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Abstract

Purpose: Intensity Modulated Radiation Therapy (IMRT) including its variations (including 

IMRT, VMAT, and Tomotherapy) is a widely used and critically important technology for cancer 

treatment. It is a knowledge intensive technology due not only to its own technical complexity, but 

also to the inherently conflicting nature of maximizing tumor control while minimizing normal 

organ damage. As IMRT experience and especially the carefully designed clinical plan data are 

accumulated during the past two decades, a new set of methods commonly termed knowledge-

based planning (KBP) have been developed that aim to improve the quality and efficiency of 

IMRT planning by learning from the database of past clinical plans. Some of this development has 

led to commercial products recently that allowed the investigation of KBP in numerous clinical 

applications. In this literature review, we will attempt to present a summary of published methods 

of knowledge-based approaches in IMRT and recent clinical validation results.

Methods: In March 2018, a literature search was conducted in the NIH Medline database using 

the PubMed interface to identify publications that describe methods and validations related to 

knowledge-based planning in IMRT including variations such as VMAT and Tomotherapy. The 

search criteria were designed to have a broad scope to capture relevant results with high sensitivity. 

The authors filtered down the search results according to a predefined selection criteria by 

reviewing the titles and abstracts first and then by reviewing the full text. A few papers were added 

to the list based on the references of the reviewed papers. The final set of papers was reviewed and 

summarized here.

Results: The initial search yielded a total of 740 articles. A careful review of the titles, abstracts, 

and eventually the full text and then adding relevant articles from reviewing the references resulted 

in a final list of 73 articles published between 2011 and early 2018. These articles described 

methods for developing knowledge models for predicting such parameters as dosimetric and dose 

volume points, voxel-level doses, and objective function weights that improve or automate IMRT 

planning for various cancer sites, addressing different clinical and quality assurance needs, and 

using a variety of machine learning approaches. A number of articles reported carefully designed 
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clinical studies that assessed the performance of KBP models in realistic clinical applications. 

Overwhelming majority of the studies demonstrated the benefits of KBP in achieving comparable 

and often improved quality of IMRT planning while reducing planning time and plan quality 

variation.

Conclusions: The number of KBP related studies has been steadily increasing since 2011 

indicating a growing interest in applying this approach to clinical applications. Validation studies 

have generally shown KBP to produce plans with quality comparable to expert planners while 

reducing the time and efforts to generate plans. However, current studies are mostly retrospective 

and leverage relatively small datasets. Larger datasets collected through multi-institutional 

collaboration will enable the development of more advanced models to further improve the 

performance of KBP in complex clinical cases. Prospective studies will be an important next step 

toward widespread adoption of this exciting technology.
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Introduction

Radiation therapy is a widely adopted and effective cancer treatment that leverages highly 

advanced and complex technologies. With the advent of intensity modulated radiation 

therapy (IMRT) physicians have a tremendous opportunity to maximize cancer control while 

minimizing toxicity to normal organs. However, achieving this inherently contradicting goal 

using IMRT requires significant knowledge, experience, and time due to the complexity of 

technologies and the limitation in our understanding of patient conditions. We note that the 

IMRT technology has lead to a number of different implementations in recent years 

including Volumetric Arc Therapy (VMAT) and Tomotherapy. In the remainder of this 

paper, the term “IMRT” by itself will generally refer to all variations of IMRT 

implementations. When it is listed together with VMAT and/or Tomotherapy, it refers 

specifically to the original implementation.

To tackle the challenges in radiation therapy, knowledge-based systems have been developed 

as early as 1980s to aid the design of radiation treatment plans [1, 2]. The knowledge-based 

systems reported during that period refer mainly to expert-based systems that aim to capture 

clinician knowledge and experience in terms of rules and algorithms. These rule-based 

approaches in recent years have led to a type of system that is commonly called “automatic 

(or automated) planning systems” (for example [3–5]). These systems aim to encode 

sophisticated planning knowledge into complex and often iterative algorithms to generate 

clinically acceptable IMRT plans automatically. Note that these automatic planning systems 

are not data-driven in the sense that their main algorithms do not rely on predictive models 

that are based on a database of prior planning data.

As IMRT experience and especially the carefully designed clinical plans are accumulated 

over the past two decades, a new set of data-driven methods have been developed in recent 

years with an aim to improve the quality and efficiency of IMRT planning by learning from 
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the past high quality clinical plans. The term “knowledge-based planning” or simply KBP 

has now frequently been used to refer to this specific class of data-driven approaches to 

IMRT planning. Some of this development has led to commercial products recently and 

allowed the investigation of KBP in numerous clinical applications. This has somewhat 

solidified the narrower definition of KBP that draws knowledge from only one source, the 

database of prior clinical plan data, and assume that other sources of knowledge, such as 

treatment tradeoff and clinician experience, are embedded in the design of prior clinical 

plans.

In this literature review, we will focus on knowledge-based planning methods that are data-

driven. We will not include the types of knowledge-based planning methods, such as 

automatic planning systems, that do not rely on models and prior clinical plans. We will 

attempt to present a summary of this specific class of data-driven KBP methods and recent 

clinical validation results. We will slightly broaden the definition a bit to include any data-

drive method that aims to improve IMRT planning in some aspects that do not necessarily 

lead to complete final plans. For example, we will include studies that learn from prior plan 

data to predict or generate beam configurations, objective function priorities, or some 

specific dose metric in one of the organs at risk, or to identify unacceptable plans in the 

quality assurance process. By reviewing the prediction targets, modeling methods, data 

sources, application areas, and validation results, we aim to present a clear understanding of 

the state-of-the-art of the data-driven KBP approach and summarize the performance of 

current methods in comparison to manual planning process. We hope that this exercise will 

also help us gain insights into potential gaps in the current approaches that warrant further 

research.

