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Abstract

Many psychiatric disorders are characterized by a strong sex difference, but the mechanisms 

behind sex-bias are not fully understood. DNA methylation plays important roles in regulating 

gene expression, ultimately impacting sexually different characteristics of the human brain. Most 

previous literature focused on DNA methylation alone without considering the regulatory network 

and its contribution to sex-bias of psychiatric disorders. Since DNA methylation acts in a complex 

regulatory network to connect genetic and environmental factors with high-order brain functions, 
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we investigated the regulatory networks associated with different DNA methylation and assessed 

their contribution to the risks of psychiatric disorders. We compiled data from 1,408 postmortem 

brain samples in three collections to identify sex-differentially methylated positions (DMPs) and 

regions (DMRs). We identified and replicated thousands of DMPs and DMRs. The DMR genes 

were enriched in neuronal related pathways. We extended the regulatory networks related to sex-

differential methylation and psychiatric disorders by integrating methylation quantitative trait loci 

(meQTLs), gene expression, and protein-protein interaction data. We observed significant 

enrichment of sex-associated genes in psychiatric disorder-associated gene sets. We prioritized 

2,080 genes that were sex-biased and associated with psychiatric disorders, such as NRXN1, 

NRXN2, NRXN3, FDE4A and SHANK2. These genes are enriched in synapse-related pathways 

and signaling pathways, suggesting that sex-differential genes of these neuronal pathways may 

cause the sex-bias of psychiatric disorders.

Introduction

Many psychiatric disorders are characterized by a strong sexual difference including 

different prevalence, age of onset, symptom severity, and responses to medications. For 

example, males are 3 ~ 4 times more likely to develop autism spectrum disorder (ASD) 1, 2 

and typically have an earlier age of onset and a worse course of treatment for schizophrenia 

(SCZ)3. Females are 2 ~ 3 times more likely to develop major depression disorder (MDD)4 

and exhibit greater symptom severity, greater functional impairment, more atypical 

depressive symptoms and higher rates of comorbid anxiety5. Understanding the basis of sex 

difference in these disorders can provide important insights into their etiology and offer an 

opportunity to deliver sex-specific treatments and care.

At least four models have been proposed to explain sex bias of psychiatric diseases6–8: 

specific susceptibility genes that reside on the X or Y chromosome9, differential genetic 

liability thresholds between the sexes7, major influences of hormonal levels in the sexes10, 

and gene-sex interactions11. A recent study that systematically evaluated the four models 

proposed that genetic-environmental interaction has a strong contribution of sex bias in 

psychiatric disorders12. However, the molecular mechanisms that link genetic-environmental 

factors to sex-biased phenotypes are unknown.

Epigenetics is the product of genetic and environmental influences13, thus epigenetic 

modifications of DNA are attractive candidates for explaining sexual differences. DNA 

methylation, the best-studied type of DNA modification, has been reported to play important 

roles in sexually differential characteristics of the human brain14–29. For example, McCarthy 

et al. conducted a meta-analysis on multiple tissues including brain and found sex-specific 

methylated genes related to immune response, RNA splicing, and DNA repair26. Xu et al. 
reported sex-specific methylated genes that participate in ribosome structure and function, 

RNA binding, and protein translation in adult postmortem prefrontal cortex21. Spiers et al. 
analyzed sex-differential methylation in fetal brain and found a highly significant correlation 

with results from Xu et al., indicating that most sex differences in the brain methylome occur 

early in fetal development and are stable throughout life21. However, these studies only 

focused on DNA methylation and did not study the regulatory networks associated with this 
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epigenetic modification. It is unknown whether or how these regulatory components, which 

contain upstream genetic regulators30 and a cascade of downstream gene expression and 

associated protein networks, could influence sex bias of psychiatric disorders.

The purpose of this study is to describe the landscape of sex-differential DNA methylation, 

explore its regulatory networks, and evaluate their potential involvement in psychiatric 

disorders. Our hypotheses are: 1) Sex-differences exist at both DNA methylation and its 

regulatory networks; 2) Psychiatric disorder- related genes have different methylation levels 

or different methylation regulation between male and female. We compiled data from 1,408 

postmortem brain samples from three collections and investigated sex-associated individual 

CpG loci (differential methylation positions, DMPs) and genomic regions (differentially 

methylated regions, DMRs). Then we investigated the related genetic, transcriptomic and 

proteomic regulatory networks of DMPs or DMRs. Further, we explored their contribution 

to the sex bias of psychiatric disorders. We found 2,080 genes with sex-differential 

methylation that have been previously associated with psychiatric disorders. These genes are 

enriched in synapse-related and signaling pathways.

Materials and Methods

To systematically explore sex-differential DNA methylation profiles and related regulatory 

networks in human brain, we obtained data of 1,408 human postmortem brain samples from 

three collections, the Religious Orders Study and the Rush Memory and Aging Project 

(ROSMAP)30, Jaffe et al.19, and Horvath et al. 31 (Fig.1). The ROSMAP dataset was 

generated from dorsolateral prefrontal cortex (DLPFC) of 698 non-psychiatric controls 

which contained 227 males and 471 females. For the collection of Jaffe et al., we used the 

DLPFC data from 450 controls without any known history of psychiatric disorders (158 

Female, 292 Males) across the lifespan. For the collection of Horvath et al., 260 control 

samples (130 Females, 130 Males) from multiple brain regions were collected, including 

caudate nucleus (n=12), cingulate gyrus (n=12), cerebellum (n=32), frontal cortex (n=41), 

hippocampus (n=25), midbrain (n=18), motor cortex (n=12), occipital cortex (n=33), parietal 

lobe (n=23), sensory cortex (n=12), temporal cortex (n=29), and visual cortex (n=11) 31.

