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Abstract

Purpose—Broad panel sequencing of tumors facilitates routine care of people with cancer as 

well as clinical trial matching for novel genome-directed therapies. We sought to extend the use of 

broad panel sequencing results to survival stratification and clinical outcome prediction.

Patients and Methods—Using sequencing results from a cohort of 1,054 patients with 

advanced lung adenocarcinomas, we developed OncoCast, a machine learning tool for survival 

risk stratification and biomarker identification.

Results—With OncoCast, we stratified this patient cohort into four risk groups based on tumor 

genomic profile. Patients whose tumors harbored a high-risk profile had a median survival of 7.3 

months (95% CI 5.5-10.9), compared to a low risk group with a median survival of 32.8 months 

(95% CI 26.3-38.5), with a hazard ratio of 4.6 (P<2e-16), far superior to any individual gene 

predictor or standard clinical characteristics. We found that co-mutations of both STK11 and 

KEAP1 are a strong determinant of unfavorable prognosis with currently available therapies. In 

patients with targetable oncogenes including EGFR/ALK/ROS1 and received targeted therapies, 

the tumor genetic background further differentiated survival with mutations in TP53 and ARID1A 
contributing to a higher risk score for shorter survival.

Conclusion—Mutational profile derived from broad-panel sequencing presents an effective 

genomic stratification for patient survival in advanced lung adenocarcinoma. OncoCast is available 

as a public resource that facilitates the incorporation of mutational data to predict individual 

patient prognosis and compare risk characteristics of patient populations.
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Introduction

With the growth of genomic testing-driven precision medicine programs as well as recent 

FDA clearance of next-generation sequencing platforms for clinical use, there is a rapid 

growth in the availability of broad sequencing data for patients with cancer. Broad panel 

sequencing facilitates clinical trial matching of novel genome-directed therapies. Zehir et al.
1 delineated the molecular landscape of 10,000 metastatic cancer in a pretreated real-world 

cohort sequenced by the MSK-IMPACT platform, a hybridization capture-based NGS panel 

which can detect mutations and copy number alterations in 341 or more cancer-associated 

genes2. This study showed that 37% of patients harbored at least one therapeutically 

actionable alteration and 11% were matched to genome-directed clinical trials.

In patients with lung adenocarcinoma, tumor genotyping is now an essential step in routine 

clinical decision making. To determine treatment, patients with lung adenocarcinomas are 

currently categorized based on the presence of mutated driver oncogenes (e.g. EGFR, ALK, 
ROS1, and BRAF). A multi-institutional study characterized genetic aberrations across 10 

genes in 733 tumor samples and identified an oncogenic driver in 64% of the patients3. 

Using a broad-panel based sequencing, Jordan et al.4 reported from a single institution 

experience of 860 patients with metastatic lung adenocarcinoma that over 37% of patients 

received a matched therapy, with the use of matched therapy strongly influenced by the level 

of pre-existent clinical evidence that the mutation identified predicts the drug response.

While the focus of tumor genotyping has been on the identification of mutations that identify 

therapeutic targets, even within specific molecular subsets of patients with metastatic cancer 

there is considerable unexplained variability in clinical outcomes. Similarly, association 

between high mutational load and clinical benefit has been observed in patients treated with 

PD-1/PD-L1 inhibitors5. However, additional markers are needed to predict durable benefit 

and long-term survival among these patients. Prior attempts to evaluate the effects of co-

mutations have had a relatively limited scope. Some studies have explored the effects of 

single co-occurring alterations on the outcome in patients with EGFR-mutant and KRAS-

mutant lung adenocarcinoma and observed that the presence or absence of pairs of co-

occurring events could be used to identify those patients with a poor prognosis most in need 

of novel therapeutic approaches3,6-8. However, a systematic approach is needed to further 

improve our understanding of survival and treatment outcome of patients.