1. Methods

Even though this review focuses on the methods and technical validation of knowledge-

based planning rather than patient outcomes, wherever appropriate, we follow the guidelines 

stated in The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of 

Studies That Evaluate Health Care Interventions [6].

1.1 Article search

To identify relevant articles for knowledge-based planning, we conducted searches in the 

NIH Medline database in March 2018 using the PubMed interface. We did not use any time 

constraints for this search and included only articles published in journals and written in 

English. We started with keywords that identify knowledge, radiation therapy, planning and 

expanded the search to include variations of keywords related to these concepts. In addition, 

we included keywords in the abstracts that indicate the use of a set of prior plans. The final 

search string is: (atlas[Title] OR reasoning[Title] OR model[Title] OR models[Title] OR 

modeling[Title] OR learning[Title] OR prediction[Title] OR predicting[Title] OR 

feature[Title] OR quantitative analysis[Title] OR factor analysis[Title] OR 

identification[Title] OR knowledge[Title] OR automated[Title] OR automate[Title] OR 

automatic[Title] OR semiautomated[Title] OR semi-automated[Title]) AND (IMRT[Title] 

OR VMAT[Title] OR SBRT[Title] OR treatment[Title] OR therapy[Title] OR 
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radiotherapy[Title] OR tomotherapy[Title]) AND (beam angle[Title] OR dose[Title] OR 

quality[Title] OR QA[Title] OR plan[Title] OR planning[Title] OR sparing[Title] OR 

optimization[Title] OR objective function[Title]) AND (plans[Title/Abstract] OR 

dataset[Title/Abstract] OR cases[Title/Abstract] OR patients[Title/Abstract]) AND 

English[lang].

1.2 Article eligibility criteria

Articles were included in this review if they satisfied the following criteria:

1. Describing or validating methods for improving some aspects of radiation 

therapy planning. These aspects can include reference plans, dosimetric 

parameters, dose volume histogram, voxel level doses, objective function 

weights/optimization priorities, beam configurations, model hyper-parameters, 

and quality assurance metrics. Outcomes studies and other studies not related to 

planning are excluded.

2. Focusing on external beam radiation therapy, which may include various forms 

of intensity modulated radiation therapy (i.e. IMRT, VMAT, and Tomotherapy) 

of both photon and proton beams but exclude brachytherapy.

3. Employing a set of prior clinical plans as a core component of the method. 

Articles that use prior clinical plans to validate methods that don’t rely on prior 

clinical plans are excluded.

1.3 Article selection

The search strategy retrieved 740 articles from the Medline database. After reviewing the 

title and abstract of the articles in the initial list, the authors reduced the list to 161 by 

filtering out articles that do not satisfy the first two eligibility criteria. We then added to this 

list a few additional articles based on reviewing of reference lists. The new list of 178 

articles was further filtered by the third eligibility criteria by reviewing abstracts and when 

the abstract is not conclusive, the full text of the articles. This step resulted in the final set of 

73 articles that are included in the following review (Figure 1).

2. Results

The 73 KBP related articles included in this review were published between 2011 and early 

2018. The number of studies has shown an increasing trend in recent years (Figure 2). In 

fact, the number of studies in the four years since 2014 accounts for more than 70% of the 

total articles with only a few months included in 2018.

Almost a third of the articles appeared in Medical Physics. The other top publication venues 

also include Journal of Applied Clinical Medical Physics, International Journal of Radiation 

Oncology Biology and Physics, Physics in Medicine and Biology, and Radiation Oncology 

(Table 1). A total of 16 journals have published KBP related research results.

As shown in Table 2, a wide variety of cancer sites have been studied with the KBP 

methods. However, a significant number of studies have focused on prostate cancer (more 
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than one third). And the three cancer sites, prostate, head and neck (H&N), and lung, 

accounted for more than two thirds of articles reviewed.

In the following sections we summarize the 73 articles in terms of 3 dimensions: the purpose 

of knowledge-based planning methods, the methods for knowledge-based planning, and the 

performance of current KBP on major cancer types.

2.1 Purpose of knowledge-based planning

Knowledge models have been created to predict a variety of variables that impact the quality 

and efficiency of IMRT planning. We can roughly categorize existing work into six types of 

variables that the models aim to predict:

1. Dose volume histogram (DVH) (36 articles)

This group of methods aims to predict the entire DVH curve for a new patient 

and then frequently uses the predicted DVHs to guide the plan optimization 

process [7–42]

2. One or more specific dose metrics (14 articles)

These methods aim to predict single or a small number of dose metrics to either 

guide plan optimization or a specific planning decision (e.g. the need for 

hydrogel injection) [21, 43–55].

3. Voxel level doses (13 articles)

This group of methods predicts dose at each voxel in 3D space [56–68]. The 

predicted dose map is used to guide plan optimization or generate final plans 

directly (e.g. using dose mimicking algorithm [68]).

4. Objective function weights (3 articles)

There are two papers by the same group that aim to predict correct objective 

function weights so that plans can be generated automatically [69, 70]. A third 

paper examined the sample size needs for predicting objective function weights 

[21].

5. Beam related parameters (6 articles)

There are a number of articles that aim to determine beam related parameters 

such as the number and angle of beams and jaw settings [3, 71–75].

6. Quality assurance metrics (3 articles)

This group of methods learns from prior clinical plans to predict the quality of a 

new plan [76–78]. Note that a number of quality assurance methods are based on 

DVH or dose-volume parameter prediction models [17, 18, 33, 34, 49].

