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Abstract

Cerebral perfusion declines across the lifespan and is altered in the early stages of several age-

related neuropathologies. Little is known, however, about the longitudinal evolution of perfusion 

in healthy older adults, particularly when perfusion is quantified using magnetic resonance 

imaging with arterial spin labelling (ASL). The objective was to characterize longitudinal 

perfusion in typically aging adults and elucidate associations with cognition and brain structure. 

Adults who were functionally intact at baseline (n=161, ages 47–89) underwent ASL imaging to 

quantify whole-brain gray matter perfusion; a subset (n=136) had repeated imaging (average 

follow-up: 2.3 years). Neuropsychological testing at each visit was summarized into executive 

function, memory, and processing speed composites. Global gray matter volume, white matter 

microstructure (mean diffusivity), and white matter hyperintensities were also quantified. We 

assessed baseline associations among perfusion, cognition, and brain structure using linear 

regression, and longitudinal relationships using linear mixed effects models. Greater baseline 

perfusion, particularly in the left dorsolateral prefrontal cortex and right thalamus, was associated 

with better executive functions. Greater whole-brain perfusion loss was associated with worsening 

brain structure and declining processing speed. This study helps validate noninvasive MRI-based 

perfusion imaging and underscores the importance of cerebral blood flow in cognitive aging.
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Introduction

Brain function requires constant cerebral blood flow (CBF) to provide oxygen, energy 

metabolites, and nutrients, and remove carbon dioxide and cellular waste. Regional control 

of CBF in the mammalian brain is orchestrated by a coordinated unit of neural, glial, and 

vascular cells, a mechanism known as neurovascular coupling. Animal models suggest that 

disruption of the neurovascular unit, which could be secondary to pathology of the neural 

cells, glial cells, or the vasculature, may be an early event in pathological brain aging 

(Kisler, Nelson, Montagne, & Zlokovic, 2017). Neurovascular uncoupling has been reported 

in the early stages of several age-related conditions, including Alzheimer’s disease (AD), 

amyotrophic lateral sclerosis (ALS), and stroke (Bhutani & Anand, 2012; Zlokovic, 2011), 

and chronic hypoperfusion may incite age-associated cognitive decline and 

neurodegeneration (de la Torre, 2017; de la Torre, 2012). In vivo markers of CBF are 

therefore important for understanding and detecting physiological changes of the aging 

brain, and as potential predictive biomarkers of age-related disease risk.

Until recently, CBF has been quantified directly using radioactive ligands, including [15O] 

water positron emission tomography (PET). Although not a direct measure of CBF, one of 

the most common imaging technique for quantifying neural functioning in aging has been 

[18F] fluorodeoxyglucose (FDG)-PET, which measures glucose metabolism via injection of 

a radioactive ligand. Because of neurovascular coupling, glucose consumption is tightly 

coupled with CBF (Baron et al., 1982; Furlow, Harrison, & Harrison, 1983), and [18F]FDG-

PET and [15O]water PET are highly correlated (Bentourkia et al., 2000; Fox, Raichle, 

Mintun, & Dence, 1988). Advances in magnetic resonance imaging (MRI) have permitted 

direct, noninvasive quantification of CBF through the use of a technique known as arterial 

spin-labeling (ASL) perfusion imaging. In ASL imaging, rather than using a radioactive 

tracer as a label, protons in the blood are labeled with a radiofrequency pulse; the perfusion 

of these magnetically-tagged protons to each voxel of the brain is then recorded. Consistent 

results have been observed between [15O]water PET and ASL (Feng et al., 2004; Ye et al., 

2000). Furthermore, joint analyses of [18F]FDG-PET and ASL acquisition have confirmed a 

good overall correlation between perfusion and glucose uptake in controls (Cha et al., 2013), 

as well as in patients with Alzheimer’s disease (Chen et al., 2011), Lewy body dementia 

(Nedelska et al., 2018), and frontotemporal dementia (Tosun et al., 2016). Recent work has 

shown relatively strong correlations between ASL imaging and relative perfusion (R1) 

quantified during dynamic Pittsburgh Compound B (PiB) PET imaging in carriers of 

autosomal dominant AD mutations (Yan et al., 2018).

In accordance with animal studies of neurovascular coupling, glucose metabolism and CBF 

in the human brain appears to change early in pathological aging and may assist in 

predicting clinical course. For example, decreased metabolism detected using [18F]FDG-

PET has long been observed as an early change in AD (Minoshima et al., 1997; Reiman et 

al., 2004), and several studies have described its utility for predicting conversion to dementia 

(Choo et al., 2013; Iaccarino et al., 2017; Prestia et al., 2013). Generally, studies using ASL 

have been consistent with the [18F]FDG-PET literature. For example, Iturria-Medina and 

colleagues (Iturria-Medina et al., 2016) found that hypoperfusion was one of the earliest 

manifestations of late-onset AD in a large sample from ADNI, building on prior work 
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showing ASL-quantified CBF was sensitive to changes in MCI and early AD (for review, 

see Zhang, Gordon, & Goldberg, 2017). Lower whole-brain CBF measured using ASL has 

also been shown to predict faster cognitive decline in AD (Benedictus et al., 2017) and 

conversion from mild cognitive impairment (MCI) to dementia (Chao et al., 2010).

