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Abstract

Increasing spatial working memory (SWM) load is generally associated with declines in 

behavioral performance, but the neural correlates of load-related behavioral effects remain poorly 

understood. Herein, we examine the alterations in oscillatory activity that accompany such 

performance changes in 22 healthy adults who performed a two- and four-load SWM task during 

magnetoencephalography (MEG). All MEG data were transformed into the time-frequency 

domain and significant oscillatory responses were imaged separately per load using a beamformer. 

Whole-brain correlation maps were computed using the load-related beamformer difference 

images and load-related accuracy effects on the SWM task. The results indicated that load-related 

differences in left inferior frontal alpha activity during encoding and maintenance were negatively 

correlated with load-related accuracy differences on the SWM task. That is, individuals who had 

more substantial decreases in prefrontal alpha during high- relative to low-load SWM trials tended 

to have smaller performance decrements on the high-load condition (i.e., they performed more 

accurately). The same pattern of neurobehavioral correlations was observed during the 

maintenance period for right superior temporal alpha activity and right superior parietal beta 

activity. Importantly, this is the first study to employ a voxel-wise whole-brain approach to 

significantly link load-related oscillatory differences and load-related SWM performance 

differences.
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Introduction

Spatial working memory (SWM) refers to the temporary online maintenance and/or 

manipulation of spatial information to be used towards a specific goal, and is typically 

divided into three sub-processes: encoding, maintenance, and retrieval (Baddeley, 1992). 

Encoding involves the loading of information into working memory (WM), while 

maintenance encompasses the active rehearsal of that information for a brief period of time. 

Finally, retrieval refers to the recall and application of the information to achieve a cognitive 

goal. Previous functional magnetic resonance imaging (fMRI) and positron emission 

tomography (PET) investigations have demonstrated that a bilateral network of 

predominantly frontal and parietal brain regions is implicated in SWM processes, and that 

activity within this network tends to scale with WM load (i.e., the number of items held in 

WM; Bauer, Sammer, & Toepper, 2015; Blacker & Courtney, 2016; Bollmann et al., 2015; 

Cabeza & Nyberg, 2000; Curtis, 2006; Fusser et al., 2011; Glahn et al., 2002; Harrison, 

Jolicoeur, & Marois, 2010; Huang et al., 2016; Leung, Seelig, & Gore, 2004; Magen, 

Emmanouil, McMains, Kastner, & Treisman, 2009; Nagel et al., 2009; Nee et al., 2013; 

Rottschy et al., 2012; Srimal & Curtis, 2008; Todd & Marois, 2004; Toepper et al., 2014). 

Additionally, studies investigating oscillatory activity during SWM performance have 

largely corroborated the aforementioned body of literature by showing the recruitment of a 

similar network of cortical regions during SWM in the alpha and beta bands, and activity in 

these regions is also sensitive to load modulations (Boonstra, Powell, Mehrkanoon, & 

Breakspear, 2013; Maite Crespo-Garcia et al., 2013; Gevins & Smith, 2000; Gevins, Smith, 

McEvoy, & Yu, 1997; Grimault et al., 2009; Honkanen, Rouhinen, Wang, Palva, & Palva, 

2015; Medendorp et al., 2007; Roux, Wibral, Mohr, Singer, & Uhlhaas, 2012).

Surprisingly, although load-related differences in task performance (i.e., poorer performance 

as SWM load increased) are also generally reported (Boonstra et al., 2013; Maite Crespo-

Garcia et al., 2013; Gevins & Smith, 2000; Gevins et al., 1997; Roux et al., 2012), few 

studies have directly investigated how such behavioral differences are linked to load-related 

differences in neural activity. Broadly speaking, fMRI research has demonstrated that better 

SWM performance on a single-load task is tied to the greater recruitment of bilateral 

prefrontal cortices (PFC), frontal eye fields, and posterior parietal cortices (Bauer et al., 

2015; Curtis, Rao, & D’Esposito, 2004; Leung, Oh, Ferri, & Yi, 2007; Leung et al., 2004; 

Nagel et al., 2009; Sakai, Rowe, & Passingham, 2002), and a magnetoencephalography 

(MEG) study found that stronger decreases in beta oscillatory activity within prefrontal and 

superior temporal regions were associated with better accuracy on a SWM task (Proskovec, 

Wiesman, Heinrichs-Graham, & Wilson, 2018). Additionally, using a delayed-recall spatial 

navigation task, Crespo-Garcia and colleagues (Crespo-Garcia et al., 2016) found that 

decreased theta activity within hippocampal, insular, and occipitotemporal regions during 

encoding was related to greater accuracy during recall. With regards to SWM load effects, 
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there is some evidence that individuals who perform better on SWM tasks recruit left 

prefrontal regions more strongly as SWM load increases, relative to individuals who perform 

worse on such tasks (Bauer et al., 2015; Nagel et al., 2009). However, only one study has 

attempted to identify the oscillatory responses underlying such load-related behavioral 

differences. Though informative, this study limited its analyses to gamma activity within two 

regions of interest, and showed that the number of behaviorally-relevant items maintained in 

SWM could be predicted by gamma activity within the left medial PFC with a 59% 

probability (Roux et al., 2012). Overall, these studies have made important contributions to 

understanding how neural responses relate to load-related behavioral differences in SWM 

performance, but much remains unknown.

The goal of the present SWM study was to identify the relationship between load-related 

differences in oscillatory activity and behavioral performance utilizing a whole-brain, 

multispectral oscillatory analysis approach and MEG. Participants completed a SWM task 

that varied in load demand (i.e., two vs. four locations), and it was hypothesized that 

performance would be worse on the high- relative to the low-load variant of the task. 