2.2 Methods for knowledge-based planning

Methods for knowledge-based planning can be further divided into two major categories: (1) 

case and atlas based methods; and (2) statistical modeling and machine learning methods.
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2.2.1 Case and atlas based methods—The case and atlas based approaches aim to 

improve the planning of a present case by finding one or more similar cases in the database 

of prior clinical plans. Two components are critical in these methods: (1) a similarity 

measure for identifying the matching cases; and (2) a method to transfer useful knowledge 

from prior plans to the present case. There are twenty four (24) articles in this category; the 

similarity measures and transferred knowledge of each are summarized in Table 3.

We can divide the similarity measures into two general categories. The direct approach 

defines similarity directly based on some features of the images, structures, and clinical 

variables. The indirect approach uses models and features to predict dose parameters first 

and then use the similarity of predicted dose parameters to select matching cases. 

Transferred knowledge ranges from planning parameters to voxel level dose.

2.2.2 Statistical modeling and machine learning methods—The statistical 

modeling and machine learning approaches attempt to create a predictive model from the 

database of prior clinical cases. We summarized these methods in Table 4 in terms of input 

features, modeling methods, and prediction outcomes.

There are 51 articles in this category. Most methods are based on regression models such as 

multivariate linear regression, stepwise regression, logistic regression, Poisson regression, 

and support vector regression. Other methods include curve fitting, function fitting, kernel 

density estimation, artificial neural networks, random forest, active shape model, optical 

flow model, support vector machine, and clustering. An important factor of the modeling 

approach is the definition and selection of features. Table 4 lists the major features that are 

used by each model.

A number of articles describe validation results of the commercially available RapidPlan 

system (Varian Medical Systems, Palo Alto, CA). According to Varian’s company website, 

this system is largely inspired by the multivariate linear regression approach described by 

Yuan et al.[9]. In Table 4, these articles are grouped together under Fogliata et al.

2.3 Performance of KBP

Most studies of KBP methods provide validation results using either cross-validation or 

holdout test data. Since prostate, H&N, and lung are the most studied cancer types, we 

summarize the outcomes of KBP methods for these three cancers in Tables 5, 6, and 7 in 

terms of method type, test sample size, validation target, validation metric, and results for 

OARs and PTV. Note that we included in these tables only studies that used at least 10 test 

samples and reported validation results in comparison to clinical plans. As shown in Table 7, 

only 3 studies have more than 10 test samples and validation results comparing to clinical 

planning results although 13 studies have involved lung cancer planning.

As these tables show, the validation sample size is relatively small with the prostate and 

H&N studies using 36 cases on average and lung studies using 21 cases on average. There 

are generally two types of validation studies, (1) comparing predicted dose metrics against 

those from the original clinical plans, and (2) comparing dose metrics of re-planned cases, 

using the predicted dose parameters, against dose metrics of the original clinical plans. If the 
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ultimate purpose of KBP is to produce treatment plans using the predicted dose parameters, 

the second type of comparison gives a more direct assessment of the KBP methods provided 

the implementation includes optimal use of the optimization engine.

The overall performance of KBP methods is difficult to evaluate because different studies 

use different metrics. For example, in prostate cancer KBP studies, we have seen various 

subsets of D90, D70, D50, D40, D35, D30, D25, D20, D17, D10, D1; D10cc, Dmean; V100, 

V90, V75, V70, V65, V62, V56, V54.3, V50, V40, V39; gEUD, and NTCP to assess the 

dose distribution in bladder and rectum. While these endpoints are basically different ways 

to sample the DVH curve, most studies do not provide enough samples to allow 

reconstruction of the entire curve with reasonable accuracy. Furthermore, many studies do 

not report sufficient information. For example, some studies do not include prescription and 

planning constraints, while many studies report only the difference of dosimetric values. 

These factors make it difficult to carry out a meta-analysis of the overall performance of 

KBP methods. This is especially true for H&N, lung, and other more complex cancer types.

For prostate cancer, we have found four KBP studies [27, 34, 35, 55] that reported 

statistically significant reduction in mean dose to rectum and bladder after cases were re-

planned using the KBP methods. The pooled mean of reduction is 2.6 Gy and 2.0 Gy for 

rectum and bladder, respectively. Incidentally, a more recent study of rectal cancer treatment 

published after the review articles were collected also resulted in an average reduction of 

2.06 Gy in bladder mean dose [79].

To gain further understanding of the overall performance of KBP in prostate cancer 

planning, we have developed a visualization scheme to provide a summary view of nine 

KBP prostate studies that compared re-planned results with original clinically approved 

values [20, 25, 27, 34, 35, 56, 57, 60, 63]. As mentioned previously, the challenge of 

summarizing results across all studies lie in two aspects: (1) the results are based on 

different sample points of the DVH curve and measure changes along different directions 

(e.g. one study may use D35 while another use V65); (2) some of the studies report only the 

differences in DVH point metrics (e.g. D35 is reduced by 1.5) without providing the original 

clinically approved values. The first issue makes it difficult to quantitatively compare results 

from different studies even though many DVH point metrics assess performance in similar 

areas of the DVH curve. While we cannot provide quantitative summaries, we can visualize 

the performance of different studies if we can define a base DVH curve, for example, by 

forming an average DVH curve of clinically approved plans. We can then identify the DVH 

points (e.g. D35 and V65) on the base DVH curve and display changes measured in KBP 

plans at these points to provide an overview of performance across all studies. We note that, 

since the study performance is based on DVH point metrics that are measured at multiple 

points along the DVH curve, it is important that we understand not only the extent of 

changes in the metrics, but also the spatial relationship of these metrics along the DVH 

curve. Unfortunately, the second issue makes it impossible to establish the base DVH curve 

and thus makes it difficult to visualize the spatial relationship of the various DVH point 

metrics, such as D35 and V65, that are reported in different studies.
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In the proposed visualization scheme, we assume that the only common measure of 

performance reported across all studies is the difference between KBP re-planned plans and 

clinical plans (i.e., KBP-Clinical) for a set of DVH point metrics (e.g. D35 or V65). We 

overcome the second issue mentioned before by approximating the base DVH curve with a 

straight diagonal line connecting (0, 100) and (100, 0) in the dose volume space. We identify 

DVH point metrics, such as D35 or V65, along this approximate base DVH curve and 

display the differences (KBP-Clinical) in these metrics as displacements along respective 

directions (e.g. horizontal displacements for D35 and vertical displacements for V65) to 

illustrate how well various KBP methods compare with the original clinical plans. 

