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Abstract

Purpose: There has been burgeoning interest in applying machine learning methods for 

predicting radiotherapy outcomes. However, the imbalanced ratio of a large number of variables to 

a limited sample size in radiation oncology constitutes a major challenge. Therefore, 

dimensionality reduction methods can be a key to success. The study investigates and contrasts the 

application of traditional machine learning methods and deep learning approaches for outcome 

modeling in radiotherapy. In particular, new joint architectures based on variational autoencoder 

(VAE) for dimensionality reduction are presented and their application is demonstrated for the 

prediction of lung radiation pneumonitis (RP) from a large-scale heterogeneous dataset.

Methods: A large-scale heterogeneous dataset containing a pool of 230 variables including 

clinical factors (e.g., dose, KPS, stage) and biomarkers (e.g., single nucleotide polymorphisms 

(SNPs), cytokines and micro-RNAs) in a population of 106 non-small cell lung cancer (NSCLC) 

patients who received radiotherapy was used for modeling RP. 22 patients had grade 2 or higher 

RP. Four methods were investigated, including feature selection (case A) and feature extraction 

(case B) with traditional machine learning methods, a VAE-MLP joint architecture (case C) with 

deep learning and lastly, the combination of feature selection and joint-architecture (case D). For 

feature selection, Random forest (RF), Support Vector Machine (SVM) and multi-layer perceptron 

(MLP) were implemented to select relevant features. Specifically, each method was run for 

multiple times to rank features within several cross-validated (CV) resampled sets. A collection of 

ranking lists were then aggregated by top 5% and Kemeny graph methods to identify the final 

ranking for prediction. A synthetic minority oversampling technique (SMOTE) was applied to 

correct for class imbalance during this process. For deep learning, a VAE-MLP joint architecture 

where a VAE aimed for dimensionality reduction and an MLP aimed for classification was 

developed. In this architecture, reconstruction loss and prediction loss were combined into a single 

loss function to realize simultaneous training and weights were assigned to different classes to 

mitigate class imbalance. To evaluate the prediction performance and conduct comparisons, the 

area under receiver operating characteristic (ROC) curves (AUCs) were performed for nested CVs 
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for both handcrafted feature selections and the deep learning approach. The significance of 

differences in AUCs was assessed using the DeLong test of U-statistics.

Results: An MLP-based method using weight pruning (WP) feature selection yielded the best 

performance among the different hand-crafted feature selection methods (case A), reaching an 

AUC of 0.804 (95% CI: 0.761–0.823) with 29 top features. A VAE-MLP joint architecture (case 

C) achieved a comparable but slightly lower AUC of 0.781 (95% CI: 0.737–0.808) with the size of 

latent dimension being 2. The combination of handcrafted features (case A) and latent 

representation (case D) achieved a significant AUC improvement of 0.831 (95% CI: 0.805–0.863) 

with 22 features (p-value = 0.000642 compared with handcrafted features only (Case A) and p-

value=0.000453 compared to VAE alone (Case C)) with an MLP classifier.

Conclusion: The potential for combination of traditional machine learning methods and deep 

learning VAE techniques has been demonstrated for dealing with limited datasets in modeling 

radiotherapy toxicities. Specifically, latent variables from a VAE-MLP joint architecture are able 

to complement handcrafted features for the prediction of RP and improve prediction over either 

method alone.
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I. INTRODUCTION

Accurate prediction of radiotherapy response is an important component of evaluating 

patients’ treatment options and for providing insights into designing of new personalized 

treatments and future clinical protocols. Various analytical, statistical and machine learning 

methods have been applied into radiotherapy treatment outcome models [1].

Modeling normal tissue toxicity [2] is a main limiting factor towards application of 

promising hypofractionated and dose escalation studies. Originally, radiotherapy response 

modeling utilized analytical models, which were generally based on simplified 

understanding of irradiation effects, such as the Lyman-Kutcher-Burman (LKB) model [3, 

4], and the critical volume (CV) model [5, 6]. Later, treatment dosimetry along with clinical 

and biological factors were incorporated into more advanced statistical (data-driven) models 

[7], making way towards personalized treatment planning. This is particularly important in 

the case of radiation-induced lung damage [8], which is a complex disease that manifests in 

up to 30% of thoracic irradiations in the forms of acute inflammatory radiation pneumonitis 

(RP) and subsequent chronic pulmonary fibrosis [9]. RP is a major obstacle to treatment 

success with radiotherapy in lung, esophageal and breast cancers. Therefore, it has been an 

active area for applying advanced machine learning methods. Artificial neural networks have 

been applied in the prediction of RP [10, 11]. These studies were based on a one-hidden-

layer MLP and used dosimetric and clinical variables only. Support vector machines (SVM) 

[12, 13] were next applied, but their performance required the selection of several 

hyperparameters, including kernel related parameters and regularization terms. Bayesian 

networks [14, 15] were recently applied into this area and gained some notable success. 
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However, this requires prior knowledge of variables inter-relationships, which is necessary 

to constrain the network structure design.

The application of statistical learning techniques to data-driven outcome modeling in 

radiotherapy is typically confronted with the problem of limited sample size and an ever 

increasing number of heterogeneous (clinical, dosimetric, and biological) input variables [1]. 

One approach to alleviate this problem in conventional machine learning is by “selecting” 

the most relevant features [16], an active area for many years with different categories of 

methods. Selection methods that are independent of the learning algorithms (e.g., classifiers) 

are referred to as filtering methods [17]. They select features according to the general 

measurement of characteristics of a given dataset (e.g., Pearson correlation). These methods 

act in a univariate manner and often fail to select the optimal subsets that may work well for 

the learning task under consideration. Alternatively, wrapper methods try to search for an 

optimal set of features by preparing and evaluating “goodness” of different combinations of 

features within a learning scheme [17]. For example, in forward selection, one tries to train a 

model with a subset of features, based on the inferences from the previous model to decide 

the features to add to the selected set. However, wrapper methods are computationally 

expensive. To ease this computational cost, a model-based ranking method was adopted here 

to select such optimal features, in which a predictive model is built to rank the importance of 

feature relevance, and then a set of top features is selected as candidate for the optimal set. 

In this study, multilayer perceptron (MLP)-based [18] selection methods including: weight 

pruning (WP)[19], feature quality index (FQI) [20], feature-based sensitivity of posterior 

probability (FSPP) [21] were implemented to rank features’ relevance for the prediction of 

radiation toxicities. MLPs are recognized as the building block for modern deep learning 

techniques. For comparison purposes, prevalent machine learning methods based on random 

forest (RF) [22] and support vector machine (SVM)-based methods [23] were also 

implemented.

In the new era of deep learning, feature selection and classification can be achieved jointly 

(e.g., convolutional neural network (CNN)). These methods have demonstrated tremendous 

success when applied to structured homogeneous data problems in various fields, such as 

image recognition, natural language understanding and artificial intelligence [24–26]. 