Additionally, it was anticipated that individuals who recruit prefrontal and superior temporal 

cortices more strongly during high- relative to low-load SWM trials, as evidenced by greater 

decreases in alpha/beta activity, would perform better (i.e., demonstrate less of a behavioral 

decrement between loads) than individuals who exhibit less of a difference in oscillatory 

activity between loads.

Materials and Methods

Subject Selection

We studied 22 healthy adults (11 females; mean age: 26.05, SD: 4.02, range: 21–35) who 

had normal or corrected-to-normal vision and were recruited from the local community. 

Exclusionary criteria included any medical illness affecting central nervous system function, 

neurological or psychiatric disorder, history of head trauma, current substance abuse, and 

ferromagnetic implants. After providing a complete description of the study, written 

informed consent was obtained from all participants following the guidelines of the 

University of Nebraska Medical Center’s Institutional Review Board.

Experimental Paradigm

During MEG recording, participants performed a visual SWM task (Figure 1) within a 

magnetically-shielded room. Each trial consisted of the presentation of an empty 7 × 9 grid 

for 1.5 s, followed by two (low-load condition) or four (high-load condition) black squares 

displayed within the grid for 1.5 s (encoding), then an empty grid for 2.5 s (maintenance), 

and finally a probe of either two or four black squares, respectively, presented within the 

grid for 1.0 s (retrieval). In 50% of trials, the probe was identical to the previous encoding 

stimulus, while in the remaining trials the location of one square had moved within the grid. 

Participants responded via button press as to whether the probe was identical to the previous 

encoding stimulus (yes or no) using their right index and middle fingers. The two conditions 

were presented in separate runs, separated by a brief (~4 minute) break, and the order of 
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conditions was counter-balanced across participants. Each trial lasted 6.5 s, and there were a 

total of 128 trials per condition, resulting in a total run-time of ~14 minutes per condition.

MEG Data Acquisition

Recordings occurred in a one-layer magnetically-shielded room with active shielding 

engaged. Neuromagnetic responses were sampled continuously at 1 kHz, using an 

acquisition bandwidth of 0.1–330 Hz and a 306-sensor Elekta system (Elekta, Helsinki, 

Finland). MEG data from each participant were individually corrected for head motion and 

noise reduced using the signal space separation method with a temporal extension (Taulu & 

Simola, 2006; Taulu, Simola, & Kajola, 2005).

MEG Coregistration & Structural MRI Acquisition and Processing

Preceding MEG measurement, four coils were attached to the participant’s head and 

localized, together with the three fiducial points and scalp surface, with a 3-D digitizer 

(Fastrak 3SF0002, Polhemus Navigator Sciences, Colchester, VT, USA). During MEG 

recording, an electric current with a unique frequency label (e.g., 322 Hz) was fed to each 

coil, inducing a measurable magnetic field which allowed each coil to be localized in 

reference to the sensors throughout the recording session. Since coil locations were also 

known in head coordinates, all MEG measurements could be transformed into a common 

coordinate system. With this coordinate system, each participant’s MEG data were 

coregistered with a high-resolution structural T1-weighted template brain using BESA MRI 

(Version 2.0; BESA GmbH, Gräfelfing, Germany). The structural MRI data were in 

standardized space and aligned parallel to the anterior and posterior commissures.

MEG Time-Frequency Transformation and Statistics

Cardiac and eye-blink artifacts were removed from the data using signal-space projection 

(SSP), which was accounted for during source reconstruction (Uusitalo & Ilmoniemi, 1997). 

The continuous magnetic time series was divided into epochs of 6.5 s duration, with the 

onset of the encoding stimulus being defined as 0.0 s and the baseline defined as the −0.4 to 

0.0 s time window. Given our task and epoch design, maintenance onset occurred at 1.5 s 

and retrieval onset occurred at 4.0 s. Epochs containing artifacts were rejected based on a 

fixed threshold method, supplemented with visual inspection, and two participants were 

excluded from all statistical analyses due to excessive artifacts in their MEG data. This 

reduced the final sample size to 20 participants. Additionally, non-artifactual trials were 

randomly excluded per participant so that the total number of accepted trials used in the final 

analyses did not differ between loads. All trials where the participant responded incorrectly 

were also excluded from analysis. On average, 84.35 (SD = 7.69) and 83.95 (SD = 8.26) 

trials per participant were used from the low- and high-load conditions, respectively, and this 

was not significantly different between conditions, t(19) = 1.17, p = .26.

Artifact-free epochs were transformed into the time-frequency domain using complex 

demodulation with a resolution of 1.0 Hz and 50 ms for frequencies spanning from 4 to 90 

Hz. Briefly, complex demodulation is a windowed Fourier time-frequency analysis that 

reduces spectral leakage, is computationally efficient, and thus is oftentimes preferable to 

other transforms (Kovach & Gander, 2016). Essentially, for each frequency of interest, the 
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original signal was multiplied by a pair of complex sinusoids, and the two resulting signals 

were low-pass filtered using a finite impulse response (FIR) filter to recover the real and 

imaginary components of the complex signal as a function of time (Hoechstetter et al., 

2004). The resulting power estimations per gradiometer sensor were averaged across all 

trials (low + high load) to generate time-frequency plots of mean spectral density (i.e., 

spectrograms), and normalized using the mean power during the baseline period. Each data 

point per spectrogram was initially evaluated using a mass univariