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INTRODUCTION

Activation of the fibroblast growth factor receptor (FGFR) signaling pathway is commonly 

involved in carcinogenesis,1 and oncogenic molecular alterations in the FGFR pathway 

occur across various tumor types.2 Agents that target FGFR have been demonstrated to 

inhibit tumor growth and angiogenesis—and, in some cases, to reverse acquired resistance to 

anticancer agents—in patients with FGFR alterations in urothelial carcinoma,3,4 

cholangiocarcinoma,5 glioblastoma,6 and non–small-cell lung cancer (NSCLC).7 Here, we 

present the first report, to our knowledge, of a patient with head and neck squamous cell 
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carcinoma (HNSCC) with FGF amplifications who achieved a complete response to an 

FGFR inhibitor.

CASE PRESENTATION

A 49-year-old man from Kuwait was diagnosed February 2012 with regionally advanced 

carcinoma of the right anterior tongue and floor of the mouth. A positron emission 

tomography–computed tomography (PET-CT) scan in April 2012 demonstrated extensive 

malignancy in the oral cavity with bilateral level IB node metastases and a suggestive 

fluorodeoxyglucose-avid sub-cutaneous lesion posterior to the sixth cervical spinous 

process. Surgical biopsy of the tumor in the mouth demonstrated invasive squamous cell 

carcinoma with basaloid features and a ≥ 1-mm depth of invasion. The subcutaneous lesion 

was suspicious for metastasis, but no biopsy was performed. Staging was T4aN2cM1. The 

patient was not tested for human papillomavirus infection. He had a smoking history of 60 

pack-years and denied alcohol use, and he had no family history of cancer.

The patient received induction chemotherapy with docetaxel, cisplatin, and fluorouracil. 

After two cycles, he experienced mild-to-moderate hearing loss and received one cycle of 

docetaxel, carboplatin, and fluorouracil. He experienced a substantial response, and after 

multidisciplinary discussion, it was decided to administer radiation and concomitant weekly 

carboplatin, which was completed August 2012. PET-CT imaging in November 2012 

demonstrated a complete metabolic response. The patient was monitored every 3 months 

with PET-CT imaging. In March 2014, CT of the chest demonstrated bilateral lung 

parenchymal nodularity. Biopsy of a lung nodule confirmed metastatic squamous cell 

carcinoma. The patient was enrolled in a randomized, placebo-controlled, phase II study that 

consisted of docetaxel and cisplatin or carboplatin with or without erlotinib 

(ClinicalTrials.gov identifier: NCT01064479). He achieved a partial response after six 

cycles and received maintenance therapy for eight cycles until July 2015, when he developed 

progressive disease in the lungs. Unblinding of the study revealed that he received erlotinib.

The patient was referred to the Phase I Clinic and participated in the IMPACT2 trial, a 

randomized trial in precision medicine (ClinicalTrials.gov identifier: NCT02152254). 

Biopsy of a lung lesion demonstrated multiple alterations, including FGF19, FGF4, FGF23, 
FGF3, and FGF6 amplifications (Table 1 and Fig 1). He was randomly assigned to receive 

targeted therapy and was enrolled in a study with a selective pan-FGFR inhibitor that began 

in September 2015.

After two cycles, despite a low-phosphorus diet and Sevelamer carbonate treatment, the 

patient required a dose reduction of the FGFR inhibitor by one dose level for management of 

hyperphosphatemia. One month after the initiation of treatment, the patient developed nail 

changes. At the third cycle, his nails had a spoon-like appearance and discoloration (Fig 2). 

Other adverse events included grade 1 hand-foot syndrome, xerostomia, and mucositis.

In March 2016, CT imaging after six cycles demonstrated a complete radiologic response 

(Fig 3). After 15 cycles (December 2016), CT imaging indicated a right infrahilar mass (3.4 

× 1.8 cm). Pathologic examination of this mass showed poorly differentiated squamous cell 
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carcinoma consistent with the primary tumor. The patient discontinued treatment. 

Immunohisto-chemical analysis of the biopsy specimen demonstrated programmed death-

ligand 1 expression in 5% of tumor cells. In March 2017, the patient was started on a clinical 

trial of nivolumab and an investigational agent. In July 2017, he developed progressive 

disease and was enrolled in a study with another investigational agent. After the initiation of 

the second cycle, the patient developed brain metastases and treatment was discontinued. He 

then underwent whole-brain radiation therapy, and 5 weeks after the completion of this 

treatment, he died of acute myocardial infarction.

DISCUSSION

To our knowledge, this is the first case of a complete response to an FGFR inhibitor in a 

patient with HNSCC harboring several fibro-blast growth factor (FGF) amplifications. 

