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Abstract

Electronic Health Record (EHR) systems typically define laboratory test results using the 

Laboratory Observation Identifier Names and Codes (LOINC) and can transmit them using Fast 

Healthcare Interoperability Resource (FHIR) standards. LOINC has not yet been semantically 

integrated with computational resources for phenotype analysis. Here, we provide a method for 

mapping LOINC-encoded laboratory test results transmitted in FHIR standards to Human 

Phenotype Ontology (HPO) terms. We annotated the medical implications of 2923 commonly 

used laboratory tests with HPO terms. Using these annotations, our software assesses laboratory 
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test results and converts each result into an HPO term. We validated our approach with EHR data 

from 15,681 patients with respiratory complaints and identified known biomarkers for asthma. 

Finally, we provide a freely available SMART on FHIR application that can be used within EHR 

systems. Our approach allows readily available laboratory tests in EHR to be reused for deep 

phenotyping and exploits the hierarchical structure of HPO to integrate distinct tests that have 

comparable medical interpretations for association studies.

INTRODUCTION

Electronic health records (EHRs) have been widely adopted in US hospitals since the Health 

Information Technology for Electronic and Clinical Health Act (HITECH) was passed in 

2009, and offer an unprecedented opportunity to accelerate translational research because of 

advantages of scale and cost efficiency as compared with traditional cohort-based studies.1 

In particular, EHRs contain rich phenotype information that can be utilized to stratify 

diseases and to develop hypotheses. For instance, phenome-wide association studies 

(PheWAS) can exploit EHR data to define case–control cohorts for disease diagnoses or 

laboratory traits and then analyze associations with hundreds of thousands of genetic 

variants.2–4 Despite the great potential of EHR data, patient phenotyping from EHRs is still 

challenging because the phenotype information is distributed in many EHR locations 

(laboratories, notes, problem lists, imaging data, etc.) and since EHRs have vastly different 

structures across sites. This lack of integration represents a substantial barrier to widespread 

use of EHR data in translational research.

Laboratory tests provide a critical resource for phenotype extraction. Deep phenotyping, i.e., 

comprehensive and precise phenotyping of individual disease manifestations, is an essential 

component of precision medicine and could potentially extend the reach of PheWAS studies.
5,6 Laboratory tests have broad applicability for translational research, but EHR-based 

research using laboratory data have been challenging because of their diversity and the lack 

of standardization of reporting laboratory test results. For instance, some tests measure 

nitrite level in urine using an automated machine, whereas others use a test strip. Some 

report the value in mg/dL, whereas others report a qualitative value of positive/negative. If 

any of these tests were abnormal, the medical interpretation would be that nitrituria is 

present, yet current informatics frameworks do not easily support such inferences. 

Therefore, substantial challenges exist for standardization and integration of laboratory data 

for deep phenotyping and EHR-based translational research.

Recent advances in the standardization of EHR systems and phenotype ontologies make it 

feasible to extract patient phenotypes from laboratory tests at a large scale. The Fast 

Healthcare Interoperability Resource (FHIR) was introduced in 2013 and provides a 

standardized interface to individual EHR systems for healthcare-related data.7 FHIR 

separates healthcare-related data into granular components as “resources” such as 

observation, medication, patient identity and insurance claims, which have a standard 

definition and associated semantic bindings, which can be computationally integrated even 

when they are created by different methods and organizations. Laboratory tests, encoded as 

observations in FHIR, are uniquely identified with Laboratory Observation Identifier Names 
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and Codes (LOINC), which is a universal code system that defines various kinds of clinical 

laboratory tests and other measurements (~86,000 entries).8 The outcome of a FHIR 

observation can be represented by a term in the Human Phenotype Ontology (HPO), which 

is a logically defined vocabulary for describing medically relevant abnormal phenotypes.9 

The HPO has become the de facto standard for computational phenotype analysis in 

genomics and rare disease.10–12 The HPO currently contains 14,184 terms (February, 2019) 

including a comprehensive representation of laboratory abnormalities such as 

hyperglycemia, thrombocytopenia, nitrituria, and increased urine alpha-ketoglutarate 

concentration. Here, we present a computational method that semantically harmonizes 

FHIR, LOINC, and HPO. The software rolls up LOINC terms for tests whose outcomes are 

medically comparable into common categories and interprets the outcome as HPO terms, 

thereby automatically extracting detailed, deep phenotypic profiles of laboratory results for 

downstream studies.

