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Abstract

The prefrontal cortex is central to the orchestrated brain network communication that gives rise to 

working memory and other cognitive functions. Accordingly, working memory deficits in 

schizophrenia are increasingly thought to derive from prefrontal cortex dysfunction coupled with 

broader network disconnectivity. How the prefrontal cortex dynamically communicates with its 

distal network partners to support working memory and how this communication is disrupted in 

individuals with schizophrenia remain unclear. Here we review recent evidence that prefrontal 

cortex communication with the hippocampus and thalamus is essential for normal spatial working 

memory, and that miscommunication between these structures underlies spatial working memory 

deficits in schizophrenia. We focus on studies using normal rodents and rodent models designed to 

probe schizophrenia-related pathology to assess the dynamics of neural interaction between these 

brain regions. We also highlight recent preclinical work parsing roles for long-range prefrontal 

cortex connections with the hippocampus and thalamus in normal and disordered spatial working 

memory. Finally, we discuss how emerging rodent endophenotypes of hippocampal- and thalamo-

prefrontal cortex dynamics in spatial working memory could translate into richer understanding of 

the neural bases of cognitive function and dysfunction in humans.
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Working memory, or the ability to store and manipulate information to guide behaviour on a 

timescale of seconds, is a central cognitive function (Baddeley, 2012, 1974). Working 

memory processes are critical for adaptive decision-making and goal-directed action, and 

their impairment is core to many neuropsychiatric disorders, including schizophrenia (Barch 

and Ceaser, 2012; Forbes et al., 2009). Although not among the diagnostic criteria for 

schizophrenia, deficits in working memory and other cognitive functions are predictive of 

long-term disease prognosis (Fett et al., 2011; Green, 1996; Hofer et al., 2005) and 

essentially resistant to currently available treatments (Buoli and Altamura, 2015; Lett et al., 

2014). As such, the neural bases of normal and disordered working memory remain 

impactful areas of research.

Spatial working memory (SWM), or the active encoding, maintenance and retrieval of 

spatial information to direct behaviour in the short term, is a cognitive domain particularly 

amenable to bridging the preclinical and clinical neuroscience of schizophrenia. SWM is 

widely studied in humans, non-human primates and rodents using an array of laboratory 

assays (Bahner and Meyer-Lindenberg, 2017; Dudchenko, 2004; Funahashi, 2017), 

including spatial delayed-response tasks. In the simple ‘delayed non-match-to-sample’ 

(DNMS) task, subjects must maintain a memory trace of a recently sampled spatial cue or 

maze location across an ensuing delay period in order to correctly choose the opposite cue or 

location to receive a reward (Wikmark et al., 1973). Using these and related tasks, 

researchers have demonstrated that SWM is markedly impaired in individuals with 

schizophrenia (Fleming et al., 1997; Glahn et al., 2003; Park and Holzman, 1992; Piskulic et 

al., 2007). Similar deficits are seen in healthy relatives of those with schizophrenia (Cannon 

et al., 2000; Park et al., 1995), indicating that these deficits may reflect an underlying 

genetic predisposition to the disease. Importantly, deficits in SWM are recapitulated in many 

rodent models for the scientific study of schizophrenia (Gourevitch et al., 2004; Kellendonk 

et al., 2006; Lipska et al., 2002; Meyer and Feldon, 2009; Verma and Moghaddam, 1996), 

including mouse models engineered to carry schizophrenia susceptibility genes (Budel et al., 

2008; Mukai et al., 2015; Stark et al., 2008).

Since Jacobsen’s (1936) seminal finding that lesions of dorsolateral regions of the prefrontal 

cortex (PFC) in monkeys impaired their ability to remember the location of a concealed food 

reward after a brief delay, the PFC has remained the principal known neural substrate of 

SWM (Funahashi, 2017). From rodents to primates, damage to regions comprising the PFC 

impairs SWM (Curtis and D’Esposito, 2004; Dias and Aggleton, 2000; Funahashi et al., 

1993; Goldman and Rosvold, 1970; Ptito et al., 1995; Rogers et al., 1992; Yoon et al., 2008), 

despite considerable differences in tasks commonly used to study the cognitive process (e.g. 

maze-based navigation in rodents vs egocentric visuospatial tasks in primates; Funahashi, 

2017) and controversy regarding interspecies homology of the PFC regions most commonly 

implicated (e.g. medial vs dorsolateral PFC in rodents and primates; Seamans et al., 2008; 

Uylings and van Eden, 1990). Rodents and primates further show PFC activity patterns 

during SWM that encode a variety of SWM task–related information and correlate with 

performance (Bolkan et al., 2017; Driesen et al., 2008; Horst and Laubach, 2012; Jung et al., 

1998; Onos et al., 2016; Spellman et al., 2015). For example, sustained activity of individual 

PFC neurons during the delay period of SWM tasks that encodes spatial information, among 

other features, has provided an alluring and intuitive neural correlate of a mnemonic trace 

Kupferschmidt and Gordon Page 2

Brain Neurosci Adv. Author manuscript; available in PMC 2019 May 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



necessary for SWM maintenance (Funahashi, 2017; Funahashi et al., 1989; Fuster and 

Alexander, 1971; Goldman-Rakic, 1995; Haller et al., 2017; Kubota and Niki, 1971). 

Notably, however, refined analyses and modelling of PFC activity during the delay and other 

SWM task periods suggest that highly dynamic neuronal population coding and trial-by-trial 

assignment of PFC neuron selectivity shaped by short-term synaptic plasticity better 

encapsulate SWM processing in the PFC (Bolkan et al., 2017; Lundqvist et al., 2016; Shafi 

et al., 2007; Stokes, 2015).