Furthermore, we link the displaced points into approximate DVH-change curves in the 

visualization scheme so that the area below the diagonal line (i.e., the approximate base 

DVH curve) indicates the overall improvement over original clinical plans. In contrast, the 

curves that mostly lie above the diagonal line would indicate worse performance than 

clinical plans.

We note that the choice of the straight diagonal line is somewhat arbitrary. The goal is to 

define a common framework to anchor the many different DVH point metrics from different 

studies and illustrate the relative region and extent of performance improvements. 

Incidentally, for rectum and bladder in prostate cases, we found that the diagonal line 

connecting (0, 100) and (100, 0) in the normalized dose-volume space (percent volume and 

dose) is a good and simple proxy for the base DVH curves. As shown in Figure 4, the 

prescribed dose-volume constraints used for clinical planning in all nine published studies 

mostly lie just above the diagonal line. If we assume that most clinical plans achieve or 

slightly surpass the prescribed constraints, the base DVH curve of the clinical plans should 

be well approximated by the diagonal line to the first order.

Using the diagonal line as the approximate base DVH curve, we have plotted all the (KBP-

Clinical) differences of the DVH point metrics of the nine prostate studies in the same dose-

volume space after normalizing all values to the prescription dose. Figures 5 and 6 show the 

results for rectum and bladder, respectively. In these plots, we encoded the case/atlas-based 

methods in green and the model-based methods in red. Furthermore, we displayed the larger 

studies with 30 or more samples in thicker lines. As seen in these figures, most studies show 

an overall improvement in OAR sparing for both rectum and bladder although the 

improvement is mainly in the mid-dose region. In the high dose region, the KBP methods 

perform about the same as the clinical plans. The mid-dose region improvement is supported 

by significant mean dose reduction demonstrated in some studies. Moreover, the KBP 

approach and sample size do not appear to make a difference in performance although the 

case/atlas-based methods (green curves) appear to have a larger variation.

The overall conclusion from all validation studies suggests that the KBP methods performed 

equally well on the target and mostly on par on the OARs with some improvements against 

the manual clinical methods. And some studies suggest that this is true especially for models 

learned from experienced planners’ datasets and applied to cases generated by either 

inexperienced planners or planners who are not experienced with a planning system.
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Some studies [15, 20, 22, 28, 31] have also compared the time and efficiency of KBP 

methods to the current manual planning process. In all cases, the KBP methods were faster 

and the improvement is more significant for more complex cases. Typically, timing 

comparison is between minutes of KBP methods and hours of manual planning process. 

However, these timing studies are preliminary because while the KBP methods can be 

precisely timed, the manual planning process is more difficult to measure objectively. 

Carefully designed prospective studies are needed to objectively assess the efficiency gains 

of KBP methods.

3. Discussion

The literature indicates that major growth in research efforts in the narrowly defined data-

driven KBP started in 2011 and has accelerated in the past a few years (See Figure 2). We 

believe two factors contributed to this development. First, intensity modulated radiation 

therapy (IMRT) and related technologies that started in the turn of the century made the 

design of high quality treatment plans possible in this past decade. Second, the advent of 

IMRT over this period allowed large treatment centers to accumulate significant experience 

and a sizeable number of high quality plan data that enabled major progress in knowledge-

based research.

Most KBP studies have focused on prostate, head and neck, and lung cancers, although other 

types of cancer have received increasing attention in recent years. This trend will likely 

increase as more and more data and experiences are accumulated for the more complex or 

rare cancer types. Furthermore, although one case-based decision support system has made 

use of clinical variables and a few others have incorporated tradeoff decisions into their 

models, most KBP methods are based on geometric and dosimetric parameters alone. It can 

be expected that more integral use of clinical, biological, and physics-based parameters will 

further improve the performance of knowledge-based approaches.

Most studies are retrospective and use relatively small datasets. Figure 3 shows the average 

size of training and test datasets used in studies reported each year since 2011. We can see 

from this figure that the number of cases used for training and testing has not increased 

significantly in the existing studies. This is likely why multivariate linear regression has 

been quite successful in KBP modeling. More powerful machine learning models such as the 

artificial neural network will quickly overfit the small number of training samples and 

underperform the simpler regression methods. Even though the study by Boutilier [21] 

suggest the number of cases required for training KBP models is relatively small, we believe 

these numbers are the result of simpler models. We should aim to develop larger training 

databases so that we can use more sophisticated models to further improve the accuracy of 

KBP methods. It is probably unlikely that individual cancer centers will be able to boost 

sample size dramatically in short order. Thus, integration of cases from multiple centers or 

tapping into the national clinical trial datasets would help increase the sample size, although 

careful assessment of consistency across the cases is crucial. Furthermore, as the technology 

becomes mature enough, large-scale prospective studies will be important to fully assess its 

performance in clinical applications.
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Our reviews identify an important issue that the reported data and metrics used in validation 

studies are quite different and this is true especially for OAR sparing. These differences 

make it difficult, if not impossible, to pool accuracy results from multiple studies together in 

any statistically meaningful manner. The proposed visualization scheme allowed us to gain 

important insights into how well different types of KBP methods have performed in prostate 

cancer planning. However, this method is qualitative in nature. And its applicability to other 

types of cancer planning warrants further investigation We believe it is critical to promote 

more standardized metrics and data reporting in future KBP studies so that proper meta-

analysis can be applied to quantitatively estimate the performance of KBP methods. Without 

the strong evidences, clinical centers will not be able to objectively select and implement the 

most appropriate KBP methods.