RESULTS

Overview of strategy

We present an approach to mapping the outcomes of laboratory tests as encoded in EHRs 

with LOINC terms for the tests and FHIR Observation resources representing the test results 

as HPO terms. A LOINC term by itself does not specify the outcome of a test. But if the 

outcome of a test (such as “high” or “low”) and the nature of the test are known, we can then 

infer the phenotypic abnormality. For example, LOINC 32710-6 “Nitrite [Presence] in 

Urine” together with the outcome “positive” implies the phenotypic abnormality Nitrituria 

(HP:0031812).

LOINC-coded laboratory tests can be grouped broadly into three categories, those with a 

quantitative outcome (Qn), an ordered categorical outcome (ordinal, or Ord) and an 

unordered categorical outcome (nominal, or Nom). A quantitative test for an analyte has a 

normal range, and there are three types of mappings depending on the result of the test: L 

(lower than normal), N (normal), and H (higher than normal). Take, for instance, a test for 

the concentration of potassium in the blood (LOINC:6298-4, Fig. 1a). If the result is high, 

our procedure infers the corresponding HPO term for Hyperkalemia (HP:0002153). 

Analogously, a low result is mapped to Hypokalemia (HP:0002900). The HPO is an 

ontology of abnormal phenotypes, and thus there is no term that specifically represents a 

normal test result. However, computational analysis can record negated HPO terms, and the 

normal test result is represented as NOT Abnormal blood potassium concentration (HP:

0011042).

Ordinal tests can have a series of ordered outcomes. The majority of the ordinal LOINC tests 

were mapped to two possible outcomes, POS (positive) or NEG (negative). For instance, the 

result of the test Nitrite in urine by test strip can be positive (present) or negative (absent) 

(Fig. 1a). If present, then our approach infers the HPO term Nitrituria (HP:0031812); if 

absent, our approach infers NOT Nitrituria (HP:0031812).

Nominal tests have a series of outcomes that lack a natural ordering. Yet, some nominal 

result values are considered abnormal. For instance, LOINC 5778-6, color of urine. 
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Currently, nine abnormal results of this test are mapped to the nine child terms of abnormal 

urinary color (HP:0012086), including red urine (HP:0040318) and dark urine (HP:

0040319).

A LOINC to HPO mapping library

We have mapped 2923 LOINC terms to HPO terms. In all, 80.4% of the mapped LOINC 

tests are Qn, 18.8% Ord, and 0.8% Nom (Fig. 2a). Taken together, these LOINC terms 

mapped to a total of 719 distinct HPO terms. We analyzed the distribution of the number of 

distinct LOINC terms that were mapped to an individual HPO term. In 54.8% of the cases, 

two or more LOINC terms are mapped to the same HPO term (mean 7.5) (Fig. 2b), 

reflecting the fact that multiple laboratory tests (and associated LOINC terms) have 

outcomes that we consider to have an equivalent clinical interpretation.

Algorithm for converting LOINC-coded laboratory tests into HPO-coded phenotypes

We designed an algorithm that inspects elements of a FHIR resource for laboratory tests and 

converts the outcome into an HPO term. A standard FHIR resource for laboratory tests (a 

FHIR Observation) contains patient information, test identification, test result, normal 

reference ranges, and interpretations (Fig. 1b). The algorithm compares the numerical result 

with the normal reference ranges to assign an interpretation code such as “L” or “POS” 

(Table 1), or make use of the interpretation codes when they are present, to map the result to 

the corresponding HPO term (Supplementary Fig. 1). Overall, the algorithm handles all 

three major types of LOINC-coded laboratory tests (Qn, Ord, and Nom) when combined 

with the LOINC to HPO annotation data.

HPO on FHIR

To demonstrate conversion of FHIR-encoded LOINC tests into HPO, we created a SMART 

on FHIR application that uses the mapping library. SMART (Substitutable Medical 

Applications, Reusable Technologies) on FHIR is an application platform for EHRs that 

allows applications to run on different FHIR-enabled EHR systems.13 Our application, HPO 
on FHIR, transforms a bundle of laboratory observations for a patient into a list of HPO 

codes (Fig. 3). We have also developed a command-line application that can iterate through 

all laboratory tests in a FHIR-enabled server, convert each into an HPO term and store them 

in a relational database for translational research.