DNA methylation data

DNA methylation was characterized using Illumina HumanMethylation450 BeadChips to 

interrogate more than 485,000 methylation sites in the three collections. Raw data (idat 

format) was provided by both ROSMAP and Jaffe et al. (GSE74193), while the β value 

matrix was provided by Horvath et al. (GSE64509). We used the ROSMAP data as the 

discovery dataset for sex-differential DNA methylation profiling since it had the largest 

sample size. GSE74193 and GSE64509 were used as the replication datasets. We used data 

from all the brain regions in GSE64509 to replicate the results from discovery dataset.

Gene expression data

Gene expression data was obtained from ROSMAP samples using RNA-sequencing from 

DLPFC of 540 individuals (a subset of DNA methylation samples). Gene expression data 

were normalized using fragments per kilobase of transcript per million (FPKM) values. 
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Detailed descriptions of data acquisition, RNA-seq protocols and the process pipeline are as 

described previously32.

MeQTL data

The meQTL data was obtained from the Jaffe et al. and ROSMAP. In the ROSMAP study, 

Ng et al. performed meQTL mapping between SNPs and methylation in 5kb windows 

among 463 individuals. In total 9,939,236 SNP-methylation pairs were tested which 

contained 2,358,873 SNPs and 412,152 CpG sites, resulting in 693,696 significant meQTL 

pairs (383,920 SNPs with 56,973 CpG sites) using a Bonferroni corrected p-value threshold 

(adj.p < 0.05, two-tailed) (detailed procedure of meQTL mapping is described previously32). 

Jaffe et al. performed meQTL mapping in 20kb windows among 258 individuals. In total 

7,426,085 SNPs and 477,636 CpG sites were analyzed, resulting in 4,107,214 significant 

meQTLs at a False Discovery Rate (FDR) < 1%. In this study, we combined these two 

meQTL datasets, and used only the reproducible meQTLs pairs that were statistically 

significant in both datasets.

Protein-protein interaction data

The Protein-protein interaction (PPI) data, for building downstream regulatory network, was 

derived from the Pathway Commons resource33 based on the procedure described by West et 
al.34. The PPI network consists of 8,434 genes (annotated to NCBI Entrez identifiers) and 

303,600 interactions.

Quality control and Preprocessing

We used the R package ChAMP (version 1.2.1)35 to process the raw idat format methylation 

data. The function champ.load was used to remove probes meeting the following criteria: 1) 

probes with a detection p-value above 0.01 in one or more samples; 2) probes with beads 

count < 3 in at least 5% of samples; 3) probes with SNPs as identified in Zhou et al36.; and 

4) probes that align to multiple locations as identified in Zhou et al36. Probes with a β value 

of 0 were replaced with 1.00e-6, and probes with missing β values were imputed using a k-

nearest neighbor algorithm by impute.knn function in impute package37. Samples with more 

than 1% of probes filtered were removed. We next used beta mixture quantile dilation 

(BMIQ) in function champ.norm to adjust the β values of type II probes into a statistical 

distribution characteristic of type I probes, which has previously been shown to best 

minimize the variability between replicates38. After BMIQ normalization, we further filtered 

the probes based on the high-quality probes39 defined by Naeem et al. Probes were removed 

when they had: 1) the variants based on the 1000 Genomes database, 2) small insertions and 

deletions, 3) repetitive DNA, and 4) regions with reduced genomic complexity that may 

affect probe hybridization.

Considering the impact of variable cell- types’ compositions on DNA methylation, we 

calculated the cell type compositions of the brain tissue using a reference-based method, 

RefbaseEWAS40. We downloaded DNA methylation reference data from 28 control brains, 

that had been processed by fluorescence activated cell sorting to extract different cell 

types41. We calculated cell-type proportions and used the values as covariates in further 

analysis. We applied the singular value decomposition method (SVD)42 to identify unknown 

Xia et al. Page 4

Mol Psychiatry. Author manuscript; available in PMC 2020 October 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



covariates. ComBat function was used to correct batch effects and position effects43–45. 

Other confounders such as age and post-mortem interval (PMI) were controlled using a 

linear regression model. Confounder removal was confirmed by surrogate variable analysis 

(SVA)44.

Quality control for gene expression data involved selecting genes with FPKM >0.1 in in at 

least 10 samples which removed the low expressed genes. Potential confounders such as 

batch effects, age, and cell component were removed by SVD. We used the log 2 

transformed FPKM value for further association analysis.

Sex-differential methylation positions and regions.