In addition to larger-scale and more standardized evaluation of data-driven KBP methods, 

future research in this area will likely focus on more sophisticated modeling methods and 

more complex planning scenarios. Both directions will be enabled by the development of 

larger database of high quality clinical plans through integration efforts across consortium of 

institutions as well as accumulation of planning cases within individual institutions. Recent 

publications have shown promising results using complex non-linear models such as 

convolutional neural networks to successfully predict voxel-level dose in some cancer sites. 

Work has also begun to handle more complex cancer targets, more complex trade-off 

decisions, as well as more complex treatment techniques. Beyond more complex and 

powerful models, the sophistication of modeling methods will also mean more advanced 

algorithms for learning, evolving, and integrating models. So far, data-driven KBP has 

focused on building models in a batch mode, that is, learning from static datasets. As these 

models mature and are deployed in clinical use, another important research question will 

address how these models can be improved as new clinical cases are accumulated and new 

treatment techniques are developed.

As discussed in the Introduction, automatic planning methods represent another class of 

knowledge based methods for IMRT planning. These methods directly encode planning 

knowledge as rules and algorithms [3–5]. A similarly large number of articles have been 

published in the past decade. A number of methods have also been implemented 

commercially. These methods were not included in this review because the central 

mechanisms are significantly different from the data-driven KBP approaches. These 

methods deserve a separate review to properly understand the state-of-the-art of its 

approaches and performance. Interestingly, a recent study by Wang et al. [80] has applied a 

data-driven KBP model to perform quality assurance of a commercially available automatic 

planning algorithm and demonstrated the potential of using KBP models to improve the 

performance of automatic planning algorithms. Another study by Babier et al. [81] 

incorporated a KBP method into an automated planning method. We believe the 

combination of KBP models and automatic planning algorithms has a great potential to lead 

to further improvement of planning quality and efficiency in the future.

This review has examined KBP related papers since 2011. There are a few limitations. First, 

the review may have missed some papers due to use of a single Medline database and 

incomplete search strings. Second, the article selection criteria may have missed some 
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relevant articles. For example, this review included only journal articles written in English 

language. Other publication venues and other languages may include valuable reports on 

KBP studies. Finally, as suggested in the publication trends numerous additional works have 

been published after the start of this project (e.g. [79, 81]). These methods employ 

innovative strategies for using the KBP models to further improve plan quality and 

efficiency suggesting the need for a timely update of this review in the near future.

4. Conclusion

We have performed a systematic review of KBP methods and their validation results. A total 

of 73 articles are included in this review. These articles appeared in 16 journals and covered 

21 cancer types and the number of publications has been increasing in the past years. We 

identified two major approaches to KBP, one based on cases and atlases, and the other based 

on statistical models and machine learning. In validation studies, both approaches have 

performed strongly. The KBP methods are generally equivalent to expert level planners in 

terms of plan quality but preliminary results indicate that they are significantly more 

efficient. These encouraging results suggest that clinical applications of KBP to some cancer 

types such as prostate is achievable in the near future, ideally following additional validation 

studies using standardized metrics and prospective designs. Further development of KBP is 

warranted for more rare and more complex cancer sites. Larger datasets that are integrated 

across multiple institutions will be critical to achieve these more challenging goals.
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Figure 1: 
Flow diagram of article selection
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Figure 2: 
Trend of publications related to knowledge-based planning
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Figure 3: 
The size of datasets used for training and validating knowledge models. The error bars 

indicate standard deviation. Note that the large deviations in 2016 and 2017 are due to one 

significantly larger dataset.
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Figure 4: 
Prescribed dose volume constraints used for manual planning. (a) Rectum constraints; (b) 

Bladder constraints. Notice that in each case, the diagonal line (thick brown) is a reasonable 

first-order approximation of the DVH curve.
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Figure 5: 
Visualization of KBP method performance in rectum dose sparing. The thick diagonal line 

in black is the proxy DVH curve of clinical plans. The green and red DVH curves represent 

the approximated average performance of the re-planned cases in nine KBP studies relative 

to the clinical plans. The green curves indicate case/atlas-based methods while the red 

curves indicate model-based methods. The thicker lines indicate studies with 30 or more 

sample cases.
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Figure 6: 
Visualization of KBP method performance in bladder dose sparing. The thick diagonal line 

in black is the proxy DVH curve of clinical plans. The green and red DVH curves represent 

the approximated average performance of the re-planned cases in nine KBP studies relative 

to the clinical plans. The green curves indicate case/atlas-based methods while the red 

curves indicate model-based methods. The thicker lines indicate studies with 30 or more 

sample cases.
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Table 1.

The publication venues that reported KBP studies

Journal Title Number of KBP Articles

Medical Physics 23

Journal of Applied Clinical Medical Physics 9

International Journal of Radiation Oncology Biology Physics 8

Radiation Oncology 8

Physics in Medicine and Biology 8

Radiotherapy and Oncology 6

Biomedical Materials and Engineering 1

Plos One 2

Advances in Radiation Oncology 1

International Journal of Computer Assisted Radiology and Surgery 1

IEEE Transactions on Medical Imaging 1

Artificial Intelligence in Medicine 1

Medical Dosimetry 1

Physica Medica 1

Practice of Radiation Oncology 1

Frontiers in Oncology 1
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Table 2.