Here, we developed OncoCast, a computational tool for survival stratification, and applied it 

to a large clinical series of metastatic lung adenocarcinomas to improve the understanding of 

heterogeneity in clinical outcome for these patients and the mutation and co-mutational 

patterns that underlie such heterogeneity. Analysis of this large clinical cohort provides real-

world evidence for understanding survival outcome for patients undergoing current standard 

care in advanced lung adenocarcinomas. Such real-world evidence can supplement the 

information from randomized clinical trials (RCT) in that the results are more generalizable 
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to patients treated outside of RCT and the larger sample sizes of real-world data sets allow 

subset analysis that clinical trials are not powered for. The open-source computational 

pipeline we have developed can facilitate the application of statistical and machine learning 

approaches for clinico-genomics analysis of precision medicine data sets.

Results

Cohort characteristics

Consecutive patients with metastatic or recurrent lung adenocarcinomas for which MSK-

IMPACT data were available were included. Electronic medical record was used to identify 

patient clinical factors as well as survival outcomes as previously described4. Overall 

survival (OS) was defined as the time from date of diagnosis of advanced disease (stage IV 

or recurrent cancer) until date of death or last follow-up. In this cohort, the majority (68%) 

of the tumors in our cohort were biopsied and sequenced within 30 days of diagnosis of 

metastatic disease. However, a fraction (21%) of the tumors were sampled and sequenced 

more than six months from the met recurrence date, with 16% more than a year and 8% 

more than 2 years, representing older samples used for sequencing analysis. Those patients 

with older samples taken at initial diagnosis of advanced lung cancer were “immortal” from 

their initial sampling time to the time of referral for MSK-IMPACT sequencing. This 

interval can be long for a small fraction of patients (8% with a delayed interval more than 2 

years as mentioned earlier), introducing survival bias. Left-truncation was used to adjust for 

this bias. Details of left-truncation analysis are described in Supplementary Material. The 

most frequently mutated genes were TP53 (55.1%), KRAS (30%), EGFR (29.4%), STK11 
(17.7%), and KEAP1 (17.7%) (Supplementary Figure 1a). Among the frequently co-mutated 

gene pairs, STK11 and KEAP1 were co-mutated in 10% of the tumors, KRAS and STK11 
were co-mutated in 9% of the tumors (Supplementary Figure 1b).

Prognostic relevance and clonality of cancer genes

To define the prognostic significance of MSK-IMPACT panel genes sequenced, we 

developed OncoCast, a machine learning tool for survival risk stratification and biomarker 

identification by implementing a lasso-penalized proportional hazards regression for 

deriving prediction rules for overall survival and feature selection (Supplementary Methods). 

OncoCast uses an ensemble learning strategy by repeatedly splitting the cohort into a 

training and test set multiple times that generate an ensemble of classifiers with varying 

selection of genes and gene combinations (Supplementary Figure 2).

The median number of prognostic genes selected was 19 (range 4-67), with a total of 169 

cancer genes selected at least once by the ensemble learner. The relative prognostic 

importance of each gene was measured by how often it was selected (fraction of the models 

containing the gene) and its average regression coefficients that determined the 

corresponding weights for individual genes in the scoring rule. Figure 1a shows frequency of 

selection and average coefficient value for individual genes. STK11 and KEAP1 were 

observed to be highly prognostically relevant. They were followed in importance by TP53, 
KRAS, SMARCA4, and EGFR. An additional 21 genes were selected in at least 20% of the 

models (Figure 2a), including ALK fusion (58%), ROS1 fusion (22%), and ERBB2 
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mutation (31%), further highlighting the power of our approach to aggregate effects from 

rare events, which otherwise would not be included in standard association analyses.

Several recent studies examining tumor heterogeneity have shown that clonal or “truncal” 

drug targets and/or tumor neo-antigens are more predictive of response to systemic targeted 

and immunotherapies than subclonal events 9-11. We thus used the high depth of coverage 

afforded by our sequencing data (mean coverage of 758×) to determine the clonality of the 

gene alterations found to be associated with prognosis in the analysis outlined above. 