In recent decades, it has become clear that SWM, like other high-level cognitive processes, 

manifests out of orchestrated communication across expansive brain networks (Cohen and 

D’Esposito, 2016; Dehaene et al., 1998; Fries, 2005). The PFC has been proposed to 

function as a critical hub in these networks, wherein SWM task–relevant information is 

dynamically gated and integrated to guide activity in distal brain regions and support 

contextually tuned behaviour (Cole et al., 2012; Miller and Cohen, 2001). Of the many 

network partners of the PFC, two with robust long-range anatomical connectivity and 

functional interactions with the PFC during SWM are the hippocampus (Bahner et al., 2015; 

Colgin, 2011; Goldman-Rakic et al., 1984; Hoover and Vertes, 2007; Jones and Wilson, 

2005) and thalamus (Bolkan et al., 2017; Jones, 2007; Saalmann, 2014). But what is the 

dynamic nature of their communication with the PFC during SWM? And what information 

do long-range projections between the PFC and these brain regions convey to support 

SWM?

PFC dysfunction is central to many theories of schizophrenia pathogenesis (Kraepelin and 

Robertson, 1919; Lewis et al., 2012; Weinberger and Berman, 1996) and correlates with 

cognitive deficits of the disorder (Minzenberg et al., 2009; Perlstein et al., 2001). Modern 

clinical and preclinical imaging and electrophysiology also continue to validate the view that 

schizophrenia and its cognitive symptoms stem from broad patterns of aberrant neural 

synchrony and long-range circuit disconnectivity (Barr et al., 2010, 2017; Colgin, 2011; 

Friston, 1999; Senkowski and Gallinat, 2015; Skatun et al., 2016; Stephan et al., 2009; 

Uhlhaas, 2013; Zhou et al., 2015). Two brain regions with abnormal connectivity with the 

PFC in individuals with schizophrenia are the hippocampus (Bahner and Meyer-Lindenberg, 

2017) and thalamus (Anticevic et al., 2014; Dawson et al., 2013; Woodward et al., 2012); 

similar disconnectivity has also been seen in etiologically relevant rodent models (Dickerson 

et al., 2010; Phillips et al., 2012; Sigurdsson et al., 2010). The physiological dynamics that 

underlie this abnormal connectivity, and how these dynamics distort the content of 

hippocampal- and thalamo-PFC communication to impair SWM, remain unknown.

Here we review recent evidence that PFC communication with the hippocampus and 

thalamus is essential for normal SWM, and that miscommunication between these structures 

underlies SWM deficits in schizophrenia. We focus on studies using normal rodents and 

rodent models designed to investigate schizophrenia-related cognitive dysfunction, with 

emphasis on studies assessing the dynamics of neural communication between these brain 

regions. We also highlight recent preclinical work parsing roles for long-range PFC 

connections with the hippocampus and thalamus in normal and disordered SWM.
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Hippocampal-PFC communication in SWM

The hippocampus, a brain region with famous roles in spatial navigation, learning and 

memory (Buzsaki and Moser, 2013; Eichenbaum and Cohen, 2014), is anatomically poised 

to interact with the PFC via a variety of direct and indirect pathways. Direct hippocampal-

PFC connectivity in the rodent derives primarily from unidirectional, monosynaptic 

projections from the CA1/subiculum subfields of the ventral-most two-thirds of the 

hippocampus (Hoover and Vertes, 2007; Jay and Witter, 1991; Oh et al., 2014; Swanson, 

1981) that innervate both pyramidal cells and interneurons in the medial prefrontal cortex 

(mPFC; Gabbott et al., 2002; Thierry et al., 2000). The dorsal hippocampus also receives a 

monosynaptic projection from the anterior cingulate subregion of the mPFC (Rajasethupathy 

et al., 2015). Many indirect hippocampal-PFC connections exist, most notably via the 

nucleus reuniens of the thalamus and lateral entorhinal cortex, both of which reciprocally 

connect to the hippocampus and mPFC (Cassel et al., 2013; Hoover and Vertes, 2012; Moser 

and Moser, 2010).

Early lesion and inactivation studies in rodents revealed that SWM performance is disrupted 

by bilaterally interfering with either the hippocampus or the mPFC (Aggleton et al., 1986; 

Dias and Aggleton, 2000; Hallock et al., 2013; Izaki et al., 2001). ‘Disconnection’ studies 

impairing the hippocampal function in one hemisphere and PFC function in the other 

provided early causal evidence of hippocampal-PFC interactions in SWM (Churchwell et 

al., 2010; Floresco et al., 1997; Lee and Kesner, 2003; Wang and Cai, 2006). Interestingly, 

such manipulations have implicated various rodent hippocampal and mPFC subregions in 

these interactions, despite well-documented anatomical and functional demarcations and 

gradients across the two structures (Barker et al., 2017; Heidbreder and Groenewegen, 2003; 

Hoover and Vertes, 2007; Strange et al., 2014; Takita et al., 2013).

Insight into the dynamics of hippocampal-PFC interactions in SWM has come from rodent 

electrophysiological studies assessing how neural activity in the two structures correlates in 

time during SWM tasks (Sigurdsson and Duvarci, 2015). Many such studies indicate a 

critical role for long-range coordinated oscillations of neural activity in the theta-frequency 

band (4–12 Hz), which are known to be generated (in part) within the hippocampus 

(Buzsaki, 2002; Colgin, 2011). Theta-frequency oscillations in the hippocampus have been 

shown to entrain the activity of mPFC neurons (Siapas et al., 2005) and to correlate with 

spatial navigation and cognition (Kahana et al., 1999; Lee et al., 2005; Raghavachari et al., 

2001; Vanderwolf, 1969). Recording simultaneously from the rat hippocampus and mPFC, 

