aside other uncertainties in order to investigate the 

impact of noise alone. To make our estimate more robust, we have included more possible 

CT number pairs by introducing additional tissue composition variation to the ‘reference’ 

human tissues. In addition, we separated the impact from the mean shift and the variation, 

and were able to demonstrate that the variation component is the dominant contributing 

factor under most conditions for the two DECT methods implemented in this study. The 

only exception happened when the tumor was at a deep depth (~30 cm), in which case the 
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mean shift was only slightly larger than the variation with the HS+Y method. Moreover, we 

estimated the overall range uncertainty for both homogeneous and heterogeneous tissues. 

Similar uncertainty values were observed for these two groups, which supports that the 

averaging effect is still in play regardless of tissue heterogeneity.

The regularization 6<Z<15 employed in this study was not described in the original studies,
18,20 but this was necessary in order to prevent both algorithms from producing unrealistic 

values (complex or negative number) with added noise. Especially given that these 

algorithms involve polynomial or exponential fitting to estimate Z, the value of Z can be 

distorted substantially with an abnormal combination of CT numbers, which were relieved 

by setting 6<Z<15. Although this created an additional hard threshold in the CT number-to-

SPR mapping, the overall stability and accuracy were improved with noisy CT numbers.

The HS+Y method showed a larger mean shift than the B+B method for the soft tissue 

group. We found that the mean shift is sensitive to the specific implementation such as the 

selection of Z-to-I conversion and the selection of specific regularization on Z (no 

regularization v.s. Z>6 v.s. Z>0). Possible measures can be taken to reduce the mean shift for 

the HS+Y method. Among different combinations we have tried with the HS method, 

Saito’s Z-to-I conversion method yielded the smallest mean shift (Fig. 10). This HS+S 

method reduced the mean shift due to noise mainly by linearizing the CT number-to-SPR 

mapping (by substituting ln I with Zn in the Bethe-Bloch equation26). The use of hard 

threshold, however, may still be problematic when a large chunk of soft and bone tissue 

mixture exists near the threshold.31 With knowing these, we did not apply any adjustments 

to the original HS+Y methods because the scope of this study was to estimate the baseline of 

the impact of noise.

Unlike the mean shift, SPR random variation stayed relatively consistent among all tissue 

types within the same tissues group. It was largely due to the fact that SPR variation mainly 

depends on the slope of the mapping of CT number-to-SPR.20,21,30 For both the HS+Y 

method and the B+B method, HUH was much more influential than HUL in estimating the 

SPR (Fig. 8 (b)) because the slope of HUH to SPR was steeper (Fig. 4). This suggests the 

possibility of optimizing the ratio of mAs between low and high energy CT scans to 

minimize the total SPR variation under the same amount of total imaging dose, which may 

be worthwhile to look into in the future.

Our evaluation with heterogeneous tissues produced a similar range uncertainty as that of 

homogeneous tissues. As expected, the values were closer to that of the soft tissue group 

because soft tissues take up more than 60–80% of the total weight of each of the three tumor 

sites (Table 3). The averaging effect was also present in heterogeneous tissues. For a sum of 

Gaussian random variables 
i

Xi where Xi are independent Gaussians, the standard deviation 

relative to the mean is 
i

σi
2/

i
Xi, where σi is the standard deviation of Xi. This value 

decreases as the number of Xi (i.e., number of voxels) increases regardless of the 

identicalness of Xi (i.e., homogeneity of tissues) (c.f., if Xi are identical then 
i

Xi becomes 

Gaussian according to the central limit theorem). With nonlinearities the distribution of SPR 
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is no longer Gaussian but the distribution is still fairly symmetrical with both positive and 

negative values. Because of that, the standard error would still decrease as the number of 

samples increases. Our test can also be performed on other heterogeneous samples with a 

different tissue distribution than what is used in this study, but the result is not likely to 

change much because only certain tissues (e.g., thyroid and cartilage with the HS+Y 

method) had a large mean shift and the rest had a similarly small mean shift and variation 

within each tissue group.