The number of articles that performed studies on each cancer site

Cancer Sites Number of KBP Articles

Prostate 31

Head & Neck 16

Lung 13

Breast 7

Brain 3

Cervical cancer 3

Spine 3

Esophageal cancer 2

Nasopharyngeal carcinoma 2

Rectal 2

Hepatocellular carcinoma 1

CNS, GI, Genitourinary, GYN, Pediatric 1

Glioblastoma 1

Malignant pleural mesothelioma 1

Pancreatic 1

Pelvic 1

Thoracic 1
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Table 3.

Case and atlas based methods: similarity measure and knowledge transfer

Articles Approach Similarity Measure Knowledge Transfer

Chanyavanich et al. [56, 
57, 61]

Direct Mutual information of the beam’s eye view projections Treatment parameters such as 
beam geometry and structure 
constraints and weights were 
transferred to the query case. The 
fluence maps were transferred 
after a deformable registration

Mishra et al. [43] - Case-
based reasoning 
framework

Direct Similarity is measured by both clinical variables such as 
clinical stage, Gleason score, and PSA as well as rectum DVH 
values at five selected points

Dose constraints were transferred 
after adaptation

Petrovic et al.[74] Direct Further introduced knowledge-light adaptation into the case 
retrieval process to improve case selection accuracy.

Dose constraints were transferred 
after adaptation

Wu et al. [44–47] [55] Direct Based on the concept of Overlap Volume Histogram (OVH), 
which describes the fractional volume of an Organ at Risk 
(OAR) that is within a specified distance from a Planning 
Target Volume (PTV). For each OVH percent volume, the set 
of matching cases included all cases with smaller OVH values

The minimal DVH value at the 
percentage volume of the 
matching cases was transferred to 
the new case

Zhang et al. [3] belongs 
to the automatic planning 
approach. We include it 
here because its beam 
selection is based on a 
database of prior clinical 
plans

Direct Based on tumor location Beam number and angles

Schreibmann et al. [62, 
71]

Direct Based on an iterative closest point registration algorithm and a 
score based on point to point distance

The beam settings and multileaf 
collimator positions for the best 
match were transferred to the 
new case

Zarepisheh et al. [14] Direct Based on machine learning algorithm that finds the best match 
of DVH curve using geometric features such as overlapping 
volume and mutual information

Zhou et al. [49] Direct The overlap area of OVH curves as the basis for similarity Transferred DVH of OARs and 
PTV as optimization constraints.

Sheng et al. [63] – Atlas-
based method

Direct The generation of atlases and matching of a query case to the 
best atlas were both based on two specially designed features, 
the PTV and seminal vesicle (SV) concaveness angle and the 
percent distance (from SV) to the PTV

Treatment parameters of the atlas 
case were transferred

Deshpande et al. [24] Direct Weighted sum of three difference values, the prescription dose 
differences, the OVH differences, and the difference of Spatial 
Target Signature (STS), which is a 4-dimentional histogram 
encoding the radial distance, azimuth, and elevation of PTV in 
relation to the center of an OAR. The difference of histograms 
is calculated by the earth mover’s distance

The DVHs of top matching cases 
were presented for reviewing

McIntosh et al. [64, 67, 
68]

Indirect Each case in the database was associated with a contextual 
atlas regression forest (ARF) that predicts dose at each voxel 
based on its location and image features. Each case was also 
associated with a random forest (pRF) that predicted the 
accuracy of the ARF for a new case based on its similarity to 
the new case’s ARF. The set of matching cases had the 
smallest predicted errors from the associated pRF’s.

The average predicted dose at 
voxel level from the ARF’s of the 
matching cases was transferred as 
the voxel level dose of the new 
case

Li et al. [33] - Atlas-
based method

Direct A single atlas FDG-PET volume was created from a set of 
prior clinical volumes using deformable registration of images 
and averaging of intensity values

The atlas was used as a template 
to generate a substructure of 
active bone marrow (ABM) 
within the pelvic bone marrow 
with a goal to improve sparing of 
ABM without manual contouring 
of ABM.

Valdes et al. [53] Indirect Differences between dosimetric indices of a database case and 
the predicted dosimetric indices of a query case must be 

Dosimetric information of 
matching cases were displayed
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Articles Approach Similarity Measure Knowledge Transfer

smaller than predetermined thresholds. The predictions were 
based on boosted decision trees (random forest) that use 
features of anatomical information, medical records, treatment 
intent, and radiation transport.
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Table 4.

Statistical modeling and machine learning: features, models, and prediction outcomes

Articles Input Features Modeling Methods Prediction outcomes

Zhu et al. [9, 10, 13, 17, 20, 
82, 83]

Volume features: PTV-OAR overlap volume 
etc.
Distance features: first three PCA 
components of Distance-to-Target Histogram

Support vector regression
Multivariate step-wise 
regression
Model/regression tree

The first three PCA 
components of DVH

Appenzoler et al. [8] OAR distance to PTV Sub-DVH as basis functions of 
an OAR volume function of 
overlap subvolumes
Function fitting using least 
squares minimization

DVH

Lee et al. [69, 70] OVH values Logistic regression
Linear regression
K-nearest neighbor

Weight for an OAR 
constraint (Rectum, 
Bladder)

Yang et al. [48] Lx – distance from PTV that result in x% of 
overlap in OVH

Linear regression Dx – dose received by x% 
of OAR volume

Fogliata et al. [11, 12, 15, 
16, 18, 22, 23, 25–29, 31, 
32, 34, 35, 37–41] [75]

Volume features: PTV-OAR overlap volume 
etc.
Distance features: PCA components of 
Distance-to-Target Histogram
Other unpublished features

Multivariate regression 
(RapidPlan)

DVH

Nwankwo et al. [59, 60] Distance-to-PTV
Slice level

Mean-dose-at-distance function
Mean dose standard deviation 
function
Slice weight function

Voxel dose

Amit et al. [72] Beam-independent features: tumor 
distribution, tumor height
Beam-dependent features: tumor-organ 
overlap, beam distance, tumor projection 
shape