Clonality analysis revealed that all of the most prognostic alterations were predominantly 

clonal with average cancer cell fraction above 85% (Figure 1b).

OncoCast: an integrated prognostic scoring system based on NGS tumor profiling

OncoCast aggregates prognostic effects across the sequenced cancer genes to derive a 

genomic risk score for each patient (scaled from 0 to 10), with a higher score indicating a 

greater likelihood of shorter survival. The distribution of the risk scores revealed a wide 

spread within the cohort (Figure 2a). To evaluate prognostic performance, we calculated the 

C-index that measures the concordance between the risk score and survival (Figure 2b). A 3-

fold cross-validation was used for unbiased assessment. Clinical demographic factors 

(including age, sex, smoking) were weakly concordant with survival, with median C-indices 

ranging from 0.53 to 0.57. By contrast, the OncoCast risk score as determined by tumor 

genomic profiling demonstrated a significantly better concordance with a median C-index 

above 0.65. In advanced/metastatic lung cancers, studies have only shown weak to moderate 

strength of survival association for clinical factors 12,13. The genomic classifier we 

developed here presents a significant improvement. In addition, the OncoCast classifier 

based on clinical-grade sequencing as part of routine care highlights the immediate 

application and strong practical utility. The prediction strength is comparable to established 

gene expression based genomic classifiers in early stage lung cancer from large multi-site 

study 14. Inclusion of copy number alteration (CNA) data in the analysis revealed no 

discernible improvement in C-index upon incorporation of the CNA data (Figure 2b).

We categorized the patient cohort into low (0-25th percentile), low-intermediate (25-75th 

percentile), high-intermediate (75th-90th percentile) and high (90th percentile and above) 

risk groups informed by the multiple modes of the risk score distribution (Figure 3a). For the 

low risk group, median overall survival was 32.8 months (95% CI: 26.3-38.5). By contrast, 

for the high-risk group, the median survival was 7.3 months (95% CI: 5.5-10.9). There was a 

more than 6-unit difference in average risk score between the high and low risk groups. The 

OncoCast classification substantially outperformed all of the individual genes as a predictor 

of overall survival (Figure 3b). The hazard ratio for the OncoCast risk score classified high 

versus low risk group was 4.6 (95%CI 3.2-6.5), far superior to clinical factors or any 

individual gene. OncoCast risk score remained a highly significant predictor after adjusting 

for clinical variables and treatment types as potential confounding factors in a multivariate 

Cox regression model (Supplementary Table 1).

To confirm the validity of the OncoCast survival stratification we applied it to a separate 

data set of patients with mostly early stage NSCLC, obtained from the TCGA lung 

adenocarcinoma analysis. We saw a similar stratification of the risk groups (Supplementary 
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Figure 3). The high-risk group shows significantly worse overall survival with a hazard ratio 

of 1.9 (P=0.03) and highly enriched for concurrent STK11 and KEAP1 mutations.

Prognostic mutation and co-mutation patterns

Overlaying the OncoCast risk score with the mutational landscape in an OncoPrint plot 

highlights that the tumors with the highest risk profile were enriched for co-mutation of 

STK11 and KEAP1 (Figure 4). STK11 is a tumor suppressor gene that encodes for the 

serine/threonine kinase LKB1 that functions as a negative regulator of mammalian target of 

rapamycin (mTOR) signaling. Consistent with its functional role as a tumor suppressor, the 

majority of STK11 mutations were truncating and frame-shift indels. To examine the status 

of the other allele in such cases, we performed allele-specific copy number analysis using 

the FACETS algorithm15. Strikingly, over 90% of STK11 mutant tumors had evidence of bi-

allelic inactivation through LOH of chromosome 19p (Supplementary Figure 4). KEAP1 
also resides in the 19p region with 89% of KEAP1 mutant tumors demonstrating LOH. The 

majority of KEAP1 mutations were missense and the mutant copy was frequently duplicated 

(present as copy-neutral LOH and uniparental gains) as reflected in the average total copy 

number.