However, applications to unstructured heterogeneous data such as outcome modeling in 

radiotherapy is yet to be realized. Towards this goal and as an alternative to conventional 

feature selection or handcrafting, a deep learning data reduction approach is considered 

based on variational autoencoders (VAEs). A VAE is an unsupervised learning technique, 

which can learn latent representation from unlabeled data. Unlike original deterministic 

autoencoders (AEs)[27], a VAE incorporates variational inference to account for uncertainty, 

potentially working better with scarce data as encountered in radiotherapy outcome models. 

In this study, joint VAE-MLP architectures were developed where the latent variable 

learning (i.e., dimensionality reduction) and the prediction tasks were combined and 

simultaneously trained for the prediction of RP. This deep learning architecture helped 

avoiding common cumbersome 2-step procedures in current multivariable predictive 

modeling and improved the prediction performance over the usual individual and separate 

application of VAE and conventional classifier methods.
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II. DATASET AND PATIENT CHARACTERISTICS

We analyzed 106 non-small cell lung cancer (NSCLC) patients treated under IRB approved 

protocols. Patients’ RP statuses were evaluated by five-grades CTCAE 3.0 [28] based on 

clinical assessment and imaging. The RP outcome was then converted into RP2 (RP2=1 

when RP= 2 or above, RP2=0 otherwise), serving as an indicator of complication of 

radiation treatment. The patients were treated with 4 different treatment protocols, in which 

the first and fourth protocols were dose escalation studies that had the total dose increased 

up to 86 Gy in 30 fractions, the second and third protocols were with standard dose 

fractionations, had dose up to 74 Gy, 2 Gy per fraction. Known candidate dosimetric 

features: Mean_lung_dose, Maximum_Lung_Dose, the total lung volume receiving a dose 

greater than or equal to 5 Gy (V5), 13 Gy (V13) and 20 Gy (V20) were generated from 2 Gy 

equivalents (EQD2) dose distributions using the linear/quadratic model (with α / β = 4 Gy)

[29]. Dose distributions were computed with the AAA dose calculation algorithm by Varian 

Eclipse treatment planning system. EQD2 were calculated using locally developed software. 

Data of cytokines, SNPs, and microRNA were also collected as potential predictors. Blood 

samples obtained at baseline before treatment, after delivering 1/3 and 2/3 of total dose were 

analyzed for cytokine levels [30]. Pre-treatment blood samples were also used to analyze 

SNPs [31, 32] and microRNA levels [33]. All those biomarkers were identified from former 

study of lung cancer or inflammatory disease. A set of 13 clinical factors such as KPS and 

Stage was also collected as candidates. A description of the dataset is given in [15] and 

summarized in TABLE. I for completeness.

III. MACHINE LEARNING METHODS

Several strategies for building multivariable predictive models were investigated here as 

summarized in FIG. 1. For conventional machine learning, feature selection (case A) and 

feature extraction (case B) were implemented separately for the classifiers (MLP, SVM, RF). 

For deep learning, a joint network architecture composed of a VAE and an MLP was 

implemented for accomplishing feature extraction and prediction tasks simultaneously (case 

C). Finally, handcrafted features and latent variables from the joint architecture were 

combined for RP2 prediction (case D).

We implemented our models in the Python machine learning package Scikit-learn [34] (RF, 

SVM) and deep learning package Keras [35]. Specifically, MLP classifiers and VAEs were 

implemented with Keras sequential model, while VAE-MLP joint architectures were 

implemented with Keras multi-output models where two losses were combined. All 

experiments were run on a NVIDIA K40 GPU in the Advanced Research Computing -

Technology Services (ARC-TS), FLUX, at University of Michigan.

A. Model-based feature selection techniques

1. MLP-based feature selection methods—An MLP [18] is also called feedforward 

artificial neural network, which consists of many neurons and several layers where neurons 

connect to one another in the adjacent layers, as shown in FIG. 2. A neuron in the hidden 

layer and output layer transforms values from the previous layer into a weighted linear sum 
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followed by a non-linear activation function as shown in Figure FIG. 3. Specifically, ith 

neuron hi
1  in the first hidden layer can be calculated as:

hi
1 = f pi

1 , with pi
1 =

j = 1

m
wi j

1 I j + bi
1 (1)

where wi j
1 , bi

1  denote the weights and bias, (I1, …, Im) ∈ Rm is an input vector of data 

and f (·) is the designated activation function. Specifically in this study, sigmoid activation 

functions were used in hidden layers and a softmax activation function was implemented in 

the output layer for classification purpose:

sigmoid function f x = ex

1 + ex

softmax f x = f 1 x , …, f k x with f i x = e
xi

j
e

x j
, x = x1, …, xk

(2)

A cross-entropy loss function was applied for the discretized classification purpose, where it 

takes the form

J w, b = −
α

I y α = 1 logo1
α + I y α = 0 logo2

α (3)

and is optimized using Adam [36] algorithm, an advanced gradient-based optimization 

algorithm prevalently adopted in deep learning. In Eq. 3, α ∈ {1, 2, … N } is the index of 

sample, I is the indicator function, y(α) denotes the label for sample α, and o α = o1
α , o2

α

denotes the 2-dimensional output vector, which indicates the probability of “yes” and “no” 

for a given radiation outcome. Note that o1
α + o2

α = 1 and oi
α ∈ 0, 1 , as softmax activation 

Eq. (2) was applied. The topology of the MLP applied is shown in FIG. 2, with the number 

of associated nodes shown below layer. Optimal dropout rate was searched among (0.1, 0.2, 

0.3, 0.4) on the training set.

Three common techniques for neural networks feature selection are considered here.

• Weight pruning (WP) [19]: WP exploits both the weight value and the network 

structure of a neural network (MLP). The score of ith features, i = 1,…, m, is 

calculated by summing up the products of weights over all the paths from feature 

i to outputs. Specifically, in the single-hidden-layer MLP, the importance is 

written as follows:
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Si =
j ∈ ℋ

w ji
1

i′ ∈ ℐ w ji′
1 ⋅

k ∈ 𝒪

wk j
2

j′ ∈ ℋ wk j′
2 (4)

where ℐ, ℋ, 𝒪 denote the nodes in the input, hidden and the output layer respectively. Eq. 

(4) suggests the weights to be normalized by the sum of weights that are connected to the 

same input for comparison reason. WP is based on the intuition that important features 

should result in weights of relatively large magnitude.

• Feature Quality Index (FQI): FQI considers the increase of training mean-

squared error (MSE) when a feature is replaced by mean (0 if features are 

centered). It fixes the trained neural network architecture, and replaces the value 

of a feature by 0, then, calculates MSE based on the output of a new feature 

matrix.

Si = MSE I i − MSE I0 , MSE I = 1
N α = 1

N

j ∈ 𝒪
o j; I

α − y j
α

2
(5)

where Io are the original features, I(i) is Io with ith feature set to be zero and o j; I
α  is the jth 

output of input matrix of sample α, I(α).

• Feature-based Sensitivity of Posterior Probability (FSPP): FSPP considers 

the variation of outputs when a feature is randomly permuted among samples. 