LOINC to HPO demonstration with asthma

To test our method for semantic integration of laboratory tests, we analyzed a de-identified 

EHR dataset from the University of North Carolina (UNC) comprising 15,681 patients who 

had a history of asthma or asthma-like symptoms. The cohort is skewed toward female 

(58.9%) and older patients (median age: 61.5 years, Fig. 4a). The median tracking period of 

patients in this cohort is 3.1 years. The dataset contains ~54 million records of LOINC-

encoded clinical test results, medication prescriptions, diagnosis codes, procedure codes, 

patient information, and other supporting records (Fig. 4b). Using our LOINC to HPO 

conversion algorithm, we successfully transformed 9.9 out of 11 million (88.6%) laboratory 

tests into HPO terms (Fig. 4c). For the entire cohort, on average, each HPO term was 
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mapped from 1.8 distinct types of laboratory tests (Fig. 4d), indicating that the 

transformation successfully integrated distinctly coded laboratory tests that have the same 

clinical interpretation. The mapping procedure assigned an average of 633 laboratory test-

derived HPO terms per individual patient, many of which were from the same laboratory 

tests performed at different visits. The tests corresponded to a mean of 57.7 unique HPO 

terms, of which 20.8 were abnormalities and the remainder were normal phenotypes (Fig. 

4e). The hierarchical structure of the HPO allows inferences to be propagated up to parent 

terms and their ancestors;14 using this method, we inferred an additional 51.2 HPO terms 

(total 73.5) based on 22.2 abnormalities for each patient (Supplementary Fig. 2).

As a proof-of-principle, we tested the ability of our procedure to identify phenotypic 

abnormalities associated with a diagnosis of asthma or with frequent prednisone use. About 

one-third of the patients in this cohort had an ICD 9/10 diagnosis of asthma, and the 

remaining patients had ICD 9/10 codes reflecting other, potentially asthma-like, respiratory 

complaints. In all, 14.2% of patients who had a diagnosis of asthma were administered or 

prescribed prednisone >3 times within a tracking period between 2004 and 2016; 8.5% of 

the remaining patients had been administered prednisone more than three times. Prednisone 

is a corticosteroid drug used for severe asthma treatment with multiple other indications.15 

We reasoned that both the diagnosis of asthma and the history of treatment with prednisone 

would likely be correlated with different but overlapping sets of laboratory abnormalities. 

Using logistic regression, we assessed the contribution of frequent prednisone prescription 

and the presence of acute asthma diagnosis to each phenotypic abnormality.

Prednisone usage was significantly associated with an increased odds ratio for exhibiting 

many abnormal phenotypes that are consistent with the known effects of prednisone (Table 

2), such as hypoalbuminemia (HP:0003073),16 neutrophilia (HP:0011897),17 monocytosis 

(HP:0012311),18 leukocytosis (HP:0001974),18 hypokalemia (HP:0002900),19 and elevated 

serum creatine phosphoki-nase (HP:0003236).20 An acute asthma diagnosis was 

significantly associated with seven phenotypes, abnormal metabolism (HP:0032245), 

abnormality of vitamin metabolism (HP:0100508), increased red blood cell count (HP:

0020059), increased VLDL cholesterol concentration (HP:0003362), and eosinophilia (HP:

0001880), and two ancestor terms of eosinophilia, abnormal eosinophil count (HP:0020064), 

and abnormal eosinophil morphology (HP:0001879). Eosinophilia is a well-established 

marker for acute allergic asthma.21 Several studies have linked vitamin A, B, C, D, E with 

asthma.22–24 In this study, we applied a threshold minimum number of patients before 

performing statistical analysis, and none of the specific subtypes of abnormality of vitamin 

metabolism (HP:0100508; n = 111 patients) passed this threshold. However, a number of 

patients were found to have increased blood folate (HP:0040087; n = 33 patients), vitamin 

B12 deficiency (HP:0200502; n = 6 patients), low serum calciferol (HP:0012053; n = 56 

patients), and low serum calcitriol (HP:0012052; n = 6 patients). Thus, the hierarchical 

structure of HPO allowed us to infer the parent phenotype (Abnormality of vitamin 

metabolism) and aggregate enough data to find that it is associated with acute asthma 

diagnosis (Supplementary Fig. 3). The term abnormal metabolism (HP:0032245) was also 

flagged, but this was solely related to the 111 patients annotated to abnormality of vitamin 

metabolism, which is a child term of abnormal metabolism. Although there have been some 

conflicting results,25 a number of studies have shown a positive correlation between 
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increased total, high- or low density lipoprotein cholesterol, or triglycerides (Supplementary 

Fig. 2) and asthma.26–30 An increased red blood cell count is not a recognized biomarker of 

asthma, but could conceivably reflect a number of factors including hypoxemia (11.1% with 

an acute asthma diagnosis also had a chronic obstructive pulmonary disease diagnosis), or 

hemoconcentration resulting from acute dehydration during an asthma attack, but the nature 

of this retrospective study does not allow us to consult the full medical records to investigate 

this.