After removal of all confounders, statistical analysis was implemented to identify sex-

differential methylation positions (DMPs) and regions (DMRs). Since the M-values (log2 

ratio of the intensities of methylated probe versus unmethylated probe) are more statistically 

valid for the differential analysis of methylation levels46, we calculated the M value from the 

β value and used the M-value to calculate the differential methylation signal between males 

and females using limma47. After correcting the multiple test burden, we defined the 

features with FDR < 0.05 as DMPs (Fig.1.A). To detect the sex-differential DNA 

methylation regions, we used the DMR-finding algorithm DMRcate48, which clustered the 

groups of significant probes (FDR < 0.05) within 1kb as DMR, and excluded DMRs 

containing less than three CpG sites.

Sex-differential regulatory network

To comprehensively understand the DNA methylation regulatory network, we integrated 

upstream genetic regulators, downstream gene expression, and protein-protein networks with 

DMPs and DMRs. The meQTL data from both ROSMAP and GSE74193, gene expression 

from ROSMAP, and PPI data from Pathway Common were used in this regulatory network 

(Fig.1.B). We searched for DMPs and potential upstream regulators using reproducible 

meQTLs from ROSMAP and GSE74193 formed as SNP-DMP pairs. Then we tested the 

association of DMPs with gene expression by calculating the Spearman correlation between 

the methylation level of DMPs (β-value) and the expression levels of nearby genes (10kb). 

This calculation was based on methylation and expression data from 468 brain samples 

(ROSMAP methylation and expression profiling). FDR was used for multiple testing 

correction. The associated DMP-gene pairs were defined using absolute value of correlation 

coefficient > 0.3 and FDR < 0.05. Then, using the DMPs as index, we connected the SNP-

DMP and the DMP-gene pairs to SNP-DMP-Gene groups.

Protein-protein interaction sub-network related to sex-differential DNA methylation

We used a functional supervised algorithm, functional epigenetic modules (FEM)49 to 

identify sub-networks containing genes exhibiting sex-related differential DNA methylation 

in promoter regions. Using probe-level analysis by the champ.EpiMod function, the most 

differentially methylated probe was assigned to each gene, and the protein-protein 

interaction (PPI) sub-networks which inferred the differential methylated module was 

extracted.
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Overrepresentation of psychiatric disorder-related signals in sex-differential loci.

To explore whether genes associated with psychiatric disorder show sex-differential 

methylation or regulation, we tested for enrichment between sexually different DNA 

methylation genes and SCZ-, ASD-, and MDD-associated genes/loci. We completed a series 

of comparisons at the SNPs, CpGs, gene, and protein levels (Fig.1.C).

For SNPs level comparisons, we investigated whether genome-wide significant SNPs 

associated with SCZ, ASD and MDD were enriched in SNPs which regulated DMPs (SNP-

DMP pairs from meQTLs). For CpG-level comparison, we tested whether CpG sites that 

were associated with diseases from epigenome-wide association studies (EWAS) were 

enriched in DMPs. For the gene level comparisons, we determined if genes associated with 

SCZ, ASD, and MDD show sex-differential manner. The sex-differential genes contained 

DMR genes, DMP associated expression genes, sex-differential expression genes, and genes 

in the sex-related PPI network. The disorder related genes came from genetic association, 

differential expression and co-expression studies. Due to data availability limitations, we 

studied SCZ, ASD, and MDD separately in SNP and gene analysis, SCZ and ASD in 

network analysis, and SCZ only in methylation site analysis. Fisher’s exact test was used in 

the enrichment test. We defined significant enrichment as FDR < 0.05 and Odds ratio (OR) > 

1.

Psychiatric disorder related signals

The psychiatric risk gene sets or variants were collected from publications and databases 

(Table S1). For SNP analysis, we used the latest GWAS results of SCZ50, ASD51, and 

MDD52; for CpG analysis, we collected Epigenome-wide associate study (EWAS) of 

SCZ19, 53; for gene analysis, we collected the genes from multiple resource which were 

classified into 36 categories. The gene identifiers were converted to Ensembl Gene IDs in 

Gencode (GRCh38.p12) using BioMart (https://useast.ensembl.org/index.html).

1. For ASD gene sets, using studies on genetics, differential expression, and co-

expression, we examined 1) genes with rare, de novo, loss of function or 

missense single nucleotide variants from the NPdenovo database54; 2) FMRP 

(Fragile X mental retardation protein) binding targets55; 3) candidate genes from 

the gene reference resource for ASD research database, AutDB56; 4) differential 

expression genes from a recent meta-analysis57 and the PsychENCODE 

project58; 5) two ASD-associated co-expression modules in post-mortem cortex 

from subjects diagnosed with ASD59, three ASD-associated co-expression 

modules from a subsequent RNA-seq study by Gupta et.al60, and six ASD-

associated co-expression modules reported by Parikshak et.al 61.

2. For SCZ gene sets, we examined 1) genes affected by CNVs62; 2) genes 

identified by linkage and association study63–65; 3) genes with de novo variants 

from NPdenovo database54; 4) genes identified by convergent functional 

genomics (CFG)66; 5) genes identified by Sherlock integrative analysis67, 68; 6) 

genes identified by Pascal gene-based test67; 7) genes expressed differentially in 

SCZ57, 58; 8) two SCZ associated co-expression modules69.

3. For MDD gene sets, we examined only genes expressed differentially in MDD57.
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Prioritize the sex-differential psychiatric genes.