One randomly permutes the ith feature among N samples and feeds modified 

features to the MLP, then calculates the sum of pairwise differences between the 

new outputs and the original ones. It is based on the belief that “turning off” 

more important features will influence outputs more.

Si = 1
N α = 1

N

j ∈ 𝒪
o j

α − o j; I i
α (6)

o j; I i
α  is the jth output of I(α) after Ii is randomly permuted among N samples.

2. RF and SVM-based feature selection methods—Random forests (RF) and 

support vector machine (SVM) are among the most popular conventional machine 

algorithms for prediction and are described in the following.

• RF [22]: RF is an ensemble learning method based on decision trees. A decision 

tree is a flowchart-like structure where each node represents a “test” on an 

attribute (feature) splitting samples into different branches, nodes can be then 

repeatedly applied to test attributes of different branches until decision regarding 
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classification is done by the leaf nodes. During this process, the Gini coefficient 

is a common measure used to decide a split (i.e., the feature applied, threshold). 

Naturally, features applied at the upper split influencing more input samples 

should be deemed important. As a result, one can estimate the importance of a 

feature by the fraction of samples the feature contributes to [34]. RF randomly 

selects observations and features to build several decision trees and averages the 

results to reduce the variance. In RF, similarly, one can estimate feature 

importance by averaging the estimations of feature importance in trees [34]. In 

RF classifiers, max depth was searched among 2–15 on the training set.

• SVM [23]: SVM is an discriminative classifier which can decide an optimal 

separating hyperplane to categorize samples. In practice, as it is usually not 

feasible to completely separate samples from different classes, some tolerance 

errors ϵ are allowed. Mathematically, the optimization problem can be 

formulated as minimizing the following loss function:

L w, ϵ = 1
2wTw + C

i = 1

N
ϵi (7)

with constraints,

yi wTϕ xi + b ≤ 1 − ϵi (8)

where i is the index for samples, w is a vector parameters to be optimized and φ(·) is a 

mapping function, which maps variables from an original space usually to a higher 

dimension space for a better separation. By converting the above optimization problem into 

a dual optimization problem, the SVM classifier can be represented by:

f x =
i = 1

s
αiyiK x, xi + b (9)

which can be resolved by solving a convex optimization problem over α = (α1, α2 … α s). 

K(x, y) is called a kernel function, which corresponds to an inner product in a feature space 

based on mapping function φ(·). Some common ones are linear, polynomial and radial basis 

function (RBF) kernels. In the case of linear kernels, parameter w in the original 

optimization can be easily recovered and used as an estimator of feature importance. RBF-

SVM classifiers were implemented with grid search for optimal C (penalty strength) and σ 
(standard deviation in RBF) among 10 points uniformly distributed in logscale between 

0.001 and 1000.
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B. Latent variable learning by VAE

1. Variational autoencoder(VAE)—An autoencoder (AE) [37] is an artificial neural 

network designed for unsupervised learning. It is also used for representation learning [38] 

where latent variables of input data are learned by attempting to recover its input from them. 

An AE consists of two parts: an encoder (φ) which compresses an input (from 𝒳) into a 

lower dimensional space (Z) also called latent-space representation, and an decoder (ψ) 

aiming to reconstruct the input out of the latent-space representation. Mathematically, it is 

formulated as follows:

Architecture of VAE: layers corresponding to mean µ and standard deviation σ of latent 

representation z are denoted

ϕ:𝒳 𝒵, ψ :𝒵 𝒳, (10)

where 𝒳 stands for the input space and 𝒵 denotes the latent space. An AE tries to minimize 

its loss function, which quantifies the reconstruction error (the difference between inputs and 

outputs) in terms of squared error,

L xenc, xdec = xenc − xdec
2 = I − ψ ∘ ϕ xenc

2 (11)

where xenc ∈ 𝒳 denote an input for encoder, xdec := (ψ ◦ φ)(xenc) as an output from 

decoder, and I is an identity mapping so that one may see from the last expression of Eq. 

(11) that an AE is in fact attempting to approximate the identity map out of lower 

dimension. Notice that in the learning process of an AE, no ground truth of data (label) is 

needed so that it belongs to the unsupervised learning category.

Although autoencoders can be set up by any functional form of φ and ψ, they are typically 

constructed by neural networks, as shown in FIG. 4 (left). In fact, an AE can be setup by an 

MLP with at least one hidden layer of smaller dimension (than the input space 𝒳) as latent 

space. Generally, an MLP with an input layer xenc, several hidden layers (henc, zenc, hdec) 

and an output layer (xdec) whose size is equal to that of the input layer forms an AE.

One notable variant of AE is called a variational autoencoder (VAE) [39], which inherits the 

AE architecture but incorporates uncertainties through a stochastic variational approach into 

the deterministic AE. Given inputs xenc, the VAE assumes that the latent representation Z is 

subject to a Gaussian distribution with mean µ and standard deviation σ rather than a fixed 

real value. In this setting, the encoder first produces two vectors µ and σ describing the mean 

and the variance of the latent state distribution and then generates a latent vector by 

sampling from this distribution. Subsequently, the decoder receives the latent vector to 

reconstruct the original input.

encoder Z X ∼ Q μ xenc , σ xenc , decoder f :𝒵 𝒳 . (12)
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VAE adopted a method called Variational Inference (VI) which approximates real 

distribution P (Z|X) by a simple distribution Q(Z|X) (e.g. Gaussian) and then solves it 

approximately by minimizing a so-called variational lower bound defined as:

ℒ = Ez ∼ Q logP X Z − KL Q Z X P Z , (13)

where the first term can be approximated by a squared error or cross-entropy loss, and the 

second term is the Kullback-Leibler divergence metric (also called relative entropy), which 

has a closed form solution under Gaussian assumptions. Putting all together,one can arrive at 

[39]

L xenc, xdec = xenc − xdec
2 + 1

2 j = 1

J
1 + logσ j

2 − μ j
2 − σ j

2 , (14)

where J is the latent dimension of Z. In the VAE loss Eq. (14), the first term is recognized as 

the reconstruction error as in Eq. (11) and the second term can be regarded as a 

regularization term. A VAE was implemented with topology shown in FIG. 4 (right). Its 

latent output was then fed into various classifiers downstream including MLP, SVM and RF 

for RP2 prediction.

C. VAE-MLP predictor joint structure

A VAE-MLP “joint” architecture was also implemented for RP2 prediction. A VAE [39] is a 

unsupervised learning method which aims for representation learning, mapping the original 

data to a low-dimension latent space. An MLP predictor takes the latent-space representation 

as input and produces classification decision, i.e, RP2 prediction. The joint-architecture in 

FIG. 5 conducted dimensionality reduction and prediction tasks simultaneously, realizing 

efficient representation learning aided by the classification task. The total loss function of 

the architecture is

L xenc, xdec, y α =
α = 1

N

i = 1

m
xenc

α
i
log xdec

α
i

+ 1
2 j = 1

J
1 + logσ j

2 − μ j
2 − σ j

2 + λ
k = 1

2
yk

α logok
α

(15)

where yα is the binary label of data xenc and o is the output prediction for xenc.