DISCUSSION

In this report, we present an approach to the semantic integration of laboratory tests and 

results in EHR data. Our approach connects a widely used system for denoting laboratory 

tests, LOINC, with a current standard for transmitting healthcare information, FHIR, and a 

computational resource for deep phenotyping, HPO, that was previously used mainly in the 

context of rare disease research and diagnostics. Previous work such as OntoServer provides 

lookup services of different terminologies and maps similar concepts that originate from 

different terminologies.31 The focus of our tool in contrast is to provide a means of 

interpreting the outcomes of laboratory tests using an ontology of phenotypic abnormalities. 

Normalizing laboratory tests with HPO terms is an effective solution for two fundamental 

issues in clinical research: data integration and deep phenotyping. Laboratory test results 

support a large proportion of medical decisions.32 It is common that different laboratory 

tests may lead to results that have very similar or identical clinical interpretations. These 

different tests are recorded in the EHR using distinct codes (for instance, currently, there are 

four different LOINC terms for different tests of urine nitrite). This level of granularity can 

create difficulties for the semantic integration of comparable test results. By converting the 

results of laboratory tests to HPO-encoded phenotypes, our method provides an effective 

way for integrating laboratory tests that have the same clinical interpretation but different 

LOINC codes. Extracted patient phenotypes can be directly utilized for PheWAS studies, 

which is important because phenotyping patients is a major bottleneck for conducting 

PheWAS studies.33 The Electronic Medical Records and Genomics (eMerge) network 

develops EHR-derived phenotyping algorithms by combining diagnosis codes, procedure 

codes, medication, narratives, and subsets of laboratory tests and iteratively refine them to 

identify control and disease cohorts for genome-wide association studies and PheWAS.
1,3,33–35 Our method complements existing phenotyping algorithms because it extracts 

additional phenotypic information by systematically interrogating the vast amount of data in 

laboratory tests.

The analysis of UNC EHR data demonstrated the potential of combining deep phenotypes 

from our tool with EHR data for biomarker discovery. Our current mapping library allowed 

us to convert the majority of the laboratory tests into HPO terms and assign an average of 

57.7 unique phenotypes to each patient. The statistical analysis identified phenotypic 

abnormalities that are associated with frequent prescriptions of prednisone and/or acute 

asthma diagnosis. The cohort used for this analysis is biased toward senior and female 

patients and may not be reflective of asthma patient distributions, but the fact that our 

analysis identified numerous abnormalities that are associated with either prednisone use or 

asthma suggests that our approach can be useful for the investigation of EHR data for 
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laboratory-based biomarkers of diseases and conditions. We have demonstrated the utility of 

our approach on the UNC dataset using a simple logistic regression approach as a proof-of-

principle; we envision that our mapping approach could be used together with a variety of 

statistical and algorithmic analysis strategies to address a variety of topics in EHR-based 

translational research, and we have therefore coded our foundational approach in a way that 

can easily be integrated into other statistical analysis pipelines. A particularly attractive 

direction is to incorporate temporal information to build predictive models based on 

longitudinal phenotypic timelines.36,37

Some practical issues need to be considered when adopting our approach. Although LOINC 

has been widely adopted by healthcare providers and increasingly mandated by various 

federal agencies, it is still not a universal system. Since we used LOINC for the mapping, 

locally coded laboratory tests will not be able to be mapped to HPO terms with our tools. 

Similarly, the SMART on FHIR tool reported here can only be utilized in FHIR-enabled 

hospital systems. However, our annotation file and the algorithmic approach we adopted can 

be used independently of FHIR.