The root-sum-square (RSS) calculation is a standard way to combine the uncertainties from 

different uncorrelated sources to derive a single value representing the total uncertainty.20 

Because of the nature of the RSS calculation, the largest uncertainty usually dominates over 

other smaller uncertainties. Therefore, the ultimate impact of noise to the total range 

uncertainty depends on its relative magnitude compared to other uncertainty factors. Our 

recent study showed that the total range uncertainty without considering noise were 2.4% 

and 4% (2σ) for the soft and bone tissue group, respectively.20 If the additional uncertainty 

due to noise at a 2% noise level for a tumor at 5 cm depth (a worst case scenario) is 

considered, the total uncertainty becomes 2.52% and 4.10% for the soft and bone tissue 

group, respectively, which is only a marginal increase of 0.12% and 0.10%. However, a few 

recent experimental validation studies using DECT reported the overall range uncertainty to 

be around 1% or less.5,8 If 1% were assumed as the range uncertainty for both the soft and 

bone tissue groups, the total uncertainty after including the noise becomes 1.52% and 1.37% 

for the soft and bone tissue group, respectively, which is a decent increase of 0.52% and 

0.37%. This suggests that the impact from noise should be well evaluated based on the noise 

level seen in patient CT images and the tumor depth, before implementing a small treatment 

margin (~1%) for range uncertainty in the clinic.

One drawback of this study is that only two methods were selected in this study. We did not 

implement other existing DECT algorithms because it was not our goal to compare different 

methods and reach a general conclusion which method is more superior. Although B+B 

method was more robust to noise than HS+Y method, our main focuses is to establish a 

framework for estimating the impact of Gaussian noise so that any center can do their own 

estimate for their selected DECT algorithm.

5. Conclusion

We have systematically evaluated the impact of noise on SPR estimation using two 

parametric DECT methods. Mean shift and variation of SPR due to noise were thoroughly 

investigated as to how they constitute the SPR uncertainty. DECT methods with hard 

thresholds suffered the most from the mean shift, and the mean shift was mostly observed in 

soft tissues. Nonetheless, the impact of mean shift was relatively small compared to the 

random variation caused by the noise, except for a certain method and tissue type. Range 

uncertainty due to noise was approximately 1% (2σ or 95th percentile) at 2% noise level and 

2.5% at 5% noise level. Compared to the uncertainty of 2.4% (soft) and 4% (bone) caused 

by other factors low noise is not a major concern. However, if we were to implement a small 

margin of 1% for the proton range, it is important to estimate and include the uncertainty 

due to noise. By knowing how much impact the noise can make among other SPR 
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uncertainties, future studies will be able to focus on decreasing the uncertainty that is most 

influential to the range estimation.
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Figure 1. 
Z-to-I conversions proposed by Yang (Y), Saito (S), and Bourque (B). All three methods 

were fitted using the ICRU 44 reference human tissues. Magenta asterisks indicate soft 

tissues and green asterisks indicate bone tissues.
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Figure 2. 
Calculated vs. measured CT numbers of the Gammex phantom inserts using the HS method 

(circle) and the Bourque method (square) for HUL (left) and HUH (right). A 45° line (gray) 

is drawn as a reference.
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Figure 3. 
ρe, Z, and SPR of (a) the HS+Y method and (b) the B+B method with all the possible 

combinations of CT numbers within [0, 3000] with grid size of 100. Magenta and green 

asterisks represent soft tissues and bone tissues, respectively, selected from ICRU 44 (Table 

2). Note that all negative or complex values were forced to zero and Z was regularized to [6, 

15] to avoid unrealistic values.
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Figure 4. 
Demonstration of the nonlinearities existing in the CT number to SPR map for (a) the HS+Y 

method and (b) the B+B method, respectively. Adipose tissue was selected here as an 

example. Red squares indicate the reference CT numbers of adipose.
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Figure 5. 
SPR distribution of a soft tissue (adipose) at 2% and 5% noise in HUL and HUH for (a) the 

HS+Y method and (b) the B+B method, respectively. Black solid lines indicate the SPR of 

the mean CT numbers (i.e., reference SPR) and red dashed lines indicates the mean of the 

SPR.
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Figure 6. 
Heatmap of the SPR mean shift (∆SPR) using (a) the HS+Y method and (b) the B+B 

method at noise levels of 2% and 5%. Values are capped at [−1, 1] for ease of view as shown 

in the colorbar on the right. Grid size is 10×10. Magenta dots mark soft tissues and green 

dots mark bone tissues from the ICRU 44 reference. Shaded areas of each color denote 2000 

individualized human tissue population. Arrows indicate the regions with hard threshold as 

shown in Fig. 4.
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Figure 7. 
Probability density function (PDF) of the mean shift for 2000 individualized human tissues 

using (a) the HS+Y method and (b) the B+B method at 2% noise. 23 soft tissues and 11 

bone tissues were considered as is in the ICRU 44 reference.
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Figure 8. 
Impact of noise on the SPR estimation manifested as (a) the shift of mean SPR (ΔSPR) and 