Random forest regression Beam angle

Liu et al. [58] 3D OAR structures Active shape model
Active optical flow model

Voxel dose

Wang et al. [19] First two PCA component scores of OVH of 
OARs
Z-axis overlap index

Stepwise multiple regression Mean lung dose
Mean heart dose
(forming a Pareto Front)

Yuan et al. [73] Beam number and angles K-medoids clustering Standard beam bouquets

Cooper et al. [50] Distance to the tangent field edge Logistic regression Left anterior descending 
artery maximum dose

Kuo et al. [51] Contralateral/ipsilateral lung volumes
Ipsilateral normal/total lung volume
MILD

Linear regression Prescription dose
Mean ipsilateral lung dose 
(MILD)
Prescription dose

Shiraishi et al. [65] PTV volume
Number of fields
Azimuthal angle Elevation angle
Distance from PTV
Distance from OARs

Artificial neural network (1 
hidden layer with 10 nodes)

Voxel dose

Valdes et al. [76, 77] 78 complexity metrics: faction of MU per 
dose, jaw position, etc.

Poisson regression with Lasso 
regularization

Passing rate

Campbell et al. [66] Geometric features: distance to PTV, distance 
to OARs, etc.
Plan features: target volume, photon energy, 
etc.

Artificial Neural Network (1 
hidden layer with 25 nodes)

Voxel dose

Fan et al. [30] Distance to PTV
Angle with respect to origin of coordinate 
(center of CT)

Kernel density estimate (KDE) DVH

Powis et al. [52] Fractional OAR-PTV volume overlap Curve fitting Mean rectum dose
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Articles Input Features Modeling Methods Prediction outcomes

Prescription dose

Brown et al. [78] Control point features
Beam features
Fraction group features
Plan features

Ensemble-outlier filtering
Normalized cut sampling
SVM

Classification (acceptable 
vs. unacceptable plans)

Millunchick et al. [54] Fractional overlap of parotid with combined 
targets, and with 0.5cm and 1.0cm margins

Stepwise regression Parotid mean dose
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Table 5.

Performance of KBP on prostate IMRT/VMAT (studies with 10 or more test cases)

Articles Method 
type

Sample 
size

Validation 
target

Validation 
metrics

Rectum Bladder Target

Chanyavanich et. 
al [56]

Case/voxel 
dose

10 Re-planned vs. 
clinical

Percent 
difference: 
mean

D20 1.8
D30 −2.5
D50 −13.9

D20 −5.9
D30 −12.2
D50 −24.9

D98 −0.03
D95 0.62
D1 2.5

Appenzoller et al. 
[8]

Model/dvh 20 Predicted vs. 
clinical

Sum of 
residuals: mean
Restricted sum 
of residuals: 
mean

0.003
0.02

−0.008
0.013

Yuan et al. [9] Model/dvh 24 Predicted vs. 
clinical

Error bound of 
V99,85, 50%

71% of cases 
within 6% of 
error bound

71% of cases 
within 6% of 
error bound

Good et al. [57] Case/voxel 55 Re-planned vs. 
clinical

Percent 
difference: 
mean

V75 −1.15*
V65 −4.10*
V40 −11.97*

V75 −0.48
V65 −1.18*
V40 −2.18

HI −2.8*
D1 −2.5*

Nwankwo et al. 
[59]

Case/voxel 33 Predicted vs. 
clinical

Mean voxel 
dose difference 
(magnitude)

0.23 – 8.22 0.26 – 12.19

Nwankwo et al. 
[60]

Case/voxel 30 Re-planned vs. 
clinical

Mean 
difference

D10 3.0*
D30 5.6*
D50 2.4
D70 −0.3
D90 −0.7

D10 0.1
D30 −3.0*
D50 −2.7
D70 0.0
D90 1.0

D05, D95, UI 
=

Sheng et al. [63] Atlas/voxel 20 Re-planned vs. 
clinical

Mean 
difference

gEUD ++*
V65 =
V100 ++*

gEUD ++*
V65 ++*
V100 ++*

CI ++*
HI =

Yang et al. [20] Model/dvh 10 Re-planned vs. 
clinical

Percent 
difference

Dmax ++0.14%
D10cc +
+2.11%
D17 ++2.72%
D40 ++0.27%

Dmax --0.46%
D10cc --
<1.54%
D25 ++0.69%
D40 ++0.81%

D98 =<2.31%
Dmax –0.06%

Boutilier et al. 
[21]

Model/dvh 100 Predicted vs. 
clinical

Absolute 
difference

D30 ~10
D50 ~7

D30 ~7
D50 ~3

Hussein et al. [25] RapidPlan 10 Re-planned vs. 
clinical

Mean 
difference

V30 −0.8
V50 −3.1*
V70 −0.4
D1cm −0.3*

V50 −3.5
V75 −0.2
D1cm 0.0

PTV High
 D98 0.1
 D2 0.7*
PTV Inter
 D98 −0.2
 D2 0.3*
PTV Low
 CI −0.1*
 D98 0.8*
 D2 −1.2*

Cagni et al. [27] RapidPlan 20 Re-planned vs. 
clinical

Percent 
differences

Dmean −1.66*
V20 −6.32*
V50 −1.03
V60 0.54
V65 3.71*
V70 0.55
NTCP 3.02*

Dmean 0.52
V20 0.93
V60 0.61
V70 0.15
NTCP 3.72*

D98 0.63*
D50 0.44
D2 1.09*
HI 2.03*
CI 5.02

Masi et al. [34] RapidPlan 10 Re-planned vs. 
clinical

Mean 
difference

Dmean −3.6*
Max to 0.1cc 
0.2*
V70 −0.8
V65 −1.5
V50 −4.0*

Dmean −3.9*
V75 −1.8*
V70 −0.6
V65 −2.9*

D95 −0.1
Dmax 0.3
HI5% −0.01*
HI1% −0.01

Schubert et al. 
[35]