To prioritize psychiatric candidate genes that are also related to sex bias, we completed a 

comprehensive integration of the multiple-layers of sex-related genes with the multiple 

sources of psychiatric-related genes (Fig.1.D). The multiple-layers of sex-related genes 

contained four types: the DMR genes, DMP correlated genes, sex-differential expressed 

genes, and sex-differential network. We identified genes as sex-related psychiatric genes 

(SRPG) by counting the recurrence of a gene in each category. We developed a generalized 

score to rank disease related genes, calculated by multiplying the number of times a gene 

occurred in sex-related genes categories by the number of times the same gene occurred in 

related psychiatric disease categories.

Functional enrichment.

R package missMethyl70, which can adjust for the different number of probes per gene (also 

called selection bias), was used to identify the functionally enriched pathways for DMPs and 

DMRs. We used WebGestatle71 and WebGestalt-KEGG pathway71 for functional 

enrichment tests of DMPs and DMRs, psychiatric disorder-related genes, and SRPG, 

respectively. The minimum number of Entrez gene IDs in the category was set to 5, and the 

maximum was 2000. Genome-expressed genes were used as reference. The Benjamini-

Hochberg test was used for multiple testing. We defined significant threshold as adjusted p 

value <0.05.

Results

Sex-differential DNA methylated positions and regions

We identified 20,450 DMPs significantly associated with sex (FDR < 0.05) in DLPFC from 

166,022 CpG sites (Fig. 2, Fig. S1. Table S2). For the convenience of classification, we 

named the DMP with higher methylation in females than in males as hypermethylated, and 

hypo-methylated otherwise. Of those 20,450 hits, 75.39% DMPs were mapped to 

autosomes, which contained 8,693 hypo-methylated DMPs (56.39% out of the 15,417 DMPs 

at autosomes). There were 26.50% DMPs mapped to the X chromosome, which contained 

1,530 hypo-methylated DMPs (28.23% out of the 5,419 DMPs at X chromosome).

The DMPs were well-replicated in the two independent replication datasets. In the replicate 

data of prefrontal cortex, GSE74193, 86.8% autosomes DMPs were replicated (FDR < 

0.05), 92.8% X chromosome DMPs were replicated, all of them were consistent in direction 

with the discovery dataset. In another replicate dataset of multiple brain regions 

(GSE64509), 72.8% autosomes DMPs were replicated (FDR < 0.05) and 98.6% of those 

replicated had the same direction as the discovery dataset, while 95.9% X chromosome 

DMPs were replicated and all of them had the same direction as the discovery dataset.

There were 2,428 sex-differential DMRs mapped to 2,513 genes (Table S3), containing 

1,085 genes with only hypermethylated DMPs (DMR_hyper), 1,351 genes with only 

hypomethylated DMPs (DMR_hypo), and 77 genes with both hypermethylated and 

hypomethylated DMPs (DMR_both). The DMR genes were strongly enriched for gene sets 

of neuronal function or potentially related to psychiatric diseases such as axon guide 
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(Benjamini-Hochberg adjusted p-value (adj.p) = 2.04e-07), MAPK (adj.p= 2.27e-05 ) and 

calcium signaling (adj.p= 4.95e-05) (Table 1).

Regulatory networks related to sex-differential DNA methylation

To comprehensively understand the regulatory network of DNA methylation, we considered 

upstream genetic regulators, downstream gene expression and the protein-protein 

interactions which may be influenced by methylation difference. The genetic regulators were 

defined by meQTL and the downstream gene expression analysis was based on the 

correlation between methylation and gene expression.

For upstream regulation,we used meQTLs to study the relationship between genetic variants 

(SNP) and DMPs. We started by overlapping the meQTL data of ROSMAP and GSE74193 

to obtain a list of meQTL with good reproducibility, which included 434,312 meQTL pairs 

that were significant (with FDR< 0.05) in both dataset (253,471 SNPs, 45,049 CpGs). From 

the reproducible meQTLs, we found 22,782 sex-related meQTLs (SNP-DMP pairs) that 

included 2,644 DMPs (12.9 % of the 20,450 DMPs) associated with 18,349 SNPs (Table 

S4). These results indicated that 12.9% DMPs were regulated by genetic variants.

For target gene expression, we performed correlation analysis between methylation and gene 

expression in data of DLPFC from the ROSMAP. The correlation test of 20,450 DMP with 

nearby genes’ expression (10kb) showed that 1,363 DMPs had a significant correlation with 

627 genes (FDR < 0.05), forming 1,525 DMP-gene pairs (Table S5). These results showed 

that 6.7% DMPs may influenced the gene expression.

We further used the DMP as a linker between SNPs and genes, and built 3,161 SNP-DMP-

gene groups, containing 2,054 SNPs, 276 DMPs and 200 genes (Table S6). These SNP-

DMP-gene groups connected the genetic variants to gene expression through sex-differential 

DNA methylation. For example, rs10143703 can regulate cg04842215, and methylation of 

cg04842215 correlated with expression of CBLN3 (Fig. 3. A).

We further extended regulatory network of DNA methylation by adding protein-protein 

interactions. Expression of many genes may not be influenced by sex directly, but they 

interact with differently expressed genes to execute their specific functions. To retrieve these 

related genes, we obtained 19 PPI sub-networks (Fig. 3. B, Fig.S2) that were related to our 

sex-differential methylated DNA. For example, promoters of FOXO4, FTL, BRF2, 

GREB3L3, and TBCB in these sub networks exhibited hypermethylation in females (Fig. 3. 