Jones and Wilson (2005) found that correlated neuronal firing in the two structures was 

enhanced in the ‘choice’ period of an SWM task, when the memory trace is retrieved to 

guide action execution. Two additional measures of hippocampal-PFC synchrony, the ‘phase 

locking’ of mPFC neuron firing to theta oscillations of hippocampal local field potentials 

and theta-phase coherence of mPFC and hippocampal local field potentials, were 

preferentially enhanced during correct, but not incorrect, choices (see also Hallock et al., 

2016; Hyman et al., 2010; Liu et al., 2018; Sigurdsson et al., 2010). Choice period–related 

increases in hippocampal-PFC theta synchrony have since been reported in both the dorsal 

and ventral hippocampus of mice (O’Neill et al., 2013) and found to increase with improved 

performance across training on an SWM task (Sigurdsson et al., 2010; Benchenane et al., 
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2010). Theta-frequency interactions between the hippocampus and PFC have also been 

implicated in the delay (maintenance) periods of SWM tasks. Analysis of the lag between 

mPFC unit firing and dorsal hippocampal theta-frequency oscillations in rats performing a 

delayed-alternation task revealed that the hippocampal activity preceded the mPFC activity 

during the delay, suggesting a predominance of hippocampus-to-mPFC information flow 

and influence in the theta range during this period (Hallock et al., 2016; Liu et al., 2018). 

Furthermore, a recent study using rats trained on an 8-arm radial maze DNMS task showed 

that theta power and synchrony between the hippocampus and mPFC peaked towards the 

end of the delay period, and mPFC neurons that showed a ramp-like increase in firing rate 

across the delay period showed higher firing rates on good performance trials 

(Myroshnychenko et al., 2017).

Like theta oscillations, gamma oscillations (30–120 Hz) have also been linked to spatial 

learning and memory (Carr et al., 2012; Yamamoto et al., 2014), coordinate activity in distal 

brain regions (Engel et al., 1991; Spellman et al., 2015; Steinmann et al., 2017) and 

contribute to hippocampal-PFC synchrony and SWM performance. Indeed, Spellman et al. 

(2015) reported heightened phase-locking of mPFC neuron firing to gamma oscillations in 

the mouse ventral hippocampus during the sample (encoding) period of DNMS trials that 

was particularly robust on correct trials and implied a hippocampal-to-PFC information 

flow. Interestingly, gamma synchrony that was consistent with an mPFC-to-dorsal 

hippocampus directionality of influence and predictive of choice accuracy has been reported 

in rats at the choice (retrieval) point of a delayed-alternation task (Hallock et al., 2016). 

These and other findings indicate that the hippocampus and PFC communicate via frequency 

band–specific and task period–specific synchrony that may support the encoding, 

maintenance and retrieval of SWM.

Hierarchical relationships between co-occurring theta and gamma oscillations, known as 

cross-frequency coupling, exist within and between the hippocampus and PFC (Belluscio et 

al., 2012; Canolty and Knight, 2010; Hyafil et al., 2015; Lisman and Jensen, 2013; Sirota et 

al., 2008). Local and long-range coupling of the phase and/or power of these oscillations is 

thought to coordinate activity in neuronal circuits and ensembles important for SWM and 

other cognitive processes (Axmacher et al., 2010; Canolty et al., 2006; Chaieb et al., 2015; 

Daume et al., 2017; Li et al., 2012; Lisman and Idiart, 1995; Park et al., 2013; Pastoll et al., 

2013; Rajji et al., 2017; Roux and Uhlhaas, 2014; Shirvalkar et al., 2010; Tort et al., 2009). 

For example, Hallock et al. (2016) showed in rats that the coupling of hippocampal theta 

phase with PFC gamma power at the choice point of a T-maze significantly correlated with 

performance on a delayed-alternation task. Increasing the difficulty of a DNMS task also 

enhanced the phase–power coupling of theta and low gamma oscillations in the mouse 

hippocampus and PFC selectively during correct trials (Tamura et al., 2017). Interestingly, 

recent clinical work by Alekseichuk et al., (2016) provides unique support for the 

contribution of cross-frequency coupling to SWM ability by showing that co-applying theta- 

and gamma-wave transcranial stimulation to the human PFC boosts SWM only when 

gamma bursts were phase-locked to peaks of the theta cycle (see also Bilek et al., 2013; 

Polania et al., 2012).
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Emerging evidence also indicates that hippocampal sharp-wave ripples, or characteristic 

bursts of high-frequency neuronal activity in the hippocampal area CA1 (Buzsaki, 2015), 

serve as an important conduit for hippocampal-PFC interactions supporting spatial learning 

and memory processes (Tang and Jadhav, 2018; Yu and Frank, 2015). Often studied as 

mediators of memory replay and consolidation during slow-wave sleep (Girardeau et al., 

2009; Khodagholy et al., 2017; Maingret et al., 2016; Peyrache et al., 2009; Wilson and 

McNaughton, 1994), sharp-wave ripples can occur during awake immobility and slow 

movement to coordinate reactivation and stabilisation of ensembles that encode recent 

spatial experience (Davidson et al., 2009; Diba and Buzsaki, 2007; Foster and Wilson, 2006; 

Jadhav et al., 2012; Roux et al., 2017) and predict upcoming choices of spatial navigation 

(Pfeiffer and Foster, 2013; Singer et al., 2013). Awake hippocampal ripples can also 

profoundly modulate PFC neuron firing and hippocampal-PFC ensembles in a behaviour- 

and experience-dependent manner (Jadhav et al., 2016; Tang et al., 2017; Yu et al., 2017). 

Direct tests of the contribution of ripple-induced hippocampal-PFC interactions in explicit 

tasks of SWM (e.g. delayed-alternation, DNMS) remain to be conducted.