The first two terms stem from the VAE loss and the third term measures the classification 

error for the prediction task. The parameter λ in Eq. 15 denotes the trade-off between the 

two tasks of VAE reconstruction and output prediction. The applied topology of joint 

architecture is shown in FIG. 5, with λ set as 100 for weighing the magnitude of the two 

losses.

Cui et al. Page 9

Med Phys. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



D. Combining handcrafted features and latent variables

Latent variables from the joint architecture and handcrafted features were combined and fed 

into RF, SVM and MLP classifiers for RP2 prediction.

IV. ANALYSIS AND PERFORMANCE EVALUATION

We applied wrapper methods [17] based on MLP, RF, SVM to search for the optimal set of 

features, where the “goodness” of features within each learning scheme was evaluated. Due 

to the noisy nature of our dataset, the rankings were very sensitive to which portion of the 

data generated the ranking. As a result, multiple rankings based on different subsets of the 

data were generated and aggregated to yield a single ranking. Finally, several top features 

were fed into the designated classifier for evaluation of performance.

For comparison purposes and mitigating statistical bias, we implemented all four 

methodologies (A, B, C, D in FIG. 1) in the same validation pipeline. This is referred to as a 

type 2b analysis in the transparent reporting of a multivariable prediction model for 

individual prognosis or diagnosis (TRIPOD) statement [40]. Specifically, nested CVs were 

performed, where the feature and parameter selection were tuned in inner-loop CVs, and the 

model with optimal parameters were then identified from outer-loop training sets and 

evaluated on outer-loop test sets.

A. Ranking aggregation

To select optimal features, multiple times of inner-loop 5-fold CV were run and the resulting 

ranking lists based on the training sets were further analyzed for convergence and combined 

into a single ranking.

The top p% method [41] was applied to aggregate rankings based on different CVs. It uses 

the frequency of a feature in the top p% as its final score. For example, let p = 5, to get a 

generalized ranking of m features over c times of 5-fold CVs (with different random seeds 

for split), one would count how many times feature i appears in the top 5% × m among the 

5c ranking lists, and then rank features based on those frequencies, i.e., the higher frequency 

the feature has, the more important it is.

To decide the cut-off number ĉ of CV times c, we define a deviance value D to evaluate the 

convergence of ranking lists:

D c =
i = 1

m
b = 1
B

Sci
b − Sci

2/ N − 1

Sci
, (16)

where Sci
b  is the rank of feature i by the bth samples of c times CVs. D(c) is aimed to sum up 

the deviations of rank (Sci) of all features. We calculated deviations according to resulting 

ranking lists from B = 100 times of application of the top p% method over a collection of c 
times CV. Considering features ranking low (with large value Sci) are less important but can 

affect D(c) equivalently as features ranking high, we divided sample deviations by the mean 
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Sci  in D(c). Basically, D quantifies the deviations of orderings given size c and is expected 

to decrease with increasing of c. One can fix c large enough to make D reasonably small.

After the cut-off number c = ĉ was decided, the top p% methods was applied again to 

aggregate rankings from 5c ranking lists for B=100 times. Kemeny aggregation [42] was 

then applied to the resulting 100 ranking lists to reach a final ranking. Kemeny aggregation 

gets an optimal ranking by minimizing sum of Kendall τ distances, which is defined by the 

number of pairwise disagreements between any two ranking lists,

Kemeny aggregation : min
π i = 1

B
K π, τi (17)

with K(τ1, τ2) is the Kendall tau distances of two lists τ1 and τ2:

K τ1, τ2 = i, j ∀i < j, τ1 i < τ1 j ∧ τ2 i > τ2 j ∨ τ1 i > τ1 j ∧ τ2 i < τ2 j

(18)

As one may see, the direct computation of Kemeny aggregation using Eq. (17) and (18) can 

be burdensome when the lists are long. In fact, it is proven to be an NP-hard problem (at 

least as hard as nondeterministic-polynomial-time problem). Fortunately, it can be converted 

into an equivalent graph problem [43] for computational convenience.

Kemeny problem: for B voters (rankings τ1, τ2, … τB ) voting for m candidates (features µ1, 

… , µm), get the optimal aggregated ranking π.

Equivalent graph problem: every node in the graph represents a candidate (feature). For 

every pair of candidates i, j, let Q(i > j) denote the number of voters who rank i higher than j. 
One draws an edge e between each i, j with weight we = |Q(i > j)−Q(j > i)| and orientation 

from the less preferred to the more preferred node, then solves x in following pure integer 

linear programming problem as shown by Eq. 19. After optimal x = {xij = 0, 1}, i, j ∈ (1, 2,

… m) are obtained, the final ranking list can be deduced, i.e., xij = 1 means i is ranked lower 

than j in optimal ranking π, xij = 0 means i is ranked higher. The final rank of feature i can 

be calculated as Ri =
j
m xi j.

min
x e ∈ E

wexe (19)

subject to (1) ∀i ≠ j ∈ {1, 2, 3,…, n}, xij + xji = 1,
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(2) ∀i ≠ j ≠ k ∈ {1, 2, 3, …, n}, xij + xjk + xki ≥ 1, where x is n × n matrix with binary 

entries.

B. Validation outline

In the nested CV, outer-loop CVs were performed 10 times to consolidate the results. On 

outer-loop training sets, single-AUC pre-selection were adopted before application of any 

dimension reduction method, i.e., only variables with single-variable AUCs > 0.6 were kept 

and further utilized for feature selection and extraction. This is because when all 200s 

variables were taken into account, it was too hard to train effective RF, SVM and MLP. 

Without effective trained models, the derived model-based feature selection can be 

problematic. Further discussion can be found in SEC. VI.

A synthetic minority oversampling technique SMOTE [44] was adopted to mitigate class 

imbalance issues for cases A and B. In the VAE-MLP architectures, class imbalance was 

resolved by setting different weights for the two classes in the prediction loss in Eq. 15. The 

overall validation process is summarized in FIG. 6.

Delong test [45] which is based on Mann-Whiteney U statistics was performed to conduct 

comparison of AUCs between different methods. Since Delong test sometimes fails [46] 

when testing two nested models on the same data that has been used to develop the models, 

we conducted Delong test only on the test AUCs to alleviate this issue. Delong method was 

also applied for calculation of CIs of AUCs.

V. RESULTS

A. Conventional machine learning feature selection and prediction (Case A)

Multiple number (c) of inner CVs were performed to rank the features. The cutoff number c 
= ĉ was decided by the convergence evaluation of the rankings. Then, the top 5% method 

was applied to the 5ĉ (ĉ times 5-fold CVs) ranking lists for 100 times and further combined 

into a single ranking by Kemeny aggregation.

Convergence D(c) as defined in SEC. IV A was used to decide ĉ, where c denotes the 

number of CV being considered in the top 5% method. FIG. 7 shows that D generally 

decreases with increasing c for all the methods as expected. According to the trends of D, 

after c = 20, the curve was almost flat, so we fixed c = ĉ (20) in the subsequent experiments.