Several other use cases for our approach are conceivable. Rule-based algorithms could be 

applied to infer HPO terms from the primary phenotypic abnormalities. For instance, the 

combination of decreased hemoglobin concentration (HP:0020062) and decreased mean 

corpuscular volume (HP:0025066) implies microcytic anemia (HP:0001935). The HPO is 

widely used in rare disease diagnostics, but one bottleneck is that in many settings, HPO 

terms need to be entered manually into the analysis software. A recent study used text-

mining to extract detailed patient phenotypes through natural language processing of clinical 

narratives in EHR, and used the resulting lists of HPO terms for genomic diagnostics.11 Our 

tool could supplement such approaches by providing a computational representation of 

laboratory findings to genomic diagnostic software such as Exomiser.38–40 In principle, our 

tool could be used to support other tasks related to EHR data, including decision support and 

cohort recruitment. In the future, we anticipate that semantic integration of a wider range of 

EHR data will become the norm to support data-driven translational research and precision 

medicine.

METHODS

Mapping LOINC terms to HPO terms

We performed manual biocuration to construct a mapping library from each potential 

outcome of a LOINC test to the corresponding HPO term (Fig. 1a). The test outcome is 

represented using a subset of FHIR codes (Table 1, primary code), such as “lower than 

normal”, “normal”, or “higher than normal”. For quantitative tests that report a numeric 

measurement, we use FHIR interpretation code “L” and “H” to indicate lower or higher than 

normal, and “N” and “A” to indicate the result is normal or abnormal. For ordinal tests that 

have a binary outcome, i.e., present or absent of the test target, we use FHIR interpretation 

code “POS” to indicate present and “NEG” to indicate absent. In addition, other 

interpretation codes defined by FHIR are first mapped to primary codes. For example, FHIR 

codes “LL” (critically low) and “<” (off scale low) are both mapped to “L” (Table 1).
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The value for a map entry is an HPO term accompanied by a boolean value to indicate 

whether it should be negated. That is, while an abnormal test outcome is mapped to a 

particular HPO term, the normal outcome for that test is mapped to the negated form, since 

the HPO contains only terms for abnormal phenotypes. Figure 1a shows three examples of 

mappings for Qn, Ord, or Nom LOINC terms.

In order to efficiently perform the biocuration needed to generate the LOINC mappings, we 

developed a JavaFX-based annotation tool that recommends candidate HPO terms to a 

LOINC test based on lexical matching between HPO term definitions and the name of a 

laboratory test. The recommended HPO terms were then manually vetted by one of five 

biocurators (i.e., one MD and four PhDs who have biomedical training and are major 

contributors to the HPO project) and cross-validated by a different annotator. Mapping 

problems were tracked by Github issues (https://github.com/TheJacksonLaboratory/

loinc2hpoAnnotation/issues) and discussed during regular meetings. Source code and an 

executable version of the biocuration application are freely accessible at https://github.com/

monarch-initiative/loinc2hpo. In addition, a subset (n = 160) of pediatric-specific laboratory 

tests were independently validated by five domain experts (i.e., three pediatric clinicians, a 

PhD-level molecular biologist, and a master’s-level epidemiologist). To perform this 

validation, a Qualtrics survey was designed so that each question featured a laboratory test 

description and set of reasonable HPO concepts. The survey was completed by all experts 

between October and December (2019). After completion, any laboratory test mapping that 

did not meet agreement by at least one clinician and both the biologist/epidemiologist were 

re-evaluated with one clinician until consensus was reached. The pediatric terms were 

additionally vetted on the loinc2hpoAnnotation GitHub tracker by the entire team of 

biocurators.

LOINC to HPO mapping file

The LOINC to HPO mapping file contains records of mapping from LOINC test outcomes 

to the corresponding HPO terms. The annotation data are serialized as a tab-separated value 

(TSV) file. Each line records the LOINC code, test outcome, the mapped HPO term, and 

whether the mapped term should be negated. The annotation file is deposited at Github and 

can be accessed at https://w3id.org/loinc2hpo/annotations. An excerpt is shown in 

Supplementary Table 1.

HPO on FHIR

We created a SMART on FHIR application, HPO on FHIR, to query a FHIR-enabled EHR 

servers and return patient laboratory results with LOINC codes and their corresponding HPO 

terms. The web interface of the application aggregates identical HPO terms together for 

visualization and also allows users to display source laboratory tests including subject, 

LOINC code, FHIR resource id, effective time and the corresponding HPO term. The 

application was written in the Java language with the Spring framework. The application 

implements the LOINC to HPO conversion algorithm described in Supplementary Fig. 1. 

The application is deposited at Github and can be accessed at (https://github.com/OCTRI/

poc-hpo-on-fhir).
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Command-line application for gathering FHIR server statistics

We created a command-line application that finds all laboratory tests for a patient on a FHIR 

server and attempts to convert them to HPO. The conversion results, both successes and 

failures, are stored in a relational database to aid in translational research. We ran the 

application on seven common FHIR sandboxes and gathered statistics about the LOINCs 

encountered, the rate of success in conversion, and the underlying causes of failure. The 

application was written in the Java language with the Spring framework. Source code, 

results, and a backup of the database, can be accessed at https://github.com/OCTRI/f2hstats.

Analysis of UNC data on patients with asthma or an asthma-like condition

For the purposes of demonstrating the potential utility of our library, we examined a de-

identified EHR dataset extracted from the Carolina Data Warehouse for Health (CDWH) at 

the UNC. The data were accessed under a fully executed Data Use Agreement between The 

Jackson Laboratory and UNC. The CDWH is UNC Health Care System’s (UNCHCS) 

enterprise data warehouse, and contains EHR data for all UNCHCS patients from 2004 

through 2016. The sample used for this investigation contains 15,681 patients with one or 

more encounters at UNCHCS with an asthma or asthma-like diagnosis (Supplementary 

Table 2). The data were exported from the UNC EHR system as eight separate comma-

separated value (CSV) files containing clinical observations in a variety of data domains, 

including demographics, encounter details, diagnoses, procedures, medications, vital signs, 

and LOINC-coded lab results. Prior to transmission from UNC, the dataset was de-identified 

according to the Safe Harbor method of the Health Insurance Portability and Accountability 

Act (HIPAA), and all dates were shifted ±50 days. The project methods and use of the de-

identified EHR-derived dataset were reviewed by The Jackson Laboratory Institutional 

Review Board and confirmed to be compliant with relevant guidelines and regulations and 

approved for data access on 19 December 2017.

Using the extracted laboratory data, we converted each LOINC-coded test into an HPO term. 

We note, however, that not every laboratory test result was captured in the available dataset. 

For each patient, we combined test records mapped to the same HPO terms and recorded the 

counts of observations for each HPO term. Then, we inferred additional phenotypic 

abnormalities based on the hierarchical structure of HPO, i.e., if a patient was assigned with 

an HPO term, we infer that the patient also had phenotypic abnormalities encoded by parent 

and other ancestor terms (Supplementary Fig. 2). We reasoned that an isolated abnormal 

measurement might represent an artifact or might not be typical of the clinical course of the 

patient, and therefore used a threshold of three observations over the entire observation 

period in order to classify a patient with the corresponding HPO-encoded phenotypic 

abnormality. We classified a patient not having an HPO-encoded phenotypic abnormality 

only when the patient had never been assigned to the HPO term in question. Patient age was 

calculated from the last hospital visit date subtracting the birth date and is subject to an 

inaccuracy of ±50 days due to the deidentification procedure (see above). Patients who 

rarely visited hospitals were less likely to receive laboratory tests and thus had less 

phenotypes, so we excluded those who had medical encounters on <10 days. Patients 

received >3 prednisone prescriptions were considered frequent users.
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Statistics

We applied a logistic regression model to determine the weights of being a frequent 

prednisone user (values 0 or 1) and having an acute asthma diagnosis (values 0 or 1) in 

determining a patient having an HPO-encoded phenotype (values 0 or 1). We excluded HPO 

terms from analysis of which the majority (95%) of the cohort had universal values (all 0 or 

1). The natural exponential of the weights ± 1.98 standard deviations were converted to the 

odd ratio and 95% confidence intervals for each variable.

Data cleaning, normalization, wrangling, and table joining were conducted by a combination 

of “tidyverse”, “RSQLite” packages in R, SQLite, and Java. Logistic regression was 

conducted with the “glm” package in R. All source code is deposited at Github and can be 

accessed through https://github.com/TheJacksonLaboratory/HUSHDataAnalysis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Semantic integration of LOINC-coded laboratory tests in FHIR into HPO terms. a 
Representative examples of LOINC to HPO mapping. Potassium in blood, a quantitative 

(Qn) LOINC test, has three potential outcomes, L (lower than normal), N (normal), and H 

(higher than normal) and is mapped to three corresponding HPO terms. Presence of nitrite in 

urine, an ordinal (Ord) test, has two possible outcomes, POS (positive) or NEG (negative) 

and is mapped to either Nitrituria (HP:0031812) or NOT Nitrituria (HP:0031812), 

respectively. Color of urine, a nominal (Nom) test, has a list of likely outcomes (represented 
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as Systematized Nomenclature of Medicine-Clinical Terms [SNOMED-CT] codes using the 