Although hippocampal-PFC synchrony and oscillatory coupling are presumed to optimise 

information transfer between the two regions (Canolty and Knight, 2010; Colgin, 2011; 

Gordon, 2011), the exact nature of the information being communicated and the neural 

substrates supporting this communication remain unclear. Temporally precise causal 

manipulations of neural activity, enabled by modern optogenetic tools, have refined our 

understanding of these issues (Kim et al., 2016; Roux et al., 2017; Yamamoto et al., 2014). 

For example, pathway-specific optogenetic inhibition of inputs from the ventral 

hippocampus to the mPFC selectively during the sample period, but not the delay or choice 

periods, impaired performance on a mouse DNMS task (Bolkan et al., 2017; Spellman et al., 

2015). This inhibition disrupted the spatial tuning of a subset of mPFC neurons (i.e. 

preferential firing to one maze location during both the sample and choice periods; Bolkan et 

al., 2017; Spellman et al., 2015) and reduced the overall strength of sample-period gamma 

synchrony between the ventral hippocampus and mPFC (Spellman et al., 2015). These 

findings support a causal role for direct hippocampal-PFC inputs in the frequency-specific 

communication and spatial cue encoding that guides SWM performance (Figure 1(a)).

Thalamo-PFC communication in SWM

The thalamus, a heterogeneous collection of brain nuclei long regarded as a relay between 

different cortical areas (Jones, 2007; Saalmann, 2014), has a privileged anatomical 

relationship with the PFC. The mediodorsal thalamus (MD) in particular, among the higher-

order thalamic nuclei (Mitchell, 2015), shares dense, direct and reciprocal excitatory 

projections with various PFC subregions (Groenewegen, 1988; Krettek and Price, 1977; 

Uylings and van Eden, 1990). This reciprocal connectivity is also notably selective as the 

MD receives its main cortical input from the PFC, and the PFC receives its main thalamic 

input from the MD (Jones, 2007; Mitchell, 2015). In addition, the nucleus reuniens of the 

thalamus reciprocally connects to the PFC and hippocampus (Cassel et al., 2013; Hoover 

and Vertes, 2012), making it well positioned to influence or mediate the thalamo- and 

hippocampal-PFC interactions during cognitive functions like SWM (Griffin, 2015; Hallock 

et al., 2016; Ito et al., 2015).
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Reminiscent of the cognitive deficits seen following damage to the mPFC, lesions of the 

rodent thalamus that include the MD can impair performance in SWM tasks (Alexinsky, 

2001; Hunt and Aggleton, 1991, 1998a, 1998b; M’Harzi et al., 1991; Mitchell and 

Chakraborty, 2013; Stokes and Best, 1990). Functional disconnection of the MD and mPFC 

by asymmetric pharmacological inhibition similarly impaired performance in a delayed-

response radial arm maze task (Floresco et al., 1999). Reversible inactivation of the nucleus 

reuniens can also impair SWM (Davoodi et al., 2009; Griffin, 2015; Hallock et al., 2016; 

Hembrook et al., 2012; Layfield et al., 2015; Viena et al., 2018). Interestingly, this 

manipulation was shown to abolish SWM-related increases in dorsal hippocampal-PFC theta 

synchrony, underscoring the contribution of this synchrony and its regulation by thalamic 

structures to normal SWM (Griffin, 2015; Hallock et al., 2016).

Much of what is known about the dynamics of thalamo-PFC communication in SWM comes 

from electrophysiological studies in non-human primates (Watanabe and Funahashi, 2012). 

Neurons in the monkey MD, like the dorsolateral prefrontal cortex (DLPFC), show sample-, 

delay- and choice-period activity, with the majority of task-related neurons showing 

sustained activity during the delay period (Fuster and Alexander, 1973; Sommer and Wurtz, 

2006; Tanibuchi and Goldman-Rakic, 2003). More recently, analogous rodent studies have 

revealed notable contributions of MD-PFC communication to working memory maintenance 

and retrieval (Bolkan et al., 2017; Han et al., 2013; Miller et al., 2017; Parnaudeau et al., 

2013).

Strong support for MD-PFC communication in SWM maintenance comes from recent work 

by Bolkan et al. (2017), who simultaneously recorded single mPFC neurons and MD local 

field potentials during a T-maze DNMS task. Directionality analysis of neural oscillations in 

the beta frequency (13–30 Hz) revealed that the MD activity preceded the mPFC activity 

during the delay period, suggesting a predominance of MD-to-PFC information flow and 

influence during this period. Consistently, optogenetic inhibition of MD-to-PFC terminal 

function selectively during the delay period impaired SWM performance. Moreover, a subset 

of mPFC neurons demonstrated elevated delay-phase spiking that did not encode spatial 

information (see Onos et al., 2016) but correlated with correct SWM performance. Rather 

than showing sustained activity across the entire delay, these mPFC neurons showed brief 

bouts of elevated activity at different temporal offsets such that population activity spanned 

the entire delay period. This activity pattern parallels the sequential activation of cortical 

neurons seen across other working memory–guided tasks (Baeg et al., 2003; Fujisawa et al., 

2008; Harvey et al., 2012; Lundqvist et al., 2016; Schmitt et al., 2017). Importantly, 

optogenetic inhibition of MD-to-PFC inputs during the delay period suppressed the elevated 

firing of mPFC neurons seen in middle and late, but not early, time points in the delay period 

(Bolkan et al., 2017; Schmitt et al., 2017). Moreover, delay period–selective enhancement of 

MD neural excitability using a stabilised step function opsin improved SWM performance. 

Although inconsistent with evidence from Miller et al. (2017) that MD neurons in rats 

performing an operant DNMS task show no delay period–related firing, these findings 

strikingly align with recent work by Schmitt et al. (2017) using a working memory–guided 

attention task in which mice had to maintain a sensory-specific rule representation across a 

brief delay. Like Bolkan and colleagues, these researchers found that optogenetic 

suppression of MD activity during the delay impaired both the temporal sequencing of 
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delay-period PFC neuron activity and subsequent choice behaviour, and that the 

enhancement of delay-period MD neural excitability strengthened task rule encoding by 

PFC neurons and improved performance (Schmitt et al., 2017). Together, these findings 

support the view that MD inputs to the PFC sustain PFC representations across the delay 

period to support SWM maintenance (Figure 1(a); Halassa and Kastner, 2017; Parnaudeau et 

al., 2017).