RapidPlan 60 Re-planned vs. 
clinical

Mean 
difference

Dmean 0.9*
D1% −0.4*

Dmean 0.6*
D1% 0.1

Dmean 0.0
D2% 0.2
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Articles Method 
type

Sample 
size

Validation 
target

Validation 
metrics

Rectum Bladder Target

V40 0.0
V45 −2.4*
V50 1.6

V40 −2.5*
V45 −1.1
V50 1.9*

D98 0.0
HI 0.0
CI 0.0

Wall et al. [55] Case/dvh 
indices

31 Re-planned vs. 
clinical

Mean 
difference

Dmean −9.41 Dmean −7.81 V98 =
V100 =
Dmean =
Dmax =

Zhang et al. [42] Model/dvh 111 Predicted vs. 
clinical

Weighted root 
mean square 
error of DVH

~3% ~3%

Note: The difference direction is “KBP - Clinical”. Thus, negative values mean KBP value is smaller. Where no value is provided, ++ indicates 
better metrics, -- indicates worse metrics, = indicates similar metrics. The sign means the metric is statistically significant with a p-value < 0.05. 
The sign ~ indicates the value is estimated from a graph.
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Table 6.

Performance of KBP on H&N IMRT/VMAT (studies with 10 or more test cases)

Articles Method 
type

Sample 
size

Validation 
target

Validation 
metrics

OARs Target

Wu et al. [44] Case/dvh 15 Re-planned vs. 
clinical

Mean difference Cord+4 D0.1cc −6.9
Bstem D0.1cc −7.7
Cparotid V30 −8.7

Wu et al. [45] Case/dvh 40 Re-planned vs. 
clinical

Mean difference Cord+4 D0.1cc −1.68
Bstem D0.1cc −2.77 Esoph 
D1cc 1.52
I-inn ear Dmean −3.65
C-inn ear Dmean −4.83

PTV70 V95 
0.31
PTV63 V95 
0.4
PTV70 D5–95 
−0.9
Ring63 D5–
95 −0.87
Ring58.1 D5–
95 −1.61

Yuan et al. [9] Model/dvh 24 Predicted vs. 
clinical

Error bound of 
parotid mean 
dose

63% cases are within 6% error 
bound

Lian et al. [10] – 
fixed gantry 
predicting tomo 
IMRT

Model/dvh 44 
Tomo /53 
FG

Predicted vs. 
clinical

Error bound FG predict Tomo parotid mean 
dose: 92% cases within 10% 
error bound

Wu et al. [47] – 
IMRT predict 
VMAT

Case/dvh 12 Re-planned 
VMAT vs. 
clinical IMRT

Mean difference Cord+4 D.1cc −3.7
Bstem D.1cc −4.9
Larynx V50 −5.3
Brach plexus D.1cc −1.6
Inner ear Dmean −4.4

Tol et al. [12] RapidPlan 15 Re-planned vs. 
clinical

Mean difference Dmeans:
Oral Cavity −2.7
Cparotid −1.2
Lower Larynx −5
Upper Larynx −5.7
Inferior PCM −5.8
Superior PCM –4.4
UES −3.5
Comp_swal −4.4

PTVb V95 0.5

Yuan et al. [13] Model/dvh 20 Predicted vs. 
clinical

Median 
difference of 
parotid D50
Sum of residuals 
of parotid dvh

Bilateral sparing cases: 0.34
Single-side sparing cases: 2.2
Bilateral sparing cases: −0.002
Single-side sparing cases: 
−0.08

Schmidt et al. 
[61]

Case/voxel 10 Re-planned vs. 
clinical

Mean difference Larynx Dmedian −3.6
Oral cavity Dmedian −5.5

Primary 
Dmax 1.3
Boost Dmax 
−1.3
  HI −2.4
  S_index 
−0.5

Tol et al. [18] RapidPlan 20 Re-planned vs. 
clinical

Mean difference Dmean:#
 Comp_sali −2.0
 Oral cavity −3.6
 Comp_swal −5.9

Zhang et al. [42] Model/dvh 148 Predicted vs. 
clinical

Weighted root 
mean square 
error of DVH

~5.5%

Note: The difference direction is “KBP - Clinical”. Thus, negative values mean KBP value is smaller. Where differences are reported, only those 
that are statistically significant with a p-value < 0.05 are listed in this table. The sign # indicates the significance is unclear and the sign ~ indicates 
the value is estimated from a graph.
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Table 7.

Performance of KBP on lung IMRT/VMAT (studies with 10 or more test cases)

Articles Method type Sample size Validation target Validation metrics OARs Target

Snyder et al. RapidPlan 25 Re-planned vs. clinical Mean difference IMRT:
Spinal Cord:
 D1.2cc −0.5
 D0.35cc −0.8
 D0.035cc −1.0
VMAT:
Esphagus:
 D0.035 1.1

IMRT:
 GI 0.66
VMAT:
 GI 0.25

McIntosh et al. Case/voxel 17 Predicted vs. clinical Mean average 
difference over DVH of 
all ROIs

1.33
a

Faught et al. RapidPlan 20 (functional-
guided plans)

Re-planned vs. clinical Mean difference Functional lung:
 V20 −1.8
 Dmean −0.95
Lung-GTV:
 V20 −1.6
 Dmean −0.66
Esophagus:
 Dmean –2.6

Note: The difference direction is “KBP - Clinical”. Thus, negative values mean KBP value is smaller. Where differences are reported, only those 
that are statistically significant with a p-value < 0.05 are listed in this table.

a
Note that mean average difference (MAD) is not significant.
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