B). In contrast, GADD45A, AKT2, TRO, and RNF220 exhibited hypomethylation in 

females. Many genes in these subnetworks did not show sex difference, such as CEBPG, 
CREB3L1, HECW1, TSPYL5, PLEKHO1, USP7, ARNT2, NPAS4, CAT, FOXO3, FOXG1, 
RBL. Through the interaction with the genes showed sex-biased methylation, these genes 

who did not show sex difference may function in a sex different way.

Overrepresentation of psychiatric disease signals in sex-differential loci

To learn whether psychiatric disorder related genes show sex-differential methylation or 

regulation, we tested for enrichment between the signals related to sex-differential 

methylation networks and genetic signals associated with psychiatric disorders. Focusing on 
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SCZ, ASD and MDD, we found significant enrichment at the SNP, methylation site, gene, 

and network levels.

At the SNP level, we compared the SNPs which regulated DMPs by meQTLs with the 

GWAS SNPs which associated with SCZ, ASD and MDD. We extracted 9,138 SNPs 

associated with SCZ at P< 5.00e −08 from PGC72 and found 63 SNPs that regulated DMPs. 

These SNPs were more likely to regulate DMPs (63 of 9138 compared with the background 

18,349 of 8,379,106, odds ratio for enrichment (OR) =3.15, P =8.47e-15). For ASD, 93 

SNPs were extracted at P < 5.00e −08 from PGC51, but none of them regulated DMPs. For 

MDD, we extracted 912 SNPs associated with MDD at P < 5.00e-08. We did not observe 

enrichment of MDD-associated SNPs in those that regulate DMPs. However, one SNP, 

rs61990288, which was associated with MDD, was also a meQTL SNP that regulated a 

DMP.

At the CpG level, we compared our sex-related DMPs with the Epigenome-wide association 

study (EWAS) results of Jaffe et al.19 (n=750 samples), who tested SCZ brains. Using an 

EWAS P value less than 5.00e-05 as the cut-off, we extracted 1,059 CpG loci associated 

with SCZ. Among these 1,059 CpG sites, 21 CpGs that was associated with SCZ and show 

sex-differential methylation. We did not find enrichment of sex-differential DMPs 

(OR=0.16, P = 1.68e-35). We also used SCZ EWAS results from Hannon et.al53, who 

quantified DNA methylation from blood samples. The DMPs were not enriched for CpGs 

associated with SCZ (OR=0.01, enrichment P = 4.39e-05), but 81 CpGs was associated with 

SCZ and show sex-differential methylation.

To determine whether genes associated with ASD, SCZ, and MDD show sex-related 

differential methylation, we collected disease candidate genes that covered genetics, 

differential expression and co-expression studies (Fig. 4.A, Table S7). For ASD related gene 

analysis, we observed significant enrichment of DMR genes with ASD-related risk genes 

with loss of function de novo variants (OR= 1.77, Fisher exact t-test P = 5.44e-3), FMRP 

gene set (OR=1.71, Fisher exact t-test P =3.00e-9) and candidate genes from AutDB 

(OR=2.86, Fisher exact t-test p value= 2.84e-10), but genes with missense de novo 
mutations were not enriched in DMR genes (OR= 1.34, Fisher exact test P =5.37e-2). DMR 

genes were also enriched in ASD-related differentially expressed gene sets and co-

expression modules. For SCZ related gene analysis, we observed significant enrichment of 

DMR genes with missense de novo mutation genes, loss of function de novo mutation genes, 

differentially expressed SCZ genes, and also SCZ-associated co-expression genes. However, 

in contrast with ASD, the DMR genes were not enriched in genes identified by linkage63–65, 

Sherlock67, 68, Pascal67, and CFG66 in SCZ. For MDD, we did not find enrichment of DMR 

genes with differentially expressed or co-expressed genes.

To take the direction of the DMR into account, we tested for enrichment of disease related 

genes in the DMR_hyper genes, DMR_hypo genes and DMR_both genes (Fig.4.B, Table 

S7). We found up-regulated different expression gene sets and up-regulated co-expression 

gene sets in ASD were enriched in DMR_hyper genes, whereas down-regulated different 

expression gene sets and down-regulated co-expression genes sets in ASD were enriched in 
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DMR_hypo genes. In contrast, in gene sets of MDD, we found down-regulated differential 

expression genes enriched in DMR_hyper genes.

We also tested the enrichment of DMP-correlated expression genes and sex-differential 

expressed genes (Table S7, Fig.4.A) against genes associated with ASD, SCZ, and MDD. 

By clustering analysis, we found DMP-correlated genes had a similar enrichment pattern as 

DMR genes, but not the sex-differential expressed genes.

While some sex-differential methylated genes are also risk genes, some other risk genes may 

interact with sex-differential genes through protein networks. Differential methylation can 

impact functions of both types of genes at the system level. The ASD- and SCZ-related 

genes were mapped to the PPI sub-networks that exhibit sex-related differential DNA 

methylation. The sex-differential PPI sub-networks connected the sex-differential genes to 

psychiatric disorder candidate genes. For example, the sex-differential network—with 

FOXO4 as a hub gene, a sex-differential gene, interacts with 29 other genes and 20 of them 

were ASD-related genes (Fig.3.B). Even though they were not sex-differential methylated 

genes, their functions were affected by their sex-dependent patterns.