Discrete roles for MD-PFC communication in SWM retrieval and action execution have also 

been identified. In mice trained on a T-maze DNMS task, MD neuron firing showed 

preferentially enhanced phase-locking to mPFC beta oscillations during the choice period 

(Parnaudeau et al., 2013). Pharmacogenetic inhibition of MD neurons perturbed this MD-

PFC synchrony and impaired task performance (Parnaudeau et al., 2013). In contrast to the 

MD-to-PFC directionality seen during the delay period of this same task, Bolkan et al. 

(2017) showed that the mPFC activity led the MD activity during the choice period. 

Accordingly, optogenetic inhibition of mPFC inputs to the MD during the choice period 

impaired SWM performance. Complementing the roles for ventral hippocampal and MD 

inputs to the mPFC in the respective spatial encoding and maintenance of SWM (Bolkan et 

al., 2017; Spellman et al., 2015), these findings suggest that ‘top-down’ signals from the 

mPFC to the MD help guide successful SWM retrieval and/or action execution (Figure 1(a)).

Disordered hippocampal-PFC communication and SWM in models for 

inquiry into schizophrenia

Brain imaging studies of individuals with schizophrenia reliably reveal abnormal 

hippocampal-PFC functional connectivity (Bahner and Meyer-Lindenberg, 2017; Benetti et 

al., 2009; Godsil et al., 2013; Meyer-Lindenberg et al., 2001, 2005; Zhou et al., 2008). The 

relationship between this connectivity and SWM performance, both in healthy subjects and 

individuals with schizophrenia, remains understudied and controversial (Bahner and Meyer-

Lindenberg, 2017). Unlike rodent studies, the majority of clinical imaging studies of normal 

and disordered working memory employ non-SWM tasks. In a notable functional imaging 

study, Bahner et al. (2015) employed a virtual reality version of the radial arm maze, on 

which patients with schizophrenia are markedly impaired (Spieker et al., 2012), to show in 

healthy subjects that hippocampal-PFC connectivity is high during SWM encoding and 

retrieval and correlates with SWM ability (see also Kang et al., 2018). Although the precise 

functional coupling of hippocampal and PFC regions varies across working memory tasks, 

populations of patients with schizophrenia and high-risk individuals reliably differ from 

healthy controls in their task-related hippocampal-PFC functional connectivity (Benetti et 

al., 2009; Cousijn et al., 2015; Meyer-Lindenberg et al., 2001, 2005; Paulus et al., 2014, 

2013; Rasetti et al., 2011; Rissman et al., 2008; Wolf et al., 2009).

Rodent models of the neurobiological underpinnings of schizophrenia, although varied in 

their aetiology, utility and validity, have been critical for establishing altered hippocampal-

PFC communication as a key endophenotype of SWM deficits (Figure 1(b); Bahner and 

Meyer-Lindenberg, 2017). Mirroring the pathogenic complexity of schizophrenia, genetic, 
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environmental, developmental and pharmacological models have been used to probe the 

neural basis of these cognitive deficits.

The first identified copy number variant associated with schizophrenia, the 22q11.2 

microdeletion, increases the risk for developing the disease by a factor of 20–30 (Bassett and 

Chow, 2008; Karayiorgou et al., 2010). Df(16)A+/− mice carrying a deletion syntenic to the 

human 22q11.2 locus show impaired SWM (Drew et al., 2011; Stark et al., 2008), 

phenocopying at least some of the cognitive deficits seen in humans with the deletion 

(Simon et al., 2005; Sobin et al., 2005). Recording neuronal activity in the hippocampus and 

PFC during a T-maze DNMS task, Sigurdsson et al. (2010) showed that Df(16)A+/− mice 

have reduced hippocampal-PFC theta-frequency synchrony, measured by phase-locking of 

PFC neurons to hippocampal theta oscillations and by coherence of local field potentials in 

the two structures. Moreover, the magnitude of hippocampal-PFC coherence in Df(16)A+/− 

mice at training onset predicted the number of trials required to learn the SWM task and 

increased more slowly across training (Sigurdsson et al., 2010). Mice deficient for a single 

gene within the 22q11.2 locus, Zdhhc8, mimicked the Df(16)A+/− deficits in hippocampal-

PFC synchrony and SWM (Mukai et al., 2015), displayed augmented hippocampal-PFC 

theta–slow gamma coupling likely to reflect a compensatory mechanism (Tamura et al., 

2017) and showed reduced axonal branching of ventral hippocampus inputs to the mPFC 

(Mukai et al., 2015). Strikingly, developmental inhibition of glycogen synthase kinase-3 

(GSK3), which prevented axonal branching deficits in Zdhhc8+/− mice (Mukai et al., 2015), 

rescued impaired hippocampal-PFC synchrony, SWM performance and mPFC neuronal 

encoding of spatial representations in Df(16)A+/− mice (Tamura et al., 2016).