The top 5% criterion was applied to ranking lists from ĉ (20) series of CVs. Frequencies of 

features being present in the top 5% were counted and served as an overall evaluation of 

importance. FIG. 8 illustrates an example of frequencies of features based on a random 

collection of 20 CVs.

With c being fixed as ĉ (20), the top 5% method was repeated for 100 times and the resulting 

lists were aggregated by Kemeny optimal aggregation into a generalized ranking, as 

rankings by the top 5% method from different trials may not be consistent. Specifically, we 

first calculated the weights of the edges in the defined graph of SEC. IV A based on the 100 
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ranking lists (as the one derived from FIG. 8) and then solved the deduced integer linear 

programming problem by python library PuLP [47].

We varied the number of top features included in the predictive models including MLP, RF 

and SVM according to the final rankings and evaluated their resulting AUCs. To consolidate 

the results, we repeated the experiment by doing the outer-loop of the nested CVs 10 times. 

Average test AUCs and their error bars are shown in FIG. 9.

B. VAE analysis with separate and joint classifications (Cases B, C)

In the VAE-related setting, i.e., cases B & C, all pre-selected features contributed to the 

prediction task rather than a subset of the selected features as in case A. A comparison of 

prediction results from case B of separate VAE and classifiers (MLP, SVM, RF) and case C 

of a VAE-MLP joint architecture is shown in FIG. 10, where the dimension of the latent 

space varies from 1 to 8. Patients were represented on the 2-D latent space (Z) as points. 

Examples from some randomly selected outer-loop CVs are shown in Fig. 11.

C. Combination of handcrafted features and latent variable representation (Case D)

Here, the selected features by WP (case A) and the latent representation from VAE-MLP 

joint architecture (latent size=2) (case C) were combined and used as inputs in MLP, SVM 

and RF classifiers for RP2 prediction. The resulting AUCs were shown in FIG. 12, together 

with AUCs of case A in FIG. 9 for comparison purposes.

D. Relevant feature analysis

To analyze feature importance in this study, we considered the final ranking lists in the 

collection of all (50; 10 times outer-loop CV) iterations. Particularly, the frequency of a 

feature in the top 29 (the optimal number of features as in FIG. 9) among the all ranking lists 

was obtained and served as an indicator of relative importance. It turns out that 28 features 

were selected to be fed into the predictive models more than half of the times, which 

indicated they were arguably the most relevant features. Merely 7 features (boldface in 

Table. II) which were selected every time reached a AUC of 0.782 (95% CI: 0.749–0.802) in 

MLP classifiers for RP2 prediction.

VI. DISCUSSION

In this work, we compared four strategies of building predictive models for lung RP post 

radiotherapy. Case A and case B both had separate phases of dimensionality reduction and 

predictive modeling. Particularly, case A adopted dimensionality reduction techniques 

feature selection (SVM, RF, MLP), and case B adopted feature extraction (VAE). In case C, 

VAEs and MLP classifiers were trained simultaneously in a deep-learning fashion. Finally, 

WP handcrafted features (case A) and latent variables (case C) were fed into various 

classifiers for RP2 prediction in case D.

For case A, RF-, SVM- and MLP-based ranking methods including WP, FQI and FSPP were 

applied and the top features in the ranking list were used as relevant predictors. Due to the 

heterogeneity of the data, multiple rankings from several CVs were aggregated into a single 
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ranking list for subsequent prediction task. This can be regarded as an ensemble-like 

method, analogous to random forest where multiple trees are assembled to make a decision. 

As shown in FIG. 8, rankings/frequencies by different methods shared some common 

characteristics, i.e., a few features (e.g., SMAD4, XRCC1) were ranked high by all the 

methods. Some variations did exist, e.g., mean lung dose (generalized uniform equivalent 

dose (gEUD)) was ranked high by three MLP-based models but not by RF or SVM. FIG. 9 

shows WP+MLP outperformed the rest of the combinations for feature selection and 

prediction in the range from 23 to 36 features. With top 29 features, WP+MLP was shown to 

reach highest AUC of 0.804 (95% CI: 0.761–0.823).

In case B and case C, a VAE was implemented for encoding the original inputs. Unlike the 

common setting as in case B, where VAEs and classifiers were trained subsequently but 

disjointly for the prediction task, we combined a VAE with a MLP predictor and jointly 

trained the two parts to improve representation learning in case C. The joint architecture 

which realized more efficient representation learning with the aid of classification task 

improved the prediction over the conventional separate training with latent sizes 1 to 8 as 

shown in FIG. 10. In the joint architecture, two dimensions were sufficient to encode the 

original inputs for this classification problem, reaching an average AUC of 0.781 (95% CI:

0.737–0.808). Two classes RP=0 and RP=1 are clearly separable in training data (red dots 

versus blue dots) and are partially differentiated in the test data (yellow dots versus green 

dots) in FIG. 11. Although the joint architectures’ predictive performance is slightly inferior 

to that of the handcrafted features, it reduces the burdensome feature selection process, 

statistical bias, and is computationally efficient. In addition, this joint architecture is more 

data-needy than other proposed selection methods considering its large number of 

parameters. Therefore, it may potentially work better when more data are made available.

In case D, we considered combining WP handcrafted features and latent variables from 

VAEs for RP2 prediction. Since case C outperformed case B across all the latent sizes in 

FIG. 10, we extracted latent variables from the joint architecture only. As shown in FIG. 12, 

better predictive performance was achieved by combining the selected handcrafted features 

and the latent representation by VAEs, which is especially in the case of small number of 

samples. The improvement may be because the latent representation, which takes all features 

into account to compensate the incomplete discrete representation by the handcrafted feature 

selection algorithms. When only a small portion of features are available for the predictive 

model, the complementary information was distinctively useful for such heterogeneous data 

modeling problem. However, it is our conjecture that, with more data samples become 

available, case C may supersede handcrafted features to eliminate the necessity of such a 

combination.

A summary of important results is provided in TABLE. III. For VAE-related methods, Case 

C outperformed case B with arbitrary latent size. Moreover, combining WP (case A) 

handcrafted features and latent variables (case D) improved prediction by pure WP features 

at arbitrary number of features. Note that although we conducted Delong test between case 

B and case C, case A and case D at specific (the best AUC in each case) points for brevity, 

the conclusion still held as we varied the number of features/latent sizes as in FIG. 10 and 

FIG. 12

Cui et al. Page 14

Med Phys. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



From TABLE. II, one can see that the reduced feature set from case A was diverse in the 

type of features, including dosimetric, cytokines, miRNA and SNP variables. This may 

indicate the necessity of integrating multi-type factors into RP modeling in particular and 

radiotherapy outcome modeling in general.