Prioritize the psychiatric risk genes that involve sex bias

Since enrichment of sex-related genes was observed among psychiatric disorder- associated 

genes, we attempted to identify specific risk genes that are under sex-dependent regulation. 

We defined sex-related psychiatric genes (SRPGs) as genes that were associated with sex at 

least once and associated with at least one of the psychiatric disorders (SCZ, MDD or ASD) 

(Table S10). For example, complexin/ synaphin gene, CPLX1 was a DMR gene, and its 

expression level correlated with a DMP. CPLX1 was related with ASD and SCZ from 

multiple studies involving genetic variants55 and co-expression changes in postmortem brain 

of ASD patients57, 59, 60. Therefore, CPLX1 was a SRPG.

Of the 13,055 studied genes, we identified 2,080 SRPGs (1,498 ASD-related, 1,349 SCZ-

related, and 51 MDD-related). These genes were sub-group of psychiatric disorder genes 

which enriched in synapse and signaling pathways (Table 2, Table S11). Of the 1,498 

SPRGs related to ASD, 98 genes were associated with sex-differential features and ASD 

associated features in several analyses. The top ten ranking of SPRGs for ASD were 

CPLX1, HEBP2, SYP, CD99L2, ZC3HAV1, SAT1, HECW1, TRO, CD40, STS, and 

NRXN3. Among the 1,349 SCZ-related SRPGs, 55 genes were supported by multiple lines 

of disease risk and differential methylation data. The genes ANOS1, MAGI2, CHRDL1, 
GNG12, MSL3, SMC1A, ITM2A, PLS3, CDK16, ZC3HAV1, and UBTF were ranked in the 

top ten. Eight genes (AR, WWC3, NOS1, PAX8, GRB7, SYTL1, CLIC6, BEGAIN) of the 

MDD-related SRPGs were supported by multiple data. Functional enrichment tests showed 

that the SPRGS with more than two associations with psychiatric disease and sexual 

differences (n=653) were enriched in synapse-related pathways like dopaminergic synapse 

(adj.p =2.3e-4), Glutamatergic synapse (adj.p =2.9e-4), GABAergic synapse (adj.p =2.9e-2), 

and Serotonergic synapse (adj.p=3.8e-2). These SPRGs were also enriched in signaling 

pathways such as the cAMP (adj.p= 5.3e-3), calcium (adj.p=2.8e-2), MAPK (adj.p=2.9e-2), 

and FoxO (adj.p=3.8e-2) (Table 2).

Xia et al. Page 10

Mol Psychiatry. Author manuscript; available in PMC 2020 October 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Discussion

We identified sex-differential DNA methylation and regulatory networks in one of the 

largest studies of postmortem human brain tissue to date. Thousands of sex-differential 

DMPs and DMRs were identified and replicated. We found regulatory networks that connect 

the DMPs with SNPs, gene expression, and protein-protein interaction were built up. 

Enrichment of psychiatric disease-associated genes in DMPs, DMRs, and networks was 

detected.

To assess the consistency between our findings and prior results on sex-differential DNA 

methylation, we compared DMPs in the current analysis with five relevant publications 

(Table 3). These studies differed from ours either in DNA methylation analysis platform 

(27K in McCarthy et al.73), tissue types (cord blood in Yousefi et al.20 and whole blood in 

Singmann et al.22), or subjects’ age range (fetal brain in Spiers et al.). The sample size in the 

current study was much larger than in previous studies. Our results replicated from 10.9% to 

45.3% of the probes that passed QC. 68.4% of our DMPs results are novel findings. These 

novel findings were based on our strict criteria that contained only the high-quality probes39 

and controlled for potential artifacts such as batch effects, position effects, and cell type 

component.

Our data shows that sex-differential genes are enriched in pathways known to be important 

in neurons including axon guidance, MAPK signaling, and calcium signaling. These 

pathways have been previously suggested as being involved in psychiatric risks. For 

example, axon guidance pathways strongly influence human speech and language, and 

deficits in language and communication are hallmarks of ASD74. The MAPK singling 

pathway is reported to determine depression-like behavior and anxiety75, which may be 

contribute to the different prevalence between males and females for MDD. Calcium 

signaling pathways regulate many neural functions involving the generation of brain 

rhythms, information processing and the changes in synaptic plasticity76. Dysregulation of 

calcium signaling pathways has been implicated in the development of psychiatric diseases 

such as SCZ76. The discovery that sex-differential genes are enriched in these important 

pathways may help us to better understand the sex-related mechanisms underlying 

psychiatric disorders.

Our study curated a regulatory system related to sex-differential DNA methylation, which 

supports our first hypothesis that sex-differences exists in both DNA methylation and its 

regulatory network. For each of the DMPs, putative upstream genetic regulators and 

downstream target genes were identified by connecting DMPs with meQTL, genes, and 

protein-protein interaction. Therefore, a more complete biological system that either 

contributes to or is affected by sex-differences come together for their potential involvement 

to disease risks.