Rodent studies of various other genetic risk factors to schizophrenia have drawn links 

between disordered SWM and hippocampal-PFC communication. Neuregulin-1, encoded by 

the schizophrenia susceptibility gene, NRG1 (Harrison and Law, 2006), is a cell adhesion 

molecule that signals through ErbB4 receptors (Mei and Nave, 2014) found nearly 

exclusively on parvalbumin (PV)-positive interneurons (Fazzari et al., 2010). Deletion of 

ErbB4 receptors selectively from PV-positive interneurons, long implicated in schizophrenia 

and cognition-supporting neural oscillations (Cardin et al., 2009; Gonzalez-Burgos et al., 

2015; Lewis et al., 2012; Sohal et al., 2009; Uhlhaas and Singer, 2015), impaired SWM 

ability, reduced resting hippocampal-PFC theta synchrony and increased hippocampal 

gamma oscillations during exploration (Carlen et al., 2012; Del Pino et al., 2013; Wen et al., 

2010; Yin et al., 2013). Mouse models of the schizophrenia-associated 15q13.3 

microdeletion have been reported to have blunted auditory-evoked gamma oscillations in the 

hippocampus and frontal cortex (Fejgin et al., 2014; Stefansson et al., 2008). These mice 

also showed increased PFC gamma and reduced PFC and hippocampal theta oscillation 

power, but spared SWM (Fejgin et al., 2014).

Environmental and developmental models also suggest a role for disordered hippocampal-

PFC communication in schizophrenia-related deficits in SWM. For example, rodent 

maternal immune activation models known to produce deficits in SWM (Meyer and Feldon, 

2009; Richetto et al., 2013) display reductions in theta- and low-gamma-frequency 

hippocampal-PFC synchrony (Dickerson et al., 2014, 2010) that are reversed by acute 

treatment with the atypical antipsychotic, clozapine (Dickerson et al., 2012). Although no 
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direct link has been established between hippocampal-PFC synchrony and the SWM deficits 

seen using the neonatal ventral hippocampal lesion model (Lipska et al., 2002, 1993), Lee et 

al. (2012) found that cognitive training during adolescence that reverses interhippocampal 

synchrony and cognitive deficits induced by the lesion also enhances hippocampal-prefrontal 

synchrony across a broad frequency range. Another developmental model that produces 

schizophrenia-like impairments in SWM (Gourevitch et al., 2004) involves gestational 

exposure to the teratogen, mitotoxin methylazoxymethanol acetate (MAM; Grace, 1998). 

Recordings from MAM-treated rats show attenuated delta (<4 Hz) and low gamma 

oscillations in the mPFC (Goto and Grace, 2006), broadly reduced oscillations in the 

hippocampus (Perreault et al., 2017), blunted fear-conditioned tone-evoked theta and gamma 

oscillations in the mPFC and gamma oscillations in the ventral hippocampus (Lodge et al., 

2009) and hippocampal-prefrontal decoupling during sleep (Phillips et al., 2012).

A key recent hypothesis regarding schizophrenia pathophysiology proposes that the 

hypofunction of N-methyl-D-aspartate receptors (NMDARs) underlies aspects of the 

disorder. Commonly studied using pharmacological receptor blockade (Javitt and Zukin, 

1991), NMDAR hypofunction is thought to promote aberrant neural oscillations that 

contribute to cognitive dysfunction (Homayoun and Moghaddam, 2007; Hunt and Kasicki, 

2013; Krystal et al., 1994; Uhlhaas and Singer, 2013). Treatment with NMDAR antagonists, 

such as ketamine, phencyclidine and MK801, induces SWM deficits (Beraki et al., 2009; 

Castane et al., 2015; Enomoto and Floresco, 2009; Verma and Moghaddam, 1996) and tends 

to reduce hippocampal theta oscillations, while enhancing PFC and hippocampal delta-, 

gamma- and high-frequency oscillations (130–180 Hz; Hinman et al., 2013; Hunt and 

Kasicki, 2013; Kjaerby et al., 2017; Korotkova et al., 2010; Lazarewicz et al., 2010; Moran 

et al., 2015; Sapkota et al., 2016). Acute and chronic ketamine treatment in rodents also 

alters the coupling of hippocampal theta phase with gamma- and high-frequency oscillation 

power (Caixeta et al., 2013; Michaels et al., 2018), reminiscent of the global and fronto-

temporal frequency coupling alterations reported in patients with schizophrenia (Allen et al., 

2011; Sun et al., 2013; Won et al., 2017). While the effects of NMDAR antagonists on long-

range hippocampal-PFC synchrony are less clear (Lee et al., 2017), reports have shown that 

sub-anaesthetic doses of ketamine increase hippocampal-PFC functional connectivity 

measured using functional magnetic resonance imaging (fMRI) in rats (Gass et al., 2014) 

and humans (Grimm et al., 2015).

Unfortunately, few studies using these and other rodent model systems of potential relevance 

to schizophrenia have assessed the hippocampal-PFC activity dynamics during SWM 

performance. Moreover, no studies to date have definitively parsed the specific long-range 

neuronal projections that may mediate, through gain or loss of function, disease-altered 

hippocampal-prefrontal activity dynamics and SWM.

Disordered thalamo-PFC communication and SWM in models for inquiry 

into schizophrenia

Classical post-mortem and modern clinical imaging studies indicate that the thalamus, a key 

hub within cortical–subcortical circuits and an important regulator of cortical activity, is 

Kupferschmidt and Gordon Page 10

Brain Neurosci Adv. Author manuscript; available in PMC 2019 May 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



structurally and functionally abnormal in patients with schizophrenia (Buchmann et al., 

2014; Glahn et al., 2008; Hazlett et al., 1999; Hazlett et al., 2004; Kemether et al., 2003; 

Konick and Friedman, 2001; McCarley et al., 1999; Minzenberg et al., 2009; Pakkenberg, 

1992). Consistent with their strong reciprocal connectivity, the thalamus and PFC show 

disordered functional connectivity in patients with the disorder (Anticevic et al., 2015; Cho 

et al., 2016; Woodward and Heckers, 2016; Woodward et al., 2012). Thalamo-PFC 

disconnectivity manifests at rest (Anticevic et al., 2014; Giraldo-Chica and Woodward, 

2017; Welsh et al., 2010) and during cognitive and working memory testing (Andrews et al., 

2006; Bor et al., 2011; Katz et al., 1996; Mitelman et al., 2005; Schneider et al., 2007). 