In this study, our proposed dimensionality reduction techniques were all applied after pre-

processing according to single-variable AUCs, which reduced the number of variables to 

around 70. This is because our limited sample size is not enough to support application of 

direct dimension reduction techniques on the original dataset, i.e., the adopted classifiers 

gave random prediction results without pre-selection. Therefore, such primitive 

dimensionality reduction by AUC criterion was applied prior to the investigated techniques 

to mitigate redundancy effects. However, the VAE-MLP joint architecture was still 

applicable to the whole dataset, though, the predictive performance was degraded even with 

some additional regularization technique being applied. Particularly, we added a term of L2 

regularization to the first-layer weights of the loss function,

Ladd = λ
i ∈ ℐ j ∈ ℋ

w ji
2 (20)

where ℐ, ℋ denote the nodes in first (input) and second layers respectively. The 

regularization was aimed for sparse weight matrices, addressing the overfitting issue when a 

large number of features was available. FIGs. 13–15, show heat maps of absolute values of 

weight parameters in the first layers under different strengths of regularization, where y-axis 

stands for nodes in the first layer and x-axis denotes the second layer. Clearly, with 

increasing strength of regularization, weight matrices become sparse and less features take 

effect in the models.

With λ = 1, the average AUC reaches 0.662 (95% CI: 0.622–0.701) outperformed 0.627 at λ 
= 0. The improved AUC when λ = 1 indicates some random noise in the original data need 

to be suppressed for better predictive performance.

Without pre-selection, a VAE-MLP joint architecture did not work well even with 

regularization techniques, which might be due to the fact that the limited sample size was 

not able to support the rather complex models (too many parameters). One may further 

consider more advanced VAE structures, which can take into account the correlations 

between input variables to reduce the demand for sample size, potentially allowing training 

without such pre-selection. As in the VAE architecture for image data, convolutional neural 

networks considering spatial invariance and adjacent pixels-correlation take place of the 

MLP in encoder and decoder architectures. The resulting architecture had far less parameters 

and required less data to train on. In the outcome modeling data, biological variables which 

are from the same signaling pathway or longitudinal data measured at different times may be 

highly correlated with each other, as well as dosimetric data. An advanced VAE architecture 

considering these inter-correlations may potentially further reduce its dependence on the 

sample size, enabling better model learning from the raw data.
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In this study, we investigated the proposed methods solely on a NSCLC dataset. We 

recognize that the generalization of this methodology to other datasets is needed. Though 

modeling outcomes based on such heterogeneous datasets (clinical, dosimetric, imaging, and 

biomarkers) is recognized to be the right approach, it is still evolving in radiotherapy. As the 

result, the availability of such dataset is still limited and validation would be the subject of 

future study. To allow others in the community to explore our approaches, we are currently 

preparing a Medical Physics DataSet article that will include releasing the data and the 

associated code.

VII. CONCLUSIONS

This work demonstrates the potential for combination of traditional machine learning 

methods and deep learning VAE techniques when dealing with limited datasets for modeling 

radiotherapy toxicities. Specifically, the combination of selected features from MLP-based 

method WP and latent variables from VAE-MLP joint architecture (case D) yielded the 

highest AUC compared to the AUCs by either handcrafted features (case A) or latent 

variables (cases B, C) individually.

ACKNOWLEDGMENT

This work was partly supported by National Institutes of Health (NIH) (P01-CA059827 and R37-CA222215) and 
Rackham Predoctoral fellowship.

References

[1]. El Naqa I, ed., A Guide to Outcome Modeling In Radiotherapy and Oncology: Listening to the 
Data (2018).

[2]. Bentzen SM, Constine LS, Deasy JO, and et al., “Quantitative analyses of normal tissue effects in 
the clinic (QUANTEC): An introduction to the scientific issues,” International Journal of 
Radiation Oncology Biology Physics 76(3) (2010).

[3]. Lyman JT, “Tolerance doses for treatment planning,” (1985), 10.2172/6934260.

[4]. Kutcher GJ and Burman C, “Calculation of complication probability factors for non-uniform 
normal tissue irradiation: The effective volume method gerald,” International Journal of 
Radiation Oncology Biology Physics 16(6), 1623–1630 (1989).

[5]. Niemierko A and Goitein M, “Modeling of normal tissue response to radiation: The critical 
volume model,” International Journal of Radiation Oncology Biology Physics 25(1), 135–145 
(1993).

[6]. Stavrev P, Stavrev N, Sharplin J, Fallone BG, and Franko A, “Critical volume model analysis of 
lung complication data from different strains of mice,” International Journal of Radiation 
Oncology Biology Physics 81(2), 77–88 (2005).

[7]. El Naqa I, Suneja G, Lindsay PE, and et al., “Dose response explorer: an integrated open-source 
tool for exploring and modelling radiotherapy dose-volume outcome relationships,” Physics in 
Medicine and Biology 51(22), 5719–5735 (2006). [PubMed: 17068361] 

[8]. Marks LB, Yorke ED, Jackson A, and et al., “Use of normal tissue complication probability 
models in the clinic,” International Journal of Radiation Oncology Biology Physics 76(3), S10–
S19 (2010).

[9]. Kong FM, Pan C, Eisbruch A, and Ten Haken RK, “Physical models and simpler dosimetric 
descriptors of radiation late toxicity,” Seminars in radiation oncology fraktur (2007).

[10]. Chen S, Zhou S, Zhang J, and et al., “A neural network model to predict lung radiation-induced 
pneumonitis,” Medical Physics 34(9), 3420–3427 (2007). [PubMed: 17926943] 

Cui et al. Page 16

Med Phys. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[11]. Su M, Miften M, Whiddon C, and et al., “An artificial neural network for predicting the incidence 
of radiation pneumonitis,” Medical Physics 32(2), 318–325 (2005). [PubMed: 15789575] 

[12]. Chen S, Zhou S, Yin F, and et al., “Investigation of the support vector machine algorithm to 
predict lung radiation-induced pneumonitis,” Medical Physics 34(10), 3808–3814 (2007). 
[PubMed: 17985626] 

[13]. El Naqa I, Bradley JD, Lindsay PE, Hope AJ, and Deasy JO, “Predicting radiotherapy outcomes 
using statistical learning techniques,” Physics in Medicine and Biology 54(18), S9 (2009). 
[PubMed: 19687564] 

[14]. Lee S, Ybarra N, Jeyaseelan K, and et al., “Bayesian network ensemble as a multivariate strategy 
to predict radiation pneumonitis risk,” Medical Physics 42(5), 2421–2430 (2015). [PubMed: 
25979036] 

[15]. Luo Y, El Naqa I, Mcshan DL, and et al., “Unraveling biophysical interactions of radiation 
pneumonitis in non-small-cell lung cancer via bayesian network analysis,” Radiotherapy and 
Oncology 123(1), 85–92 (2017). [PubMed: 28237401] 

[16]. Guyon I and Elisseeff A, “An introduction to variable and feature selection,” J. Mach. Learn. Res 
3, 1157–1182 (2003).

[17]. Saeys Y, Inza I, and Larranaga P, “A review of feature selection techniques in bioinformatics,” 
Bioinformatics 23(19), 2507–2517 (2007). [PubMed: 17720704] 

[18]. LeCun Y, Bengio Y, and Hinton G, “Deep learning,” Nature 521(7553), 436–444 (2015). 
[PubMed: 26017442] 

[19]. Yacoub M and Bennani Y, “HVS : A Heuristic for Variable Selection in Multilayer Artificial 
Neural Network Classifier,” in Intelligent Engineering Systems Through Artificial Neural 
Networks, edited by Dagli CH (ASME press, 1997) pp. 527–532.