Alterations of the FGF/FGFR signaling pathways play important roles in carcinogenesis, 

stimulating cancer cell proliferation and angiogenesis.8 Deregulation of the FGFR pathway 

occurs in FGF ligands (FGFs) or receptors via gene mutations, translocations, fusions, or 

amplifications that lead to protein overexpression that results in the activation of the 

downstream signaling pathway.9 The FGFR family has four highly conserved 

transmembrane receptor tyrosine kinases (FGFR1 to FGFR4) that differ in their ligand 

affinity and tissue distribution. FGFs include more than 20 polypeptides (FGF1 to FGF10 

and FGF16 to FGF23) that signal through FGFRs.10 FGFRs can bind FGFs that form 

complexes with heparan sulfate proteoglycans in an autocrine and paracrine fashion or 

endocrine FGFs (FGF19, FGF21, and FGF23).11 Each FGFR can be activated by several 

FGFs, and FGFs can activate more than one receptor. Binding of FGFs to FGFRs induces 

dimerization of the intracellular domain of the receptor and downstream activation of 

signaling.10

With the advent of next-generation sequencing, aberrations in FGFRs have been better 

characterized than FGF alterations. The most common mechanisms of FGF activation are 

gene amplification that leads to overexpression and mutations that lead to increased affinity 

for FGFRs.9 FGF amplifications have been observed in several tumor types.12 In HNSCC, 

FGFR1 overexpression has been reported in > 75% of both human papillomavirus (HPV)–

positive and –negative HNSCC, and it is associated with poor survival.13 FGFR1, FGFR2, 

and FGFR3 amplifications, as well as FGFR3-TACC3 fusions, have been identified in HPV-

positive tumors.14 FGF3, FGF4, FGF19, and CCND1, also amplified in this patient, 

colocalize on the same amplicon of 11q13 and are frequently coamplified. In addition, 

11q13 amplification is prevalent in HNSCC—particularly HPV unrelated and tobacco 

induced—and has been reported to be associated with poor prognosis.15,16 Although the 

HPV status of our patient was unknown, he was a heavy smoker throughout the course of his 

disease.

There has been exponential progress in the field of FGFR targeting, owing to the 

development of novel agents that inhibit FGF ligands and receptors. These agents include 

nonselective or selective tyrosine kinase inhibitors (TKIs), monoclonal antibodies, and FGF 

ligand traps. Nonselective TKIs17–20 are effective against FGFRs as a result of the structural 

similarity of their kinase domains. Because they simultaneously target vascular endothelial 
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growth factor receptor, platelet-derived growth factor receptor, and FGFR signaling 

pathways, these compounds are being developed primarily as antiangiogenic agents. 

Selective FGFR TKIs21–23 are also in clinical development. AZD4547 has been investigated 

in FGFR2-amplified gastric cancers and in FGFR1-amplified breast cancer and NSCLC.
24–26 BGJ398 induced a 40% overall response rate in patients with urothelial cancer and 

FGFR alterations.21 DEBIO 1347 may inhibit the FGFR2 mutation V564F, which causes 

resistance to other drugs.27 Monoclonal antibodies that target FGF/FGFR signaling by 

blocking ligand binding or preventing receptor dimerization are in clinical development.28

Adverse effects associated with nonselective FGFR inhibitors include vascular endothelial 

growth factor receptor–related toxicities, and with selective FGFR inhibitors, 

hyperphosphatemia as a result of FGF23 signaling.17,29 In our patient, hyperphosphatemia 

was managed with a low-phosphate diet, phosphate binders, and a dose reduction. Our 

patient experienced ungual, cutaneous, and mucosal toxicity. Ungual toxicity occurs in 35% 

of patients—selective inhibitors—and is dose dependent.17,22 He did not experience nausea 

and vomiting, diarrhea, anorexia, or ocular effects.28

This case report demonstrates the benefits of the precision medicine approach of using 

tumor molecular profiling to select therapy. The patient achieved a complete response to an 

FGFR inhibitor that targeted his multiple FGF amplifications. This response is particularly 

intriguing given his disease progression while on erlotinib, which suggests resistance to 

epidermal growth factor receptor (EGFR) inhibition. Other investigators suggest that the 

cross-talk between other signaling pathways and FGFR signaling may explain the 

development of acquired resistance to anticancer therapies.30 Activation of the FGF2–

FGFR1 autocrine pathway may be a mechanism of acquired resistance to gefitinib, an EGFR 

TKI, in patients with EGFR-mutant NSCLC.30,31 In vitro studies have demonstrated that 

increasing FGFR2 and FGFR3 mRNA in NSCLC cell lines32 and FGF9 upregulation in 

colorectal cancer may induce acquired resistance to EGFR inhibitors.33 In our patient, it is 

plausible that the FGF/FGFR pathway alterations could have been acquired secondary to 

exposure to erlotinib.

As FGFR signals through both the phosphatidylinositol 3-kinase/AKT/mammalian target of 

rapamycin and mitogen-activated protein kinase pathways, it is plausible that activating 

mutations in these pathways might confer resistance to FGFR inhibitors.34 Molecular testing 

was not performed at disease progression.

In conclusion, this case report exemplifies the value of tumor molecular profiling and the 

selection of targeted therapy on the basis of tumor molecular alterations. Use of a selective 

pan-FGFR inhibitor that targets multiple FGF amplifications—FGF3, FGF4, FGF6, FGF19, 

and FGF23—was associated with a durable complete response in a patient with HNSCC. 