Probing the structural basis of this functional disconnectivity, compelling recent work 

showed in patients with schizophrenia that reductions in thalamo-PFC white matter 

connectivity correlated with impairments in PFC functional activation and working memory 

task performance (Giraldo-Chica et al., 2017; Marenco et al., 2012).

Few clinical and rodent studies of genetic predisposition to schizophrenia have shown 

evidence of altered thalamo-PFC communication, particularly in SWM. Products of the 

neuregulin-1 gene, NGR1, have been shown in mice to mediate thalamo-cortical axon 

pathfinding (Lopez-Bendito et al., 2006). This mirrors clinical evidence linking 

schizophrenia-associated risk variants of the gene with reductions in the structural integrity 

of the anterior thalamic radiation that connects the MD and anterior thalamic nuclei to the 

PFC (Barnes et al., 2012; Sprooten et al., 2009). Evidence that neuregulin-1 mutant mice 

show reduced NMDAR levels in the thalamus (Newell et al., 2013) is particularly intriguing 

given recent work from Yasuda et al. (2017) showing that the ablation of NMDARs in 

intralaminar thalamic nuclei attenuates oscillatory power measured by 

electroencephalography (EEG) in alpha-, beta- and gamma-frequency ranges and induces 

schizophrenia-like SWM deficits that are rescued by restoring thalamic NMDARs. No 

preclinical evidence to date indicates disruption in thalamo-PFC communication resulting 

from the schizophrenia-associated 22q11.2 or 15q13.3 microdeletions, and only mixed 

evidence of abnormal thalamic structure has been reported in 22q11.2 clinical populations 

(Bish et al., 2004; Lin et al., 2017). Similarly, environmental and developmental models of 

potential relevance to schizophrenia have produced limited evidence of disordered thalamo-

PFC function or its contribution to SWM deficits, and evidence of altered thalamic volume 

and neuronal density from these models is modest and mixed (Crum et al., 2017; Matricon et 

al., 2010; Moore et al., 2006).

Studies using pharmacology to model aspects of schizophrenia, particularly those modelling 

NDMAR hypofunction, provide the most insight to date into disease-related dynamics of 

thalamo-PFC communication (Pratt et al., 2017). Acute and chronic administrations of 

NMDAR antagonists that induce SWM deficits (Enomoto and Floresco, 2009; Verma and 

Moghaddam, 1996) enhance activity-related gene expression in the thalamus (Castane et al., 

2015), but exert mixed effects on the firing of thalamic neurons (Celada et al., 2013; Furth et 

al., 2017; Santana et al., 2011). Using 2-deoxyglucose imaging in rats, Dawson et al. (2013) 

showed that acute and chronic (Dawson et al., 2014) ketamine induced respective hypo- and 

hypermetabolism in the thalamus and PFC, as well as abnormal thalamo-PFC connectivity, 

paralleling that seen in humans (Langsjo et al., 2004). Interestingly, the same study showed 

increased functional connectivity between the PFC and thalamic reticular nucleus (Dawson 
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et al., 2013), a structure that inhibits and exerts oscillatory influence over other thalamic 

nuclei (Mitrofanis and Guillery, 1993; Pratt et al., 2017). Neural oscillations in thalamo-

cortical circuits are particularly modulated by NMDAR antagonists, showing preferential 

increases in power at higher frequency ranges that have been implicated in cognitive 

functions like SWM (Pratt et al., 2017; Uhlhaas and Singer, 2013; Zhang et al., 2012). For 

example, recent work by Furth et al. (2017) showed in rats that ketamine increased power 

within a comparable gamma-frequency range in the mPFC and MD thalamus, but was 

without effect on thalamo-PFC synchrony. Ketamine also induced contrasting neural activity 

dynamics in the mPFC and MD, increasing the rate and gamma phase-locking of neuron 

firing in the mPFC, but decreasing both measures in MD neurons (Furth et al., 2017). Lower 

frequency oscillations, including delta oscillations, have also been shown to be altered by 

NMDAR antagonism (Buzsaki, 1991; Zhang et al., 2009), as they are in schizophrenia 

(Boutros et al., 2008; Clementz et al., 1994; Fehr et al., 2001). For example, systemic and 

local NMDAR blockade within the MD (but not the mPFC) increased delta-frequency power 

in the mPFC (Kiss et al., 2011a, 2011bb), supporting a role for thalamic NMDAR 

hypofunction in thalamo-PFC activity dynamics. Interestingly, infusion of ketamine into the 

nucleus reuniens of the thalamus increased delta oscillations locally and in hippocampal 

CA1, and inhibition of the reuniens prevented this increase in hippocampal delta (but not 

gamma) oscillations following systemic NMDAR antagonism (Duan et al., 2015; Zhang et 

al., 2012). Supporting the behavioural relevance of these thalamus-derived delta oscillations, 

optogenetic activation of inputs from the reuniens to the dorsal hippocampus at a 3 Hz 

(delta) frequency impaired SWM performance (Duan et al., 2015).

To date, very few studies of schizophrenia-related models have assessed the thalamo-PFC 

activity during SWM performance and therefore do not inform how disordered thalamo-PFC 

communication may dynamically vary as the information processing requirements move 

from encoding to maintenance to retrieval across a given trial (Figure 1; Bolkan et al., 2017; 

Miller et al., 2017). Fewer studies yet have probed task period–specific and frequency-

specific roles for discrete long-range neuronal projections that connect the thalamus and 

PFC, directly or indirectly, in disordered SWM.