[20]. Verikas A and Bacauskiene M, “Feature selection with neural networks,” Pattern Recogn. Lett 
23(11), 1323–1335 (2002).

[21]. Yang J, Shen K, Ong C, and Li X, “Feature selection for MLP neural network: The use of random 
permutation of probabilistic outputs,” IEEE Transactions on Neural Network 20, 1911–1922 
(2009).

[22]. Breiman L, “Random forests,” Mach. Learn 45(1), 5–32 (2001).

[23]. Tong S and Koller D, “Support vector machine active learning with applications to text 
classification,” J. Mach. Learn. Res 2, 45–66 (2002).

[24]. Krizhevsky A, Sutskever I, and Hinton G, “Imagenet classification with deep convolutional 
neural networks,” in Advances in Neural Information Processing Systems 25, edited by Pereira F, 
Burges CJC, Bottou L, and Weinberger KQ (Curran Associates, Inc., 2012) pp. 1097–1105.

[25]. Cho K, van Merrienboer B, Gulcehre C, and et al., “Learning phrase representations using RNN 
encoder-decoder for statistical machine translation.” in Empirical Methods in Natural Language 
Processing, edited by Moschitti Alessandro, Pang Bo, and Daelemans Walter (ACL, 2014) pp. 
1724–1734.

[26]. Silver D, Huang A, Maddison CJ, and et al., “Mastering the game of go with deep neural 
networks and tree search,” Nature 529(7587), 484–489 (2016). [PubMed: 26819042] 

[27]. Goodfellow I, Bengio Y, and Courville A, “Deep learning research: Autoencoders,” in Deep 
learning (MIT Press, 2016) http://www.deeplearningbook.org.

[28]. Kouloulias V, Zygogianni A, Efstathopoulos E, and et al., “Suggestion for a new grading scale for 
radiation induced pneumonitis based on radiological findings of computerized tomography: 
Correlation with clinical and radiotherapeutic parameters in lung cancer patients,” Asian Pacific 
Journal of Cancer Prevention 14(5), 2717–2722 (2013). [PubMed: 23803021] 

[29]. Bentzen SM and Dische S, “Morbidity related to axillary irradiation in the treatment of breast 
cancer,” Acta Oncologica 39(3), 337–347 (2000). [PubMed: 10987231] 

[30]. Fukuyama T, Ichiki Y, Yamada S, and et al., “Cytokine production of lung cancer cell lines: 
Correlation between their production and the inflammatory/immunological responses both in 
vivo and in vitro,” Cancer Science 98(7), 1048–1054.

[31]. Damaraju S, Murray D, Dufour J, and et al., “Association of DNA repair and steroid metabolism 
gene polymorphisms with clinical late toxicity in patients treated with conformal radiotherapy for 
prostate cancer,” Clinical Cancer Research 12(8), 2545–2554 (2006). [PubMed: 16638864] 

Cui et al. Page 17

Med Phys. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.deeplearningbook.org


[32]. Slattery ML, Herrick JS, Lundgreen A, and Wolff RK, “Genetic variation in the TGF-β signaling 
pathway and colon and rectal cancer risk,” Cancer Epidemiology Biomarkers and Prevention 
20(1), 57–69 (2010).

[33]. Guo L, Zhang Y, Zhang L, and et al., “Micrornas,TGF-β signaling, and the inflammatory 
microenvironment in cancer,” Tumor Biology 37(1), 115–125 (2015). [PubMed: 26563372] 

[34]. Pedregosa F, Varoquaux G, Gramfort A, and et al., “Scikit-learn: Machine learning in Python,” 
Journal of Machine Learning Research 12, 2825–2830 (2011).

[35]. Franc¸ois Chollet, “Keras,” https://keras.io (2015).

[36]. Kingma DP and Ba J, “Adam: A method for stochastic optimization,” CoRR abs/1412.6980 
(2014).

[37]. Baldi P, “Autoencoders, unsupervised learning and deep architectures,” in Proceedings of the 
2011 International Conference on Unsupervised and Transfer Learning Workshop - Volume 27, 
UTLW’11 (JMLR.org, 2011) pp. 37–50.

[38]. Bengio Y, Courville A, and Vincent P, “Representation learning: A review and new perspectives,” 
IEEE Trans. Pattern Anal. Mach. Intell 35(8), 1798–1828 (2013). [PubMed: 23787338] 

[39]. Kingma DP and Welling M, “Auto-encoding variational bayes.” CoRR abs/1312.6114 (2013).

[40]. Collins GS, Reitsma JB, Altman DG, and Moons KG, “Transparent reporting of a multivariable 
prediction model for individual prognosis or diagnosis (TRIPOD) : the TRIPOD statement,” 
British Journal of Cancer 112(2), 251–259 (2015). [PubMed: 25562432] 

[41]. El Naqa I, Bradley J, Blanco A, and et al., “Multivariable modeling of radiotherapy outcomes, 
including dosevolume and clinical factors,” International Journal of Radiation Oncology Biology 
Physics 64(4), 1275–1286 (2006).

[42]. Lin S, “Rank aggregation methods,” Wiley Interdisciplinary Reviews: Computational Statistics 2, 
555–570 (2010).

[43]. Conitzer V, Davenport A, and Kalagnanam J, “Improved bounds for computing kemeny 
rankings,” in Proceedings of the 21st National Conference on Artificial Intelligence (AAAI 
Press, 2006) pp. 620–626.

[44]. Chawla NV, Bowyer KW, Hall LO, and Kegelmeyer WP, “Smote: Synthetic minority over-
sampling technique,” J. Artif. Int. Res 16(1), 321–357 (2002).

[45]. Delong ER, Delong DM, and Clarke-Pearson DL, “Comparing the areas under two or more 
correlated receiver operating characteristic curves: a nonparametric approach,” biometrics 44(3), 
837–845 (1988). [PubMed: 3203132] 

[46]. Demler OV, Pencina MJ, and D’Agostino RB Sr, “Misuse of DeLong test to compare AUCs for 
nested models,” Stat. Med 31(23), 2577–2587 (2012). [PubMed: 22415937] 

[47]. Mitchell S, Sullivan MO, and Dunning I, “PuLP: A linear programming toolkit for Python,” 
(2011), http://www.optimization-online.org/DB_FILE/2011/09/3178.pdf.

Cui et al. Page 18

Med Phys. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://keras.io
http://www.JMLR.org
http://www.optimization-online.org/DB_FILE/2011/09/3178.pdf


FIG. 1. 
Building multivariable predictive models via standard machine learning and deep 

architectures
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FIG. 2. 
Diagram of MLP: input (I), hidden (h) and output (o) layers are labeled correspondingly. 