We also explored whether other tumor characteristics such as tumor mutational signature or 

intra-tumor heterogeneity were prognostic and associated with OncoCast risk score. 

Previously defined smoking-associated and APOBEC signatures were the most prevalent 

mutational signatures in this cohort. The identification of a smoking signature was highly 

concordant with patient reported smoking status (Figure 4). An APOBEC signature was 

enriched in low risk groups and in patients who self-reported as never smokers. The median 

mutation burden in the overall dataset was 9.95 mutations/Mb (IQR 4.97-19.07). Tumor 

mutation burden (TMB) was associated with risk groups with a median of 16.58, 16.05, 

9.95, and 5.76 mutations/Mb in the high, high-intermediate, low-intermediate, and low-risk 

groups, respectively (Kruskal-Wallis test P < 0.0001) (Supplementary Figure 5). However, 

mutation burden did not provide additional prognostic value beyond OncoCast risk score in 

a multivariable Cox model (Supplementary Table 2).

Clonal diversity was calculated for each tumor by summarizing the cancer cell fraction 

(CCF) for all somatic mutations using the Shannon index. A diversity index of zero 

represents homogeneity in which case all of the mutations detected in the tumor are clonal 

(CCF=100%). The median diversity index in the cohort was 1.19 (range 0.00-56.32). A 

trend of increased clonal heterogeneity was observed in high risk groups (Supplementary 

Figure 5). Again, clonal heterogeneity did not provide additional prognostic value on top of 

the OncoCast risk score.

Genotypes associated with risk groups

To better understand the association between targetable cancer driver mutations and 

OncoCast risk score, we explored the distribution of genotypes within four major risk 

categories (Figure 5). The low risk group was highly enriched for EGFR mutants and tumors 

harboring oncogenic fusions in ALK, RET and ROS1. However, 30% of the low risk group 

tumors lacked targetable alterations in these 4 genes. The defining characteristic for the 
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patients in the low risk group without EGFR, ALK, RET, ROS1 alterations was an absence 

of any of the poor prognostic gene alterations. In the high risk groups, common co-mutation 

patterns were observed. Strikingly, over 95% of the patients in the high risk group had 

tumors that harbor co-mutations of KEAP1 and STK11. The top three major genotype 

categories in the high risk group were KRAS-STK11-KEAP1, TP53-STK11-KEAP1, and 

KRAS-STK11-KEAP1-SMARCA4. Furthermore, when compared to the TCGA resected 

lung adenocarcinoma cohort, STK11 and KEAP1 co-mutation was two-fold more common 

in the metastatic lung cohort (10.2% vs. 5.2%, P < 0.001). This suggests that STK11 and 

KEAP1 co-mutation defines a cohort of resected lung adenocarcinoma patients at higher risk 

of disease progression and cancer specific mortality.

Survival stratification in specific treatment subsets

We then sought to demonstrate the ability of the Oncocast technique to explore tumor 

genomic predictors outcomes in the subset of patients with mutated driver oncogenes treated 

with kinase inhibitors. The model, OncoCast-TR, was derived using the genomic profiles 

and survival outcomes from the start of therapy for the 387 patients who received targeted 

therapies (EGFR, ALK, ROS). Survival time was calculated from the start of treatment to 

death or last follow-up. Late entry was accounted for by using left-truncation analysis 

incorporating time to tumor sampling and sequencing. The risk score from the OncoCast-TR 

model clearly indicated two groups with distinct survival differences (Figure 6a,b). TP53 is 

strongly associated with worse survival outcome (Figure 6c), with 96% of patients in the 

TR2 group harboring concurrent TP53 mutations and 0% concurrent TP53 mutation in the 

TR1 group. ARID1A also showed association with poor survival with 11/14 (78%) ARID1A 
mutations in TR2.

Interactive tool for visualizing and exploring mutation pattern and survival.