(b) the variation (σSPR) of SPR with varying levels of noise on HUL, HUH, or both. CT 

numbers from 2000 individualized human tissue samples were used.
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Figure 9. 
Impact of noise on homogeneous tissues of specified number of voxels with varying levels 

of noise. (a) The ratio of the influence of the variation (σSPR/ N, N is the number of voxels) 

vs. mean shift (ΔSPR). Gray dashed rectangle was magnified to visualize values near 1. (b) 

The range uncertainty (95th percentile) resulting from the noise. Both HUL and HUH were 

added with Gaussian random noise.
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Figure 10. 
Comparison of (a) SPR mean shift (ΔSPR) and (b) variation (σSPR) of SPR when using 

different combinations of methods for the calculation of ρe and Z (Hunemohr-Saito (HS) and 

Bourque (B)) and the conversion of Z-to-I (Yang (Y), Saito (S) and Bourque (B)). Two 

different noise levels (2% and 5%) were applied to both HUL and HUH. CT numbers from 

2000 individualized human tissue samples were used.
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Table 1.

Calibrated parameters for the HS method and the Bourque method (K=3 and M=6).

Array index

Method Parameter 1 2 3 4 5 6

HS a −2.788E-01 1.271E+00 −7.593E-04

b 8.994E+03 −8.390E+03 1.563E+02

Bourque

c 7.519E+00 3.941E+01 −4.017E+01

bL −1.125E+00 1.142E+00 −2.497E-01 2.633E-02 −1.288E-03 2.426E-05

bH 4.558E+00 −1.939E+00 4.096E-01 −4.216E-02 2.130E-03 −4.217E-05
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Table 2.

List of ICRU 44 human tissues and calculated CT numbers using the HS method and the Bourque (B) method.

# Tissue

80 kVp 150 kVp/Sn  

# Tissue

80 kVp 150 kVp/Sn

HS B HS B  HS B HS B

1 Adipose 915 904 949 955  18 Red Marrow 1012 1007 1027 1028

2 Blood 1065 1067 1059 1059  19 Yellow Marrow 942 930 979 987

3 Brain 1046 1046 1043 1043  20 Skin 1079 1076 1084 1084

4 Breast 999 993 1017 1018  21 Spleen 1063 1063 1060 1059

5 Cell Nucleus 1017 1022 1005 1005  22 Testis 1041 1041 1040 1040

6 Eye Lens 1053 1049 1061 1061  23 Thyroid 1099 1111 1060 1061

7 GI Tract 1028 1027 1031 1031  24 Skeleton-Cortical 2986 3031 2056 2050

8 Heart 1065 1066 1060 1060  25 Skeleton-Cranium 2300 2351 1698 1714

9 Kidney 1051 1051 1049 1049  26 Skeleton-Femur 1731 1776 1385 1403

10 Liver 1061 1062 1059 1058  27 Skeleton-Humerus 1988 2037 1529 1547

11 Lung (deflated) 1053 1054 1050 1049  28 Skeleton-Mandible 2448 2499 1778 1791

12 Lung (inflated) 248 261 257 260  29 Skeleton-Ribs (2nd, 6th) 1854 1901 1466 1485

13 Lymph 1036 1036 1034 1034  30 Skeleton-Ribs (10th) 2098 2148 1594 1612

14 Muscle 1050 1050 1048 1048  31 Skeleton-Sacrum 1590 1632 1327 1343

15 Ovary 1053 1053 1051 1051  32 Skeleton-Spongiosa 1380 1413 1207 1218

16 Pancreas 1037 1035 1041 1041  33 Skeleton-Vertebra (C4) 1881 1929 1478 1497

17 Cartilage 1120 1126 1097 1097  34 Skeleton-Vertebra (D6, L3) 1685 1729 1375 1392
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Table 3.

Heterogeneous tissue distribution for three tumor sites.

 WEPL weight (%) Voxel weight (%)

Tumor site Lung Soft Bone Lung Soft Bone

Prostate 0.5 80.2 19.3 2.1 82.8 15.1

Lung 11.1 81.6 7.3 33.9 61.9 4.2

Head and neck 2.6 86.9 10.5 10 82.5 7.5
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Table 4.

Range uncertainty (95th percentile) of homogeneous and heterogeneous tissues with 50 voxels.

Range uncertainty (95th percentile)

HS+Y method B+B method

Tumor site 2% noise 5% noise 2% noise 5% noise

Homogeneous

Soft 1.15 2.55 0.76 2.01

Bone 0.93 2.32 0.91 2.32

Heterogeneous

Prostate 1.04 2.42 0.81 1.99

Lung 1.17 2.68 0.86 2.21

Head and neck 1.09 2.48 0.81 2.04
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