Despite these studies pointing to perfusion as an early biomarker of pathological aging, there 

has been little research on the natural history and cognitive correlates of ASL perfusion in 

functionally intact older adults. The majority of studies are cross-sectional and have 

established that perfusion reductions occur with increasing age (Asllani et al., 2009; Chen, 

Rosas, & Salat, 2011; Parkes, Rashid, Chard, & Tofts, 2004; Zhang et al., 2017). Only two 

studies to date have characterized ASL and cognition with repeated measures in this 

population; both included baseline measurements of ASL only. De Vis and colleagues 

studied 115 healthy adults over age 54 with a single perfusion image at baseline and follow 

up cognitive testing (De Vis et al., 2018). They showed that higher whole-brain and frontal 

CBF predicted better cognition roughly four years later, particularly episodic memory. 

Similarly, Xekardarki and colleagues found that baseline CBF, particularly in the posterior 

cingulate cortex (PCC), was lower in those older adults who showed cognitive decline at 

follow-up (Xekardaki et al., 2015).

Although early evidence indicates that ASL may be a promising, non-invasive method for 

studying aging, there is much we do not know. For example, there is little knowledge about 

longitudinal, within-person changes in ASL perfusion, and there are no studies to our 

knowledge with concurrent, longitudinal ASL and longitudinal assessment of cognition. 

Moreover, few if any studies have determined whether ASL imaging explains additional 

variance in cognition above and beyond standard structural imaging modalities. The present 

study sought to understand perfusion changes and their contributions to cognitive aging. 

First, we aimed to establish the natural history of gray matter perfusion changes in older 

adults by characterizing its longitudinal trajectory in a typically aging cohort with 

longitudinal perfusion imaging. We next examined cross-sectional and longitudinal 

associations with several domains of cognition commonly affected in aging: memory, 

executive functions, and processing speed. We assessed for convergent validity by 

examining the association of ASL perfusion with well-established structural imaging: gray 

matter volume, diffusion tensor imaging, and white matter hyperintensities (WMH). We also 

examined the potential for baseline perfusion to predict trajectories of cognition and brain 

structure. Together, these analyses will help clarify the utility of CBF as an early marker of 

cognitive aging, explore ASL’s utility as a risk-stratification tool based on its ability to 

predict adverse trajectories, and may shed light on the neurobiology of cognitive aging.

Materials and Methods

Participants

Functionally intact older adults from the Hillblom Aging Network cohort with perfusion 

imaging were enrolled in the study. The Hillblom Aging Network cohort consists of 

community-dwelling older adults recruited at the University of California, San Francisco 

(UCSF), Memory and Aging Center as part of a larger longitudinal study that recruits adults 

over age 40. The sample included neurologically and functionally intact older adults at 
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baseline who received at least one time point of perfusion imaging. All participants were 

reviewed at a case conference with a board-certified neuropsychologist (JHK) and 

neurologist. The neurologic and neuropsychological examination was used to determine that 

participants were neurologically normal. Informant interview (Clinical Dementia Rating 

Scale, CDR) was also used. Baseline exclusion criteria included syndromic diagnosis of 

dementia or mild cognitive impairment (MCI) according to consensus research criteria 

(Albert et al., 2011; McKhann et al., 2011), neurological conditions that may affect 

cognition (e.g. epilepsy, stroke, Parkinson’s disease), significant systemic medical illnesses, 

severe psychiatric illness (e.g. bipolar disorder, schizophrenia), a substance use disorder 

within 20 years, or current moderate to severe depression (Geriatric Depression Scale ≥15 of 

30). We also excluded those with a high degree of white matter pathology as measured by a 

Fazekas score of 3 (Fazekas, Chawluk, Alavi, Hurtig, & Zimmerman, 1987). This resulted in 

a sample of 161 participants with 325 total observations; 136 had repeated neuroimaging. A 

small subset (n = 11, 6.8%) of the sample began showing some cognitive or neurologic 

change across the course of the study; 10 were diagnosed with MCI (5 amnestic, 4 mixed, 1 

language) and 1 with Parkinson’s disease. These participants were left in the study in order 

to mimic the predictions associated with someone who is functionally-intact at the time of 

study enrollment/presentation to the clinic, but we controlled for converter status. 