To facilitate clinical translation and research use of the data, we created an interactive web 

application (Supplementary Figure 6) that allows for visualization of mutation patterns and 

individualized prediction of overall survival to be generated based on a user-defined 

mutational profile and clinical characteristics. There are two main functional modules: 

GeneView and PatientView. In GeneView, the user can input the genes of interest and 

interactively explore the prognostic effects in a dynamic volcano plot and with genotype pie-

charts. In PatientView, an OncoCast risk score will be calculated from a user supplied 

mutational profile. Along with a patient’s clinical profile, the application outputs the 

predicted survival probabilities along with a 95% confidence interval. While the tool was 

built using the largest metastatic lung adenocarcinoma cohort to date, it was designed to be 

dynamically updated as new data are incorporated into the model.

Discussion

Tumors from patients with lung adenocarcinoma have a high frequency of actionable 

oncogenic drivers 16,17. The introduction of targeted therapy has transformed the clinical 

care of patients with lung adenocarcinoma by incorporating tumor genotyping into 

therapeutic decision making. However, the prognostic value of the additional information 

from broad genomic profiling has not been explored. We developed OncoCast, a statistical 

Shen et al. Page 6

JCO Precis Oncol. Author manuscript; available in PMC 2019 April 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



learning tool, for integrating broad genomic profiling data and clinical outcomes for survival 

stratification and the identification of associated biomarkers. Using an ensemble learning 

approach we demonstrated the prognostic utility of data from a large panel next generation 

sequencing assay interrogating 341 cancer-associated genes in 1,054 patients with metastatic 

lung adenocarcinoma treated with currently available therapies. We show that it is a practical 

approach to molecular stratification in metastatic lung adenocarcinoma and provides the 

ability to identify biomarkers that predict survival outcome.

Overlaying the OncoCast risk score with the tumor genomic landscape revealed novel 

biological and clinical insights. The major prognostic genes associated with poor survival 

included STK11, KEAP1, TP53, KRAS, and SMARCA4. Remarkably, co-mutations of both 

STK11 and KEAP1 defined an exceptionally high risk profile with a short median overall 

survival of 7.3 months, and a more than 6 unit increase in risk score compared to a low risk 

group, corresponding to a hazard ratio of 4.6. The low risk group had no mutations in these 

major poor prognostic genes. Some of the favorable prognostic genes may reflect the 

availability of effective targeted therapies in the case of EGFR, ALK, and ROS1. However, 

in patients with these targetable oncogenes, there is heterogeneity in the additional mutations 

their tumors harbor. Our model is novel in that it outputs a continuous risk score based on 

the specific genetic background of the patient’s tumor, including additional genetic 

alterations beyond the driver oncogene. This provides finer granularity for understanding the 

heterogeneity in clinical outcome. For example, our model revealed that mutations in TP53 
and ARID1A define a high risk subgroup with shorter survival in the TKI-treated patient 

cohort.

Conversely, some of the unfavorable prognostic genes may reflect negative associations with 

treatment responses (e.g., the recent observation that STK11 inactivation is associated with 

poor responses to immunotherapy18). Our results further highlight the significant risk 

imparted by concurrent mutations in genes such as KEAP1, STK11, and SMARCA4. 

KEAP1 is a negative regulator of NRF2. Mutations in the KEAP1 are associated with 

chemo-resistance and poor survival. Some studies have suggested that targeting NRF2 may 

enhance chemotherapy sensitization19,20. mTOR is a kinase downstream of LKB1 (STK11) 

and mTOR inhibitors have been proposed as a potential therapeutic approach in STK11-

mutant tumors21. SMARCA4 was also identified as a major driver of poor prognosis factor 

in metastatic lung adenocarcinoma in our study. It is a core factor in SWI/SNF chromatin 

remodeling complexes that regulate genomic instability and DNA repair. SMARCA4 was 

mutated in 9.4% of lung adenocarcinomas in the MSK-IMPACT cohort, with 42% of the 

mutations being truncating and residing in regions of LOH. It has recently been shown that 

SMARCA4-inactivating mutations increase sensitivity to Aurora kinase A inhibitor in non-

small cell lung cancers22.