We conducted a comprehensive comparison between the sex-differential methylation 

regulation system and psychiatric disorder risk factors, providing support for our second 

hypothesis that psychiatric disorder related genes have different methylation levels between 

males and females. We took advantage of numerous types of data including GWAS, rare 
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variants studies, EWAS, differential expression and co-expression studies to capture 

different aspects of genetic, environmental or the genetic- environmental interaction effects 

and provide new insights into the disease etiology. We found different methylation 

regulation systems between male and female enriched in these different types of psychiatric 

risk factors.

We found common variants that regulate DMPs were enriched in SCZ GWAS signals, which 

expands the multiple liability model. The multiple liability model assumes the same genetic 

variants have the same effect on males and females. Our study demonstrated that the same 

genetic variants have different influences on males and females in DNA methylation. For 

example, GWAS signals of SCZ such as rs4702 and rs12332385, can regulate sex-related 

DMPs through meQTL. Therefore, despite only calculating the accumulation of risk alleles 

in the multiple liability model, both the number of risk alleles and the effect size should be 

included in the model to explain the sex-bias feature of the disorders. Beside the common 

variants from GWAS studies, we observed that sex-differential DMR genes were enriched in 

de novo mutation genes related to SCZ and ASD, which provides evidence that the rare 

variant genes contribute to SCZ and ASD and show a sex-differential methylated pattern in 

DLPFC. We identified EWAS signals showing sex-differential methylation, suggesting the 

baseline methylation level of these EWAS signals of SCZ is different between males and 

females. In the downstream genes, we found DMP-correlated genes enriched in candidate 

genes of ASD, SCZ and MDD. For example, we found significant enrichment of 

differentially expressed genes in MDD enriched in sex-related DMR_hyper genes. Four CpG 

sites (cg22466678, cg15296664, and cg08802841 at intergenic region, cg20722088 at 

3’UTR) on DUSP6 genes show hypomethylation in female. The DUSP6 has been reported 

to be a female-specific hub gene which influenced stress susceptibility in females 77.

One of the most interesting findings in our study is from the comparison of sex-differential 

methylation and expression results with ASD risk genes. We observed enrichment of sex-

differential methylation (DMR genes and DMP correlated genes) in both ASD risk genes 

and ASD related pathways, suggesting the ASD risk genes may contribute to the sex 

difference of the disease through DNA methylation but not gene expression. This result 

expanded the results of Werling et al.6, who reported that an ASD-related pathway, but not 

the ASD risk genes, were enriched in sex-differential expressed genes. ASD-related 

differentially expressed genes and co-expressed genes, not the ASD risk genes that had 

genetic variants, were enriched in sex-differential expressed genes in the current study. 

However, we observed enrichment of sex-differential methylation (DMR genes and DMP 

correlated genes) in both ASD risk genes and ASD related pathways. One of the possible 

explanations is that the DNA methylation as the upstream regulator is more sensitive than 

gene expression32. We found the DMP correlated genes are more likely to be differentially 

expressed, which provided an in-directed support to the explanation. Therefore, 

comprehensive analyses that combine methylation and gene expression are crucial to reach a 

better understanding of complex diseases and their sex differences.

We found ASD loss of function de novo genes are enriched for DMR genes while genes 

with missense de novo mutation are not enriched for DMR genes. Although both loss of 

function de novo genes and missense de novo mutation are associated with ASD, these 
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different enrichment result remain us to consider the genic intolerance. Genic intolerance is 

a quantitative assessment of how well genes tolerate functional genetic variation on a 

genome-wide scale78. Genes with de novo mutations in ASD are generally intolerant genes, 

having important function. It is possible that methylation levels are strictly regulated in such 

intolerant genes, which result in smaller variation across individuals and cause the 

statistically significant sex difference. Though the gene intolerant analysis, we compared the 

residual variation intolerance score (RVIS) of DMR genes and non-DMR genes, and we 

found the DMR genes have a significant lower mean value of RVIS score (mean DMR= 

−0.13, mean non-DMR =0.01, P=1.754e-10), which means the DMR genes are intolerant 

genes with important functions (Supplementary method).

Most notably, we found up-regulated genes in ASD were enriched in hyper-methylated 

DMR genes in females. Hyper methylation may result in low gene expression level, which 

means compare to males, females have a lower expression level of these up-regulated genes 

in ASD. In other words, the relative amount of gene change required for female to reach 

ASD diagnosis is larger than males, which can explain the different prevalence between 

male and female. In the contrast, the down regulated genes in MDD were enriched in hyper 

methylated genes in MDD, which means for the females the relative change is smaller than 

males to reach the MDD diagnosis. These results provide compelling evidence for the 

multifactorial model which hypothesis the sex-specific genetic and environmental factors in 

the sex with lower incidence shift its’ total liability distribution away from the diagnostic 

threshold.

We prioritized psychiatric genes related to sex-bias and highlighted some important 

pathways which are sex-differential and related to psychiatric disorders, including important 

psychiatric disease candidate genes like NRXN1, NRXN2, NRXN3, PDE4A, SHANK2. 

Our study suggests that the synapse-related pathway and several signaling pathways differ 

by sex and may be disrupted in psychiatric disorders. For example, dopaminergic, 

glutamatergic, and GABAergic synapse, all suspected of being involved in psychiatric 

disorders, all differ between male and female. Studies targeting these genes and pathways 

should take sex into account in design and analysis. Studies of these genes and pathways 

may reveal the biology that drives sex-related features of the disorders.