Demographic data, baseline cognition, and information about follow-ups are provided in 

Table 1. As shown in Table 2, not all participants had all imaging modalities, particularly 

WMH. Multivariate comparisons were conducted in samples with overlapping data. All 

participants provided written informed consent and the UCSF Committee on Human 

Research approved the study protocol.

Cognitive Measures

Neuropsychological constructs were assessed using paper and pencil and computerized 

batteries of the primary cognitive domains that decline with aging: processing speed, 

executive functions, and episodic memory. Processing speed was analyzed using a 

previously described computerized battery that is sensitive in an aging population and is 

associated with brain structure (Kerchner et al., 2012) and function (Staffaroni et al., 2018). 

Episodic memory tasks included the California Verbal Learning Test, 2nd edition (Dean C. 

Delis, Kramer, Kaplan, & Ober, 2000), short delay free recall, long delay free recall, and 

recognition discriminability (d’), as well as the total score on Benson figure recall from the 

Uniform Data Set (Weintraub et al., 2018). Executive function tests included correct lines 

per minute on a modified version of the trail making test (Kramer et al., 2003), longest digit 

span backward, total correct on Design Fluency, Condition 1 from the Delis-Kaplan 

Executive Function System (DKEFS; Delis et al., 2001), and total correct on the Stroop 

Interference task (Stroop, 1935). Each test was converted to a Z-score and the resultant Z-

scores were averaged for each participant to create executive function and episodic memory 

composites as previously described (Staffaroni et al., 2018).

Neuroimaging

Scanner—Magnetic resonance imaging data were acquired on a 3T Trio scanner (Siemens 

Medical Systems, Erlangen, Germany). Volumetric MPRAGE sequences at UCSF was used 

to acquire T1-weighted images of the entire brain (Sagittal slice orientation; slice thickness 
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= 1.0mm; slices per slab = 160; in-plane resolution = 1.0×1.0mm; matrix = 240×256; TR = 

2300ms; TE = 2.98ms; TI = 900ms; flip angle = 9°). Pulsed ASL (PASL) imaging was 

acquired using QUIPSSII with Thin-slice TI1 Periodic Saturation (Q2TIPS) sequence 

incorporated in a PICORE (Proximal Inversion with Control of Off-Resonance Effects) 

labeling scheme (Luh, Wong, Bandettini, & Hyde, 1999). The periodic saturation pulses 

started at the postlabeling delay inversion time TI1 = 700ms after the in-plan presaturation 

radio infrequency pulse; the readout started at the postlabeling delay inversion time TI2 = 

1800ms. The repetition and echo time were TR/TE = 2500/11ms. We acquired sixteen 

slices, each 6mm thick with a 7.2mm center to center distance and a matrix 64×56 of 

4×4mm2 in‐plane voxel resolution. The Fluid Attenuated Inversion Recovery (FLAIR) MRI 

imaging was acquired with slice thickness = 1.00mm; slices per slab = 160; in-plane 

resolution = 0.98×0.98mm; matrix = 256×256; TR = 6000ms; TE = 388ms; TI = 2100ms; 

flip angle = 120°. The diffusion sequence was acquired using the following parameters: 

TR/TE 8200/86 ms; B=0 image and 64 directions at B=2000 s/mm2; FOV 220×220 mm2 

and 2.2 mm thick slices; matrix 100×100 with 60 slices yielding 2.2 mm3 isotropic voxels / 

(TR/TE 8000/109 ms; B=0 image and 64 directions at B=2000 s/mm2; FOV 220×220 mm2 

and 2.2 mm thick slices; matrix 100×100 with 55 slices yielding 2.2 mm3 isotropic voxels).

Volumetric Imaging—Before processing, all T1-weighted images were visually inspected 

for quality. Images with excessive motion or image artifact were excluded. Magnetic field 

bias was corrected using the N3 algorithm (Sled, Zijdenbos, & Evans, 1998). Tissue 

segmentation was performed using the unified segmentation procedure in SPM12 

(Ashburner & Friston, 2005). Each participant’s T1-weighted image was warped to create a 

study-specific template by non-linear registration template generation using Large 

Deformation Diffeomorphic Metric Mapping (Ashburner & Friston, 2011). Modulated intra-

subject gray and white matter were normalized and smoothed (~10mm full width half 

maximum Gaussian kernel) in the group template. Every step of the transformation was 

carefully inspected from the native space to the group template. For statistical purposes, 

linear and non-linear transformations between the group template space and International 

Consortium of Brain Mapping (ICBM) space were applied (Mazziotta, Toga, Evans, Fox, & 

Lancaster, 1995). Quantification of volumes in specific brain regions at each time point was 

accomplished by transforming a standard parcellation atlas (Desikan et al., 2006) into ICBM 

space and summing all modulated gray matter within each parcellated region. Total 

intracranial volume (TIV) was estimated for each subject in MNI space (Malone et al., 

2015). Gray matter volume (GMV) and TIV are reported in cm3.