In a multivariate analysis (Supplementary Table 1) including treatment covariates, the 

OncoCast readout remained highly significant suggesting that the genomic profile provides 

more than simple readout of genotype-matched therapies. In addition, this model can be 

dynamically updated over time. With increasing sample sizes, we will be poised to identify 

outcome associations with rare alterations and increasingly better explain the heterogeneity 

in clinical outcomes for patients with advanced lung adenocarcinoma.
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The OncoCast risk score defined here provides a valuable tool for more accurately 

describing prognosis of patients enrolled into clinical trials or included in real world data 

sets. A key component of any analysis of clinical research data is a clear description of the 

patient population explored. While conventional clinical factors such as age, sex, and 

performance status have long been used, our data indicate that we can significantly improve 

the description of patient populations by incorporating the genomic risk scores in our 

understanding to allow better comparisons of groups of patients enrolled in clinical trials or 

included in real world data sets.

With the growth of genomic testing-driven precision medicine programs as well as recent 

FDA clearance of next-generation sequencing platforms for clinical use, there will be a rapid 

growth in the availability of broad sequencing data for patients with a variety of cancers and 

growing integration with clinical data through institutional databases and electronic health 

records. Oncocast, the computational tool generated here will facilitate the incorporation of 

mutational data as a stratification factor in both prospective clinical trials and retrospective/

real-world data collections to more precisely describe patient populations, allowing better 

generalization of the results from such research efforts.

Materials and Methods

The OncoCast method is described in Supplementary Methods, and R package is available at 

https://github.com/shenmskcc/OncoCast . An interactive web interface was developed using 

R Shiny with two main functions: GeneView and PatientView. In GeneView, users can 

interactively explore gene importance and co-mutation pattern by risk groups. In 

PatientView, users can type in a patient’s mutational profile and specify the clinical 

characteristics. The genomic risk score along with the predicted probability of survival at 

different time marks will be calculated and viewable in a dynamic plot. The Shiny app is 

available at https://github.com/shenmskcc/LungIMPACT.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Prognostic relevance and clonality of cancer genes. a, Plot of frequency of selection in each 

model developed and regression coefficients for individual genes with signs indicating 

“favorable” versus “unfavorable” association with overall survival. b, Clonality analysis of 

the cancer gene alterations. Circle size is proportional to mutation frequency.
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Figure 2. 
An integrated prognostic scoring system for metastatic lung adenocarcinomas. a, Histogram 

of the prognostic risk score computed using the OncoCast model in n=1,054 metastatic lung 

adenocarcinomas. The risk score is scaled from 0 to 10 with higher score indicates higher 

likelihood of shorter survival. Dashed lines indicate the percentile cutoffs used to stratify 

patients into four risk subgroups (Loa, Int-low, Int-high, High). b, Boxplots of concordance 

index for predicting overall survival using clinical demographic factors including age, sex, 

and smoking, and the OncoCast risk score.
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Figure 3. 
Outcome prediction based on risk score a, Kaplan-Meier plot of survival curves for the four 

risk subgroups. Colored areas represent 95% CI. The average risk score (Ave RS), median 

OS, 1yr and 3yr survival probabilities are reported for each group. b, Forest plot of hazard 

ratios for age, sex, smoking stats, and individual driver gene alterations compared to the 

OncoCast integrated scoring approach.
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Figure 4. 
Overlaying OncoCast risk score with tumor mutation burden, mutational signature, smoking 

status, and mutation status for commonly mutated genes.
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Figure 5. 
Genomic risk stratification. b, Distribution of common mutation and co-mutation patterns by 

each risk group.
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Figure 6. 
a, Risk score distribution from the OncoCast-TR model stratifies patients into two subsets. b, 

Overall survival probability for the two TR patient subsets. c, Gene importance plot for the 

OncoCast-TR model.
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