Outstanding questions and future directions

Considerable advances have been made towards an understanding of the dynamic 

communication of the PFC with its hippocampal and thalamic network partners that 

supports SWM. Modern preclinical work has revealed that long-range projections between 

these structures contribute to inter-regional neural synchrony and convey contextually tuned 

information to facilitate effective SWM (Figure 1(a)). Evidence indicates that the 

hippocampus and PFC are functionally coupled at various stages of SWM, and the direction 

of this coupling may transition from a predominantly hippocampus-to-PFC information flow 

during encoding and maintenance to a ‘top-down’ flow during retrieval (see also 

Eichenbaum, 2017; Place et al., 2016). Theta-frequency interactions between the 

hippocampus and PFC may provide a conduit for information pertaining to the maintenance 

and retrieval of encoded spatial representations in SWM (see also Kang et al., 2018). 

Gamma-based functional coupling of the hippocampus and PFC may play a privileged role 

in the encoding of spatial representations, and direct inputs from the ventral hippocampus to 
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the PFC appear to subserve this coupling. Thalamic-PFC communication seems to 

complement the roles of hippocampal-PFC interactions in SWM. Thalamic influence over 

PFC activity may be strongest during SWM maintenance, perhaps serving to amplify and 

sustain cortical representations of the memory trace (Halassa and Kastner, 2017; Parnaudeau 

et al., 2017), and this influence may reverse during SWM retrieval and action execution. 

This bidirectional interaction, which may be mediated via oscillations in the beta frequency, 

requires the function of direct reciprocal thalamo-PFC projections.

Disordered prefrontal connectivity and communication with the hippocampus and thalamus 

appear to be associated with SWM deficits seen in schizophrenia and its related rodent 

models (Figure 1(b)). Genetic risk models provide the strongest evidence that impaired 

hippocampal-PFC theta synchrony underlies schizophrenia-related impairments in SWM. 

Other models provide general support for altered oscillatory signatures in the two structures, 

particularly in the theta- and gamma-frequency ranges. A less clear description of disordered 

thalamo-PFC communication derives from these models. Indeed, although they show altered 

functional connectivity and reveal opposing disease-related alterations in neural activity 

between the thalamus and PFC, few of these models provide evidence of altered thalamo-

PFC neural synchrony, particularly in the beta-frequency ranges implicated in normal SWM. 

Notably, the anatomical and functional heterogeneity of juxtaposed thalamic nuclei, coupled 

with the regional diversity of PFC and hippocampal cells and circuits, likely contributes to 

variability in the literature.

More importantly, however, very few studies of schizophrenia-related models involve 

simultaneous recordings from the PFC, thalamus and hippocampus during SWM 

performance. Rigorous analysis of dynamic changes in the strength and directionality of 

inter-regional coherence as animals encode, maintain and retrieve SWM representations 

stands to reveal more nuanced and predictive electrophysiological endophenotypes of 

schizophrenia. Furthermore, studies attempting to normalise these endophenotypes with 

established and emerging treatment strategies will serve as powerful within-subject tests of 

their validity and help identify those warranting deeper mechanistic study.

Tests of causality are critical to meaningfully advance the understanding of the neural basis 

of normal and disordered SWM. Loss- and gain-of-function manipulations with the temporal 

and spatial resolution afforded by modern optogenetics are required to not only parse the 

discrete cells and projections that mediate SWM function and dysfunction, but also to test 

the causal relevance of their discrete activity patterns. Open- and closed-loop interventions 

that replicate, strengthen, weaken or clamp specific oscillatory patterns by the informed and 

real-time manipulation of discrete cells and projections are beginning to be employed 

(Grosenick et al., 2015; Jadhav et al., 2012; Padilla-Coreano et al., 2017; Roux et al., 2017; 

Siegle and Wilson, 2014). Such approaches will help reveal the hippocampal- and thalamo-

PFC network dynamics that promote or impair SWM, and advance our understanding of 

these processes beyond the realm of correlation.

Finally, SWM is a cognitive domain that is ideally suited for translational research, as it is 

testable in rodents and primates, and its deficits in schizophrenia are recapitulated in many 

models. Future efforts to parse the neural circuit bases of normal and disordered SWM 
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should prioritise neural synchrony and connectivity phenotypes that are shared between 

these species, and between the clinical condition and its associated models. Increased 

clinical application of traditionally preclinical SWM tasks (e.g. Bahner et al., 2015) will aid 

in identifying phenotypes with the clearest translational utility. Of course, meaningful 

comparison of these phenotypes requires continued efforts to relate diverse electrical and 

metabolic measures of neural synchrony and connectivity (Logothetis, 2015), sober 

consideration of anatomical, functional and behavioural homology across species (Seamans 

et al., 2008; Uylings and van Eden, 1990) and critical evaluation of the validity of animal 

models of potential relevance to schizophrenia (Cope et al., 2016; Nestler and Hyman, 

2010). Therefore, as rodent systems continue to reveal fundamental neural substrates and 

principles of network function underlying SWM, concurrent development of non-human 

primate models of schizophrenia predisposition (Jennings et al., 2016) will enable testing of 

these findings in animals with brains and behaviours that more closely resemble our own.
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Figure 1. 
(a) Neural pathway–specific roles in distinct periods of a delayed non-match-to-sample T-

maze spatial working memory task. Performance on this task is impaired by optogenetic 

inhibition of ventral hippocampus (vHPC) inputs to the prefrontal cortex (PFC) during the 

sample period, mediodorsal thalamus (MD) inputs to the PFC during the delay period, and 

PFC inputs to the MD during the choice period (Bolkan et al., 2017; Spellman et al., 2015). 

(b) Schematic noting some emerging electrophysiological endophenotypes of PFC 

miscommunication with the HPC and MD during spatial working memory in rodent models 

for the study of schizophrenia (e.g. Dickerson et al., 2010; Hunt and Kasicki, 2013; 

Sigurdsson et al., 2010).
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