ASL Perfusion—ASL data was processed to obtain partial volume corrected maps of gray 

matter perfusion as previously described (Du et al., 2006; Hayasaka et al., 2006; Johnson et 

al., 2005). Frames of the ASL acquisition were corrected for motion, co-registered with the 

first frame (M0) using FSL (Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012), and 

differential perfusion images were created by subtracting unlabeled from adjacent labeled 

frames and averaging these subtraction images (Aguirre, Detre, Zarahn, & Alsop, 2002). 

Susceptibility artifacts along the phase-encoding direction were corrected in the M0 frame 

and perfusion map using ANTs SyN ( Avants, Epstein, Grossman, & Gee, 2008) restricted to 

the coronal axis. An automatic quality control process removed tagged/untagged pair of 
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frames when the relative root mean square (RMS) distance value between two consecutive 

frames was higher than 0.5 mm. The participant was dropped if this RMS value was higher 

than 1 mm. CBF was calculated by applying the Buxton kinetic model to the perfusion map 

(Buxton et al., 1998; Wang et al., 2003). Partial volume correction was based on the tissue 

segmentation maps from MPRAGE using the transformation matrix from T1 to M0 (Du et 

al., 2006; Müller-Gärtner et al., 1992). All CBF images were visually inspected in the native 

and study-specific template; analyses were conducted in a study-specific template. Finally, 

for the purposes of visualization, images were transformed into MNI space to verify 

anatomical localization and for creation of figures, because most standard atlases and 

templates are in MNI space. Poor quality images that were out of the field of view, or 

contained large susceptibility or motion artifacts were removed from the study. The CBF 

maps were partial volume corrected (PVC) in the gray matter at each timepoint in their 

native space. After applying the structural registration transformations to the CBF PVC 

maps, the maps were masked using voxels from the group template with ≥ 50% probability 

of being gray matter; cerebellar voxels were excluded. A global CBF value was calculated 

that averaged all voxels in this mask.

Diffusion Tensor Imaging (DTI)—Our DTI pipeline has been described previously 

(Elahi et al., 2017). Briefly, FSL (Jenkinson et al., 2012) software was used to co-register the 

diffusion direction images with the b = 0 image, then a gradient direction eddy current and 

distortion correction were applied. Diffusion tensors were calculated using a non-linear 

least-squares algorithm from Dipy (Garyfallidis et al., 2014). After quality control, 

participants’ tensors were registered linearly and non-linearly into a common space using 

DTI-TK (Zhang, Yushkevich, Alexander, & Gee, 2006), and whole-brain white matter mean 

diffusivity (MD) values were extracted.

White Matter Hyperintensities (WMH)—WMHs were quantified using a previously-

described, automated algorithm (Staffaroni et al., 2018) based on a regression algorithm 

(Dadar et al., 2017) using Hidden Markov Random Field with Expectation Maximization 

software (Avants, Tustison, Wu, Cook, & Gee, 2011). Global WMH burden in mm3 was log 

transformed to achieve a normal distribution.

Statistical Analyses

Cross-Sectional Analyses—Baseline associations between whole-brain gray matter 

ASL CBF and variables of interest were analyzed by fitting linear regression models. To 

understand the associations with age, education, and gender, all three were entered as 

simultaneous predictors of CBF. For the primary analyses with cognition and brain structure, 

CBF was entered as an independent variable. Standardized beta (ß) and unstandardized (b) 

estimates are presented for linear regression models. Age, sex, and education were included 

in all analyses that included neuropsychological variables, and age, sex, and total 

intracranial volume (TIV) in those models that included structural imaging. Converter status 

(dummy-coded) was included in the longitudinal models.

In a follow up analysis, we conducted voxel-wise analyses to explore the spatial associations 

between cognition and CBF. The voxel-wise maps were created with general linear models 
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(Jenkinson et al., 2012), using the baseline, partial volume corrected CBF in the gray matter 

as the response. The explanatory variables were cognitive composite score, age, education, 

and TIV. The correction for multiple comparisons used 10,000 permutations (Winkler, 

Ridgway, Webster, Smith, & Nichols, 2014). Statistically significant areas were selected 

using threshold-free cluster enhancement for a p-value < 0.05.

Longitudinal Analyses—We fitted linear mixed effects (LME) models with random 

slopes and intercepts for the longitudinal analyses. We first analyzed longitudinal perfusion 

changes by including time from baseline (continuous variable) as a fixed and random effect. 

We next analyzed whether individual longitudinal trajectories were modified by 

demographics by fitting an LME model with age, education, sex and their interactions with 

time. We also assessed whether longitudinal changes in CBF were associated with 

longitudinal changes in cognition and structural imaging variables. Following Neuhaus et al. 