FGF amplifications could have arisen secondary to the activation of an escape pathway after 

the use of an EGFR inhibitor. Monitoring of patients via repeated molecular profiling may 

provide valuable information about disease pathogenesis and guide therapy. Targeting 

acquired molecular alterations may prevent or delay tumor progression. Future clinical trials 

should investigate the role of targeting evolving alterations before evidence of clinical 

progression in patients who receive targeted therapy.
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Support

Funded by Foundation Medicine (IMPACT2 trial; A.M.T.).
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Fig 1. 
Selected genomic alterations are indicated by an asterisk (*): fibroblast growth factor 

receptor (FGFR) pathway (FGF19, FGF4, FGF23, FGF3, and FGF6 amplifications). 

Selected variants of unknown significance are indicated by a filled square (■): KRAS 

amplification, PIK3CA and PIK3CB amplifications, and PIK3R2 and protein kinase B 

(AKT) mutations. DAG, dystroglycan; ERK, extracellular signal–regulated kinase; FRS2, 

fibroblast growth factor receptor substrate 2; GAB1, GRB2 associated binding protein 1; 

GRB2, growth factor receptor bound protein 2; MEK, mitogen-activated protein kinase; 

mTOR, mechanistic target of rapamycin; PI3K, phosphatidylinositide 3-kinase; PIP2, 

phosphatidylinositol 4,5-bisphosphate; PIP3, phosphatidylinositol (3,4,5)-trisphosphate 

(PtdIns(3,4,5)P3); PKC, protein kinase C; PLCγ, phospholipase C γ; RAF, RAF proto-

oncogene serine/threonine-protein kinase; RAS, rat sarcoma viral oncogene homolog; SOS, 
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son of sevenless homolog, Ras/Rac guanine nucleotide exchange factor; STAT, signal 

transducer and activator of transcription.
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Fig 2. 
Nail toxicity at 3 months after the initiation of a selective pan–fibroblast growth factor 

receptor inhibitor.
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Fig 3. 
Radiologic response to treatment with fibroblast growth factor receptor inhibitor. (A and B) 

Baseline scans, September 2015. (C and D) Best response, March 2016.
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Table 1.

Next-Generation Sequencing Genomic Profile by Foundation One (August 2015)

Genomic Profile

Genomic alterations

FGF19 amplification CCND1 amplification

FGF4 amplification CCND2 amplification

FGF23 amplification CDKN2A/B loss

FGF3 amplification CHD2 D213N

FGF6 amplification CREBBP R1392*

EMSY amplification

KDM5A amplification

KRAS amplification

MYC duplication exons 2 and 3

TP53 E204*

Variants of unknown significance

AKT2 E323Q IGF1R S909C

ATM E322D KLHL6 amplification

ATR amplification NOTCH2 T239S

BCL6 amplification PIK3CA amplification

BLM R543H PIK3CB amplification

CARD11 truncation PIK3R2 R559H

CDKN1B amplification PRDM1 K188E

CHD4 amplification RANBP2 amplification

DICER1 A948T SOX2 amplification

EPHB1 amplification TERC amplification

GRM3 amplification PRKCI amplification

NOTE. Gene symbols and full gene name as approved by the HUGO Gene Nomenclature Committee. Abbreviations: AKT2, AKT serine/threonine 
kinase 2; ATM, ATM serine/threonine kinase; ATR, ATR serine/threonine kinase; BCL6, B cell CLL/lymphoma 6; BLM, bloom syndrome RecQ 
like helicase; CARD11, caspase recruitment domain family member 11; CCND1, cyclin D1; CCND2, cyclin D2; CDKN1B, cyclin-dependent 
kinase inhibitor 1B; CDKN2A, cyclin-dependent kinase inhibitor 2A; CDKN2B, cyclin-dependent kinase inhibitor 2B; CHD2, chromodomain 
helicase DNA binding protein 2; CHD4, chromodomain helicase DNA binding protein 4; CREBBP, cAMP-response element binding protein 
binding protein; DICER1, dicer 1 ribonuclease III; EMSY, BRCA2 (DNA repair associated) interacting transcriptional repressor; EPHB1, EPH 
receptor B1; FGF3, fibroblast growth factor 3; FGF4, fibroblast growth factor 4; FGF6, fibroblast growth factor 6; FGF19, fibroblast growth factor 
19; FGF23, fibroblast growth factor 23; GRM3, glutamate metabotropic receptor 3; IGF1R, insulin-like growth factor 1 receptor; KDM5A, lysine 
demethylase 5A; KLHL6, kelch-like family member 6; KRAS, KRAS proto-oncogene, GTPase; MYC, MYC proto-oncogene, bHLH transcription 
factor; PIK3CA, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit α; PIK3CB, phosphatidylinositol-4,5-bisphosphate 3-kinase 
catalytic subunit β; PIK3R2, phosphoinositide-3-kinase regulatory subunit 2; PRDM1, PR/SET domain 1; PRKCI, protein kinase C ι; RANBP2, 
RAN binding protein 2; SOX2, SRY-box 2; TERC, telomerase RNA component; TP53, tumor protein p53.
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