SNOMED-CT US extension) and each one is mapped to an HPO term. b Schematic 

representation of the relevant contents of a FHIR observation for laboratory tests. Each 

FHIR Observation resource for a LOINC-encoded laboratory test includes an identifier (id) 

and the name of the patient, the LOINC code and name, the normal reference range and the 

observed value as well as an interpretation of the result (see Table 1 for a complete list)
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Fig. 2. 
Quantification of the LOINC to HPO mapping library. a Distribution of annotated LOINC 

terms. b Distribution of HPO terms according to the number of LOINC terms mapped to an 

individual HPO term
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Fig. 3. 
Screenshot of the HPO on FHIR application. We connected the HPO on FHIR application to 

the SmartHealthIT R3 Sandbox (a test server with synthetic data), queried all laboratory 

tests related to a simulated patient and converted all the laboratory tests into the 

corresponding HPO terms. The column “# Observations” shows the counts of laboratory 

tests that were mapped to the same HPO term, and for multiple tests mapped to the same 

HPO term, the dates of the first and last test are shown. In this example, LOINC 15074-8 

was performed twice, and LOINC 2339-0 and 2345-7 were each performed once; the 

outcomes of all four tests were abnormally high (blood glucose), and so all four outcomes 

were mapped to the HPO term Hyperglycemia (HP:0003074)
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Fig. 4. 
Analysis of UNC asthma dataset on asthma- and asthma-like patients. a Age and sex 

distribution of patients. b Categories of information extracted from the EHR data. Cyan, 

used for current research; white, not used for current research. MDCTN medication, LOINC 

LOINC-coded laboratory tests, VITAL vital signs, ICD 9 ICD 9-coded diagnosis, ICD 10 

ICD 10-coded diagnosis, VISITS patient visit records, DEPT clinic location, PRNT_LOC 

hospital location, CPT CPT-coded procedures, SOC_HIST social history, PATIENTS patient 

identification records, PROVIDER provider information. c Percentage of laboratory tests in 

our dataset that could be converted into HPO terms (the remaining unmapped tests did not 

have LOINC to HPO annotations). d Number of LOINC terms mapped to a given HPO term 

in the UNC dataset. e Distribution of patients by the number of unique HPO terms that are 

mapped to each patient
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Table 1.

FHIR codes for test outcomes

Primary code Other FHIR codes mapped Meaning

A AA, W Abnormal

L <, D, LL, LU Lower than normal

N B, I Normal

H >, HH,HU, U Higher than normal

NEG ND, NR Not present

POS AC, DET, RR, TOX, WR Present

U HM, IE, IND, MS, NS, null, OBX, QCF, R, S, SDD, SYN-R, SYN-S, VS Unknown

NPJ Digit Med. Author manuscript; available in PMC 2019 May 20.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhang et al. Page 20

Ta
b

le
 2

.

O
dd

s 
ra

tio
 o

f 
ph

en
ot

yp
es

 f
or

 f
re

qu
en

t p
re

dn
is

on
e 

pr
es

cr
ip

tio
n 

an
d 

ac
ut

e 
as

th
m

a 
di

ag
no

si
s

H
P

O
F

re
qu

en
t 

pr
ed

ni
so

ne
 p

re
sc

ri
pt

io
n

A
cu

te
 a

st
hm

a 
di

ag
no

si
s

O
dd

s 
ra

ti
o

C
on

fi
de

nc
e 

in
te

rv
al

 (
95

%
)

P
-v

al
ue

O
dd

s 
ra

ti
o

C
on

fi
de

nc
e 

in
te

rv
al

 (
95

%
)

P
-v

al
ue

A
bn

or
m

al
 m

et
ab

ol
is

m
0.

56
[0

.2
6–

1.
23

]
1.

45
 ×

 1
0−

1
-

1.
72

[1
.1

6–
2.

55
]

6.
78

 ×
 1

0−
3

**

A
bn

or
m

al
ity

 o
f 

vi
ta

m
in

 m
et

ab
ol

is
m

0.
56

[0
.2

6–
1.

23
]

1.
45

 ×
 1

0−
1

-
1.

72
[1

.1
6–

2.
55

]
6.

78
 ×

 1
0−

3
**

In
cr

ea
se

d 
re

d 
bl

oo
d 

ce
ll 

co
un

t
2.

48
[2

–3
.0

7]
5.

42
 ×

 1
0−

17
**

1.
5

[1
.2

5–
1.