(Neuhaus & Kalbfleisch, 1998; Neuhaus & McCulloch, 2006), we decomposed whole-brain 

CBF into within- (time-varying) and between-subject (time-invariant) components to 

directly relate purely within-subject change in CBF with changes in cognition and structural 

imaging and to avoid estimation bias resulting from incorrectly assuming common within- 

and between-subject effects. We first calculated a time-invariant mean CBF across visits for 

each person. We then subtracted each participant’s mean from his/her CBF at each time 

point to estimate a mean-centered, within-person metric of change. Both were entered as 

predictors into LME models (along with time), with neuropsychological or neuroimaging 

variables as the outcomes.

For both cross-sectional and longitudinal models, for any cognitive domains that were 

significantly associated with within-person changes in CBF at p < .05, we assessed whether 

other structural imaging modalities were also associated with that domain. Any structural 

modalities that were associated with the cognitive domain of interest at p < .05 were 

modeled simultaneously with CBF to determine relative explanatory contributions. We also 

ran models without WMH, since a substantive number of participants did not have data for 

this imaging modality.

Finally, we assessed whether baseline CBF predicted future decline in cognitive and imaging 

variables by entering baseline CBF as a time invariant predictor. The interaction of baseline 

CBF and time was our independent parameter of interest in this analysis.

Results

Cross-sectional Relationships at Baseline

Demographics—Demographics are presented in Table 1. Neither age (ß = .03, b = .03, p 
= .672) nor education (ß = −.08, b = −.24, p = .336) were significantly associated with CBF 

at baseline. Women showed significantly greater global CBF than men (ß = .24, b = 3.04, p 
= .003).

Brain Structure—Global CBF was positively associated with global gray matter volume 

(ß = .15, b=.15, p = .001) and negatively with global DTI MD (ß = −.22, b = −.001, p = .
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004), shown in Figure 1. The association with WMH was in the expected direction but was 

not statistically significant (ß = −.08, b = −.01, p = .358).

Cognition—Greater CBF at baseline was associated with better executive functions (ß = .

17, b = .02, p = .031) as shown in Figure 2 and Table 2. This relationship was slightly 

weakened (ß = .12, b = .01, p = .198) after adding MD and WMH to the model (n = 114). 

When only MD and GMV were added (n = 149), CBF remained similar in magnitude but 

was no longer a statistically significant correlate of executive functioning (b = .01, ß = .15, p 
= .075). Baseline associations between CBF and processing speed (ß = −.11, b = −.03, p = .

250) and memory (ß = .03, b = .004, p = .738) were not statistically significant.

We further evaluated the relationship with cognition by conducting a voxel-wise analysis. As 

shown in Figure 3, greater perfusion in the left frontal lobe, including the dorsolateral 

prefrontal cortex (dlPFC), and right thalamus were associated with better executive abilities. 

No voxels were significantly associated with processing speed or memory after controlling 

for multiple comparisons.

Baseline Perfusion as a Predictor of Future Changes in Cognition and Brain Structure

Baseline perfusion was not significantly associated with future rate of change in any 

cognitive variables (ps > 0.49). The only relationship with brain structure that reached 

statistical significance was baseline perfusion predicting the rate of change in global MD 

values, such that those with greater baseline perfusion (z-scored) saw faster subsequent 

increases in MD (z-score) (b = .001, p = .010).

Longitudinal Perfusion Analyses

Demographics—Global gray matter perfusion declined annually by 0.66 ml/100g/min (p 
< .001), suggesting that as an individual ages, their perfusion level declines; however, the 

main effect of age was again non-significant (b = .02, p = .766). Older age was in the 

direction of being predictive of faster rates of annual perfusion loss (i.e., age by time 

interaction), but this did not reach statistical significance (b = −.05, p = .071). Sex (b = .27, p 

= .394) and education (b = −.03, p = .653) were not statistically significant modifiers of CBF 

trajectory.

Brain Structure—We observed concordance between the evolution of global perfusion 

and global structural changes. Within-person reductions in global perfusion were also 

associated with increasing WMH burden (b = −.02, p = .007). Within-person reductions in 

global perfusion were associated with increasing MD (b = −8.9 × 10−4, p < .001). Finally, 

within-person declines in CBF correlated with faster volume loss (b = .04, p = .011).

Cognition—Greater within-person declines in perfusion were associated with greater 

slowing of processing speed (b = −.03, p = .039), but not executive functions (b = −7.1 × 

10−3, p = .339), or memory (b = −5.5 × 10−3, p = .563).