Numbers of nodes are scribed beneath
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FIG. 3. 
Diagram of a single neuron with 3 input nodes, where an activation function f is applied for 

final output. (x and a are input and output of this neuron respectively)
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FIG. 4. 
[Left] Diagram of an AE composed of an encoder (E) and a decoder (D). [Right] Diagram of 

a VAE: numbers of nodes (*) in the implemented architecture are denoted
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FIG. 5. 
Diagram of a VAE-MLP joint architecture: µ is used as input of MLP classifier. The number 

of nodes in each layer is given
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FIG. 6. 
Nested CV in validation process for evaluating for cases A, B, C and D
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FIG. 7. 
Top 5%: Comparison of convergence (D) as a function of CV size for feature selection 

methods
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FIG. 8. 
Top 5%: Frequencies of features based on a random collection of 20 CV
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FIG. 9. 
Top 5%: AUC trend with increasing number of features
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FIG. 10. 
AUC trend with increasing latent dimension
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FIG. 11. 
Visualization of latent variable Z of patients
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FIG. 12. 
AUCs by combining WP features with latent_Z in SVM (A) RF (B), MLP (C) classifiers
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FIG. 13. 
λ = 0.01 visualization of weights
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FIG. 14. 
λ = 0.1 visualization of weights
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FIG. 15. 
λ = 1 visualization of weights
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TABLE I.

Variables considered in RP2 prediction

Categories Names

Dosimetric Information (5) Mean_Lung_Dose, Maximum_Lung_Dose, V5, V13, V20

Clinical Factors (13) Smoking, COPD, Chemo, Gender, Adenocarcinoma, Squamous cell carcinoma Large cell carcinoma, Poorly 
differentiated carcinomas, Stage, Age, GTV, KPS, Ratio of weight change

Cytokines for pre,2-week and 
4 week during treatment 
(30+30+30)

EGF, eotaxin, fractalkine, G-CSF, GM-CSF, IFN-γ, IL-10, IL-12p40, IL-12p70, IL-13, IL-15, IL-17, IL-1, 
IL-1, IL-1ra, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IP-10, MCP-1, MIP-1α, MIP-1β, sCD40L, TGF-α, TNF-α, 
VEGF, TGF-β1

 miRNAs (62)

Let-7a-5p, miR-100–5p, miR-106b-5p, miR-10b-5p, miR-122–5p, miR-124–3p, miR-125b-5p, miR-126–3p, 
miR-134, miR-143–3p, miR-146a-5p, miR-150–5p, miR-155–5p, miR-17–5p, miR-17–3p, miR-18a-5p, 
miR-192–5p, miR-195–5p, miR-19a-3p, miR-19b-3p, miR-200b-3p, miR-200c-3p, miR-205–5p, miR-21–5p, 
miR-210, miR-221–3p, miR-222–3p, miR-223–3p, miR-224–5p, miR-23a-3p, miR-25–3p, miR-27a-3p, 
miR-296–5p, miR-29a-3p, miR-30d-5p, miR-34a-5p, miR-375, miR-423–5p, miR-574–3p, miR-885–5p, 
miR-92a-3p, let-7c, miR-10a-5p, miR-128, miR-130b-3p, miR-145–5p, miR-148a-3p, miR-15a-5p, 
miR-193a-5p, miR-26b-5p, miR-30e-5p, miR-374a-5p, miR-7–5p, miR-103a-3p, miR-15b-5p, miR-191–5p, 
miR-22–3p, miR-24–3p, miR-26a-5p, miR-20a-5p, miR-93–5p, miR-16–5p

 SNPs (60) Rs3857979(BMP1), Rs4988044 (ATM), Rs1800587(IL1A), Rs17561(IL1A), Rs2070874(IL4), 
Rs1801275(IL4R), Rs4073(CXCL8), Rs2234671(CXCR1), Rs1800896(IL10), Rs3135932(IL10RA), 
Rs1800872(IL10), Rs11556218(IL16), Rs4760259(GLI1), Rs1799983(NOS3), Rs689470(PTGS2), 
Rs12102171(SMAD3), Rs6494633(SMAD3),Rs4776342(SMAD3),Rs11615(ERCC1), Rs609261(ATM), 
Rs12906898(SMAD6), Rs7227023(SMAD7), Rs7333607(SMAD9), Rs664143(ATM), Rs4803455(TGFB1), 
Rs1061622(TNFRSF1B), Rs664677(ATM), Rs20417(PTGS2), Rs373759(ATM), Rs189037(ATM), 
Rs12456284(SMAD4), Rs1800057(ATM), Rs3212961(ERCC1), Rs3212948(ERCC1), Rs238406(ERCC2), 
Rs12917(MGMT), Rs17655(ERCC5), Rs1047768(ERCC5), Rs12913975(SMAD6), Rs1805794(NBN), 
Rs1625895(TP53), Rs1042522(TP53), Rs25489(XRCC1), Rs9293329(XRCC4), 
Rs1800469(B9D2&TGFB1), Rs2075685(TMEM167A&XRCC4), Rs25487(XRCC1), Rs1800795(IL6), 
Rs1799796(XRCC3), Rs1800468(B9D2&TGFB1), Rs1478486(XRCC4), Rs2228000(XPC), 
Rs2228001(XRC), Rs3218384(XRCC2) Rs1799793(ERCC2), Rs1803965(MGMT), Rs2279744(MDM2), 
Rs2308321(MGMT), Rs3218536(XRCC2), Rs2834167(IL10RB), Rs3212986(ERCC1)
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TABLE II.

Features being selected more than half of the times (the boldfaced ones were selected every time) in outer-loop 

CVs

Categories Names

Dosimetric Information (1) Mean_Lung_Dose (α/β=4)

cytokine (10) 2w_eotaxin, 4w_eotaxin, pre_TNF-α, 2w_TNF-α, 4w_TNF-α, 2w_IL-8, 4w_IL-8, 2w_MCP-1, 2w_fractalkine, 
pre_IFN-γ,

miRNA (8) hsa-miR-192–5p, hsa-miR-22–3p, hsa-miR-128, hsa-miR-15a-5p, hsa-miR-223–3p, hsa-miR-23a-3p, hsam-
miR-210, hsa-miR-100–5p

SNPs(9) Rs3857979(BMP1), Rs238406(ERCC2), Rs12456284(SMAD4), Rs1625895(TP53), Rs1799983(NOS3), 
Rs4803455(TGFB1), Rs25487(XRCC1), Rs1800468(TGFB1), Rs2075685(XRCC4)
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TABLE III.

Summary of RP2 prediction results from all the 4 strategies

Methods Num of features AUC Delong test

Case B (VAE+MLP) 7 (latent_Z) 0.624 (95%CI: 0.577–0.658)
p-value: 1.33 × 10−7

Case C (VAE-MLP) 2 (latent_Z) 0.781 (95%CI: 0.737–0.808)

Case A (WP+MLP) 29 0.804 (95% CI: 0.761–0.823)
p-value: 6.42 × 10−4

Case D ([latent Z + WP]+MLP) 22+2 (latent_Z) 0.831 (95% CI: 0.805–0.863)
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