79
]

9.
24

 ×
 1

0−
6

**

In
cr

ea
se

d 
V

L
D

L
 c

ho
le

st
er

ol
 c

on
ce

nt
ra

tio
n

0.
77

[0
.3

8–
1.

53
]

4.
47

 ×
 1

0−
1

-
1.

49
[1

–2
.2

3]
4.

84
 ×

 1
0−

2
*

A
bn

or
m

al
 V

L
D

L
 c

ho
le

st
er

ol
 c

on
ce

nt
ra

tio
n

0.
72

[0
.3

6–
1.

44
]

3.
50

 ×
 1

0−
1

-
1.

42
[0

.9
6–

2.
1]

7.
91

 ×
 1

0−
2

-

In
cr

ea
se

d 
he

m
at

oc
ri

t
2.

42
[1

.8
9–

3.
11

]
2.

21
 ×

 1
0−

12
**

1.
23

[0
.9

9–
1.

53
]

5.
35

 ×
 1

0−
2

-

A
bn

or
m

al
 e

os
in

op
hi

l c
ou

nt
3.

72
[3

.1
7–

4.
37

]
1.

42
 ×

 1
0−

59
**

1.
17

[1
.0

1–
1.

36
]

3.
06

 ×
 1

0−
2

*

A
bn

or
m

al
 e

os
in

op
hi

l m
or

ph
ol

og
y

3.
72

[3
.1

7–
4.

37
]

1.
42

 ×
 1

0−
59

**
1.

17
[1

.0
1–

1.
36

]
3.

06
 ×

 1
0−

2
*

E
os

in
op

hi
lia

3.
74

[3
.1

9–
4.

39
]

7.
58

 ×
 1

0−
60

**
1.

17
[1

.0
1–

1.
36

]
3.

14
 ×

 1
0−

2
*

R
ed

uc
ed

 b
lo

od
 u

re
a 

ni
tr

og
en

2.
35

[2
.0

1–
2.

76
]

6.
46

 ×
 1

0−
27

**
1.

08
[0

.9
5–

1.
24

]
2.

40
 ×

 1
0−

1
-

In
cr

ea
se

d 
L

D
L

 c
ho

le
st

er
ol

 c
on

ce
nt

ra
tio

n
0.

81
[0

.5
7–

1.
15

]
2.

28
 ×

 1
0−

1
-

1.
07

[0
.8

6–
1.

33
]

5.
39

 ×
 1

0−
1

-

H
yp

er
ch

ol
es

te
ro

le
m

ia
2.

99
[2

.5
8–

3.
47

]
5.

62
 ×

 1
0−

48
**

1.
05

[0
.9

3–
1.

19
]

4.
48

 ×
 1

0−
1

-

A
bn

or
m

al
 L

D
L

 c
ho

le
st

er
ol

 c
on

ce
nt

ra
tio

n
0.

85
[0

.6
1–

1.
19

]
3.

33
 ×

 1
0−

1
-

1.
02

[0
.8

2–
1.

26
]

8.
71

 ×
 1

0−
1

-

**
P 

<
 0

.0
1

* P 
<

 0
.0

5

- P 
≥ 

0.
05

; t
ab

le
 is

 s
or

te
d 

by
 th

e 
od

ds
 r

at
io

 f
or

 a
cu

te
 a

st
hm

a 
di

ag
no

si
s.

 O
nl

y 
H

PO
 te

rm
s 

of
 w

hi
ch

 th
e 

od
ds

 r
at

io
 >

 1
 f

or
 a

cu
te

 a
st

hm
a 

di
ag

no
si

s 
ar

e 
sh

ow
n.

 R
ef

er
 to

 S
up

pl
em

en
ta

ry
 T

ab
le

 3
 f

or
 a

ll 
te

rm
s

NPJ Digit Med. Author manuscript; available in PMC 2019 May 20.


	Abstract
	INTRODUCTION
	RESULTS
	Overview of strategy
	A LOINC to HPO mapping library
	Algorithm for converting LOINC-coded laboratory tests into HPO-coded phenotypes
	HPO on FHIR
	LOINC to HPO demonstration with asthma

	DISCUSSION
	METHODS
	Mapping LOINC terms to HPO terms
	LOINC to HPO mapping file
	HPO on FHIR
	Command-line application for gathering FHIR server statistics
	Analysis of UNC data on patients with asthma or an asthma-like condition
	Statistics

	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Table 1.
	Table 2.