As outlined in our model building steps, we followed-up on the relationship between CBF 

and processing speed by evaluating the association of speed with structural imaging 

modalities (Table 3). Higher overall levels of MD (between-person) were associated with 
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slower processing speed (b = 13.68, p =.008), and greater within-person declines in MD 

were associated with greater slowing of speed, although this did not reach statistical 

significance (b = 9.8, p = .06). Neither within-person (b = −.09, p = .236) nor between-

person gray matter volume (b = −.03, p = .318) was statistically significantly associated with 

processing speed. Similarly, neither within-person (b = .41, p = .112) nor between-person 

WMH burden (b = .17, p = .243) was significantly associated with processing speed, 

although both were in the expected direction. In a follow-up analysis, we entered MD and 

CBF as predictors of processing speed in the subsample (n = 116) that contained both 

variables. In this subset of the data, the within-person relationship between CBF and speed 

was again significant (b = .034, p = .033). After controlling for MD, this relationship was no 

longer significant (b = .026, p = .135), with a 24% reduction in the magnitude of the 

relationship.

Discussion

Changes in CBF may develop during the nascent stages of pathological brain aging, and 

chronic hypoperfusion might engender adverse cognitive trajectories. Thus, accurate 

quantification of CBF could be a powerful method for studying the aging brain. MRI-based 

ASL imaging presents the opportunity to directly quantify CBF with improved spatial 

resolution, and without the need for injections or exposure to radioactivity, compared to 

[15O]water PET. Although initial endeavors in healthy and pathological aging have been 

encouraging, there is a dearth of research making use of longitudinally-acquired ASL 

imaging and thorough cognitive characterization. The present study directly addresses this 

gap and provides initial evidence that CBF decreases can be detected in aging using MRI-

based ASL imaging. Ultimately, these findings add to our understanding of the neurobiology 

of cognitive aging.

In our cross-sectional analysis, we found that greater perfusion of the brain’s gray matter 

was associated with better executive functions. When we performed a voxel-wise analysis to 

further probe the spatial aspects of this relationship, perfusion in the right thalamus and left 

lateral frontal lobe, including the dlPFC, were demonstrated to be driving this association. 

The role of the left dlPFC in executive processes has been well-established (Duncan & 

Owen, 2000), and a prior cross-sectional study of ASL imaging in 52 older adults found 

frontal perfusion was associated with executive functions and memory (Alosco et al., 2013). 

A growing body of volumetric (Hughes et al., 2012; Van Der Werf et al., 2001), task-based 

fMRI (Fan, McCandliss, Fossella, Flombaum, & Posner, 2005; Minzenberg, Laird, Thelen, 

Carter, & Glahn, 2009), and lesion studies (Carrera & Bogousslavsky, 2006) have together 

suggested that the thalamus is a critical structure for executive functions and processing 

speed. Furthermore, our finding that these two particular regions are involved is in concert 

with the known reciprocal connections between the PFC and thalamus (Sherman, 2016). 

Evidence is accumulating, particularly in animal models, that suggests this thalamo-

prefrontal circuit is integral for executive functions (Ouhaz, Fleming, & Mitchell, 2018; 

Parnaudeau, Bolkan, & Kellendonk, 2018). Recent work leveraging functional and structural 

imaging to investigate the brain’s connectome suggested that disruption of the fronto-

striatal-thalamic circuit may indeed play a key role in human brain aging (Bonifazi et al., 

2018).
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Longitudinally, we provide some of the first evidence for ASL imaging’s potential to study 

within-person cognitive aging. First, we showed that within-person changes in perfusion 

were detectable using MRI methods. Longitudinal declines in ASL perfusion were also 

detected by our group in a recent study of frontotemporal dementia (Staffaroni et al., 2019). 

The current work further revealed that within-person declines in gray matter CBF were 

associated with greater deterioration of brain structure as measured by other well-established 

markers of brain aging: gray matter volume, white matter microstructure integrity, and 

WMHs. This is consistent with the neurobiological underpinnings of the perfusion signal, 

since the neurovascular unit comprises several cell types. These results are support a 

previous cross-sectional study in older adults that found associations among ASL perfusion 

and gray matter volume and cortical thickness (Alosco et al., 2013). Associations among 

perfusion, brain volume, WMHs, and cortical microbleeds have also been reported in cross-

sectional studies of participants with a variety of vascular risk factors (Crane et al., 2015; 

Gregg et al., 2015; van Elderen et al., 2011).

Longitudinal declines in perfusion appear to be clinically relevant, as intraindividual 

reductions in global perfusion were significantly associated with declines in processing 

speed. We also replicated prior work suggesting that integrity of white matter 

microstructure, quantified with DTI, is a significant predictor of processing speed (Kerchner 

et al., 2012). We found that roughly 24% of the relationship between speed and gray matter 

CBF was explained by white matter integrity. Furthermore, only MD remained a statistically 

significant predictor of speed when both modalities were modelled together. Together, this 

confirms that the structural connections between cortical regions play a sizeable role in 

maintaining processing speed. What might be explaining the other 76% of the relationship 

between CBF and processing speed? One explanation may have to do with the neurobiology 

of the perfusion signal. CBF relies on neuronal, glial and vascular health; thus, its ability to 

capture coordination of multiple cell types (i.e., neurovascular coupling) may be underlying 

its sensitivity to changes in this cohort.