The current study has several limitations. DNA methylation exhibits spatiotemporal patterns 

that cannot be fully captured. Our analyses utilized gene methylation and expression data 

from the human adult prefrontal cortex. Other brain regions known to be robustly sex-

differential were not represented in our data sets, such as the hypothalamic nuclei. The 

current study used bulk tissues, not specific cell types, and expression of genes related to 

psychiatric disorders may vary among brain cell types. Cell-type specific studies based on 

the single-cell or deconvolutional data should be explored in the future. The majority of our 

discovery samples were from an older population that was post-reproductive age. This age 

range does not coincide with the typical age of onset for the major psychiatric disorders. 

Samples from children, adolescent, young adults need to be explored in the future.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Overview of the study design.
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Fig.2. 
Significance and difference of sex-differential DNA methylated positions. (A) Chromosome 

density plot of sex-differential DNA methylated positions, colored by the -log p-value in 

1MB window size; (B) Distribution of the effect size of DMPs (variation between male and 

female average methyaltion levels). The violin plots shows two DMP examples.
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Fig. 3. 
Sex-differential regulatory network. (A) Example of SNP-DMP-Gene groups. There are 12 

SNP-DMP-Gene groups in this region on Chromosome 14: 24,895,387 – 24,912,111, 

involving two SNPs, five DMPs and three genes. The diagram shows the location of them 

while the cartoon diagram shows their relationship. The gray line represents meQTLs with 

FDR<0.05. The blue lines represent negative correlation and red lines represent positive 

correlations. (B) Example of sex-differential PPI subnetworks. Every node represents a 

gene. The color of nodes represents differential methylation levels in corresponding 

promoters (Yellow: hypermethylated in the female; Blue: hypomethylated in female). The 

edges were built based on the protein-protein interaction in Pathway Common. The width of 

the edge is the estimation of effect sizes. Stars represent the candidate genes (Green: ASD 

candidate genes, Red: SCZ candidate genes, Purple: both ASD and SCZ candidate genes)
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Fig. 4. 
A compressive overrepresentation of psychiatric candidate gene sets in sex-biased genes. (A) 

Overrepresentation of psychiatric candidate gene sets in DMR genes, DMP-correlated 

expressed genes, differentially expressed genes, and PPI network genes, clustered by the 

enrichment value. (B) Overrepresentation of psychiatric candidate gene sets in DMR genes 

and subset of DMR genes. The x-axis shows 34 gene sets divided based on the psychiatric 

disorder and labeled by type; the Y-axis shows the DMR genes, DMP correlated expressed 

genes and differentially expressed genes. The color of the box shows the odds ratio for 

enrichment (red for enrichment, blue for deletion). “*” indicates enrichment is statistically 

significant (p < 0.05), “**” indicates p < 0.001.
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Table 1.

DMRs mapped genes enriched KEGG pathways (Top 10).

Pathway Name #Genes adj.P

Axon guidance 24 2.04e-07

MAPK signaling pathway 31 2.27e-05

Pathways in cancer 35 2.27e-05

Metabolic pathways 85 2.27e-05

Focal adhesion 26 2.27e-05

Regulation of actin cytoskeleton 26 4.67e-05

Endocytosis 25 4.67e-05

Calcium signaling pathway 23 4.95e-05

Amoebiasis 16 2.00e-04

Apoptosis 14 3.00e-04

Adj.P: Benjamini-Hochberg adjusted p value.
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Table 2.

Prioritized genes enriched KEGG pathway.

Pathway Name #Genes adj.P

Dopaminergic synapse 16 2.29e-04

Glutamatergic synapse 13 2.99e-03

cAMP signaling pathway 17 5.33e-03

Retrograde endocannabinoid signaling 11 1.00e-02

Circadian entrainment 10 2.34e-02

Amphetamine addiction 8 2.77e-02

Calcium signaling pathway 14 2.77e-02

Chagas disease (American trypanosomiasis) 10 2.77e-02

GABAergic synapse 9 2.89e-02

MAPK signaling pathway 17 2.89e-02

Serotonergic synapse 10 3.80e-02

FoxO signaling pathway 11 3.80e-02

Alcoholism 13 4.35e-02

AGE-RAGE signaling pathway in diabetic complications 9 4.96e-02

Adj.P: Benjamini-Hochberg adjusted p value
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Table 3.

Comparison of DMPs in autosome with other published studies

Study Sample 
size

Population Tissue Platform # of 
AuDMPs

# of AuDMPs 
in pqc

# of AuDMPs 
replicated (%)

McCarthy et al. 
2014

6,795 -- Multiple types 27K 235 75 34
(45.3%)

Xu et al. 2014 46 Caucasian prefrontal 
cortex

450K 614 266 79
(29.7%)

Spiers et al. 2015 179 Caucasian Fetal brain 450K 525 223 85
(36.5%)

Yousefi et al. 2015 111 Mexican-
American

Umbilical cord 
blood

450K 3031 1236 301
(24.3%)

Singmann et al. 
2015

1799 Caucasian Whole Blood 450K 1178 512 56
(10.9%)

Abbr. AuDMPs: autosome differential methylated positions.

pqc: probe quality control
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