There is interest in leveraging baseline CBF to predict cognitive trajectories. Neurovascular 

uncoupling and perfusion changes are among the earliest detectable alterations in age-related 

brain pathologies, such as cerebrovascular disease and neurodegenerative disease (Iadecola, 

2013; Iturria-Medina et al., 2016; Wang et al., 2013; Zlokovic, 2011). Several cross-

sectional lifespan studies have established that CBF is generally reduced with age (Asllani et 

al., 2009; Chen et al., 2011; Lu et al., 2011; Parkes et al., 2004; Zhang et al., 2017). This 

reduction may be a consequence of a lifetime of cellular damage (de la Torre, 2017) and is 

exacerbated by vascular risk factors (Bangen et al., 2014), which further decrease blood flow 

(de la Torre, 2000). Chronic hypoperfusion has been proposed as an inciting event in the 

pathogenesis of neurodegenerative disease (de la Torre, 2017). A large population based 

study of 4,759 participants without dementia from the Rotterdam Study found that baseline 

perfusion levels, quantified phase-contrast images rather than ASL, were associated with 

accelerated cognitive decline (Wolters et al., 2017). A study of 115 health older adults with 

baseline ASL CBF and cognitive assessment at a 4-year follow up visit found that perfusion 

at baseline predicted cognition at the second time point (De Vis et al., 2018), and another 

found that those older adults who went on to show cognitive declines (n=73) had lower 

baseline ASL perfusion than their counterparts who remained stable (n=75), particularly in 
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the PCC (Xekardaki et al., 2015). In the current sample of older adults who were 

functionally and clinically intact at baseline, we did not replicate the finding that CBF was a 

significant predictor of subsequent cognitive decline. This null finding could be due to the 

fact that our sample is quite healthy with a small number of converters/decliners. Thus, there 

may be a survival bias, such that some of our highly-educated participants have developed 

high levels of cognitive reserve and brain resilience, limiting variability and reducing power 

to detect changes in cognitive outcomes over time. Of note, this could also explain the lack 

of an association between age and CBF in this cohort. The study by De Vis and colleagues 

also had a longer mean duration (4 years) of follow up time, which could have improved 

their power to detect an effect. Although follow-up time in the study by Xekardaki and 

colleagues was 18-months, they used a different methodological approach in which they 

dichotomized converters and non-converters based on neuropsychological testing and 

conducted a group comparison, rather than treating rate of decline continuously.

In contrast to our hypothesis, we found that greater CBF predicted faster rates of declining 

white matter microstructure (i.e., increased MD). Others studies have revealed early 

hyperperfusion, particularly in the medial temporal lobes, in individuals at genetic risk of 

AD because they carried the APOE ε4a allele (Bangen et al., 2012; Wierenga et al., 2012). It 

is conceivable that early pathology could lead to increased blood flow, possibly through 

early network hypersynchronicity (Hillary & Grafman, 2017; Palop & Mucke, 2016). 

Alternatively, this could simply represent regression to the mean or could be a spurious 

finding due to multiple comparisons. This study was not designed to specifically look at 

predicting conversion; based on prior studies, future work should continue to delve into 

ASL’s potential as an early indicator of future cognitive trajectory in cohorts with a larger 

number of converters, such as ADNI.

Several limitations should be noted. One limitation is the lack of PET-ligands for 

Alzheimer’s disease, the most common proteinopathy of aging. Combining knowledge of 

participants’ amyloid and tau status will help us disentangle how specific pathologies of 

aging affect the perfusion signal. Second, data in this study was acquired using a 2D PASL 

acquisition sequence. Some work has suggested that newer 3D and PCASL sequences may 

have higher signal to noise properties (Dai, Garcia, de Bazelaire, & Alsop, 2008; Wu, 

Fernández-Seara, Detre, Wehrli, & Wang, 2007). In this study, the absolute global CBF 

values for some participants are below the levels that are physiologically expected (i.e., < 20 

ml/100 mg/min). Extensive validation of the pipeline suggests that this is the result of the 

acquisition parameters, such that the 1800ms delay time may not be well targeted to capture 

peak perfusion across our participants. Although these absolute values should not be 

interpreted as reflecting the exact physiological levels, the relative perfusion values are 

accurate and allow us to conduct the statistical analyses in this paper. Another limitation is 

that for some analyses, we took a whole brain approach. This was to limit the number of 

comparisons and provide the opportunity for a broad characterization of perfusion changes, 

but hypothesis- and data-driven methods are warranted in follow-up studies. For example, 

precuneal perfusion has been shown to precede conversion from MCI to AD (Borroni et al., 

2006; Hirao et al., 2005). Furthermore, using a whole-brain approach may affect the 

associations observed between perfusion imaging and other modalities. For example, Chen 

and colleagues (Chen et al., 2011) showed a dissociation in the regional effects of age on 
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CBF and gray-matter atrophy. Despite these limitations, this study advances our 

understanding of cognitive aging and provides early evidence of the utility of MRI-based 

perfusion imaging.

Conclusion

ASL perfusion may be a powerful technique to study functional brain changes associated 

with aging. In addition to confirming prior cross-sectional work, this study makes several 

additions to the literature. First, we found that perfusion of the left lateral frontal lobe and 

the thalamus supported executive function performance at baseline. Second, we provide 

evidence that intraindividual declines in perfusion can be quantified in older adults who are 

functionally intact at their first study visit. Next, we showed that longitudinal reductions in 

perfusion are associated with slowed processing speed in aging. Finally, our results indicate 

that longitudinal perfusion loss is associated with changes in several aspects of brain 

structure, as indexed by DTI, volumetric MRI, and WMHs. Although potentially sensitive to 

early age-related changes, perfusion imaging is unlikely to be specific to a single 

pathological substrate, at least when a whole-brain approach is used. Future studies 

analyzing patterns of hypo- and hyper-perfusion, as well as analyses that combine ASL 

perfusion with other disease-specific biomarkers, will be critical for validating this 

methodology and understanding the neurobiology of cognitive aging.
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Figure 1. 
CBF at baseline is negatively associated with white matter mean diffusivity.
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Figure 2. 
CBF at baseline is positively associated with executive functions
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Figure 3. 
Greater baseline CBF in the thalamus and left dorsolateral PFC was associated with better 

executive functions

Note. This figure present cortical projections of voxels that were statistically significantly 

associated with executive functions after controlling for education, age, and total intracranial 

volume. Perfusion imaging was restricted to the gray matter and partial volume correction 

was applied. The heat map presented in the legend corresponds to T statistics. The ROIs 

from the Harvard-Oxford Cortical Structural parcellation atlas that correspond to the frontal 

voxels are the left middle, superior, inferior frontal gyri and the frontal pole. The subcortical 

voxels correspond to the right thalamus.
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Table 1.

Baseline study participant demographics, follow-ups, and cognitive characterization

Mean (SD) or Median (IQR)

Age, years 69.9 (8.3)

Sex, % female 54.7%

Education, years 17.6 (2.1)

Study Visits 2.0 (.6) (range: 1 – 4)

n with multiple visits 141

Cumulative Years Followed 2.3 (1.6) (range: 0 – 5.8)

Years Between Follow-up Visits 2.3 (1.2) (range: .5 – 5.8)

  

Baseline Cognition

MMSE 29.2 (29, 30)

Processing Speed, Z-score 2.7 (1.4)

Memory Composite, Z-score 0.1 (0.6)

Executive Composite, Z-Score 0.2 (0.8)
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Table 2.

Cross-Sectional, Baseline Correlates of Executive Functions (Z-score)

Univariate Model Multivariate Model

n b coefficient Beta p n b coefficient Beta p

CBF 155 0.02 0.19 0.016* 114 0.08 0.12 0.198

MD 149 −4.91 −0.2 0.02* 114 −.06 −0.09 0.414

Log WMH 118 −0.17 −0.24 0.013* 114 −.13 −.19 .072

GMV 155 0.01 0.13 0.334 -- -- --

*
p < .05

Note. In the multivariate models, only listed predictors were included, and all predictors were transformed to sample-based Z-scores, whereas raw 
predictors were entered into univariate models. As the cross-sectional correlations among CBF, memory, and processing speed were not significant 
(p ≥ .05), we did not analyze multivariate contributions.
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Table 3.

Longitudinal Neuroimaging Predictors of Processing Speed Decline (Z-score)

Univariate Model Multivariate Model

Coefficient p Coefficient p

CBF: Within Person −0.03 0.039* −0.16 0.132

CBF: Between-Person −0.02 0.449 −0.05 0.761

MD: Within Person 9.79 0.06 0.17 0.278

MD: Between-Person 12.73 0.018* 0.34 0.030*

Log WMH: Within Person 0.4 0.114 -- --

Log WMH: Between-Person 0.14 0.4 -- --

GMV: Within Person −0.09 0.264 -- --

GMV: Between-Person −0.03 0.377 -- --

Note. In the multivariate models, only listed predictors were included, and all predictors were transformed to sample-based Z-scores. As the 
longitudinal associations among CBF, memory, and executive functions were not significant (p ≥ .05), we did not analyze multimodal contributions.

*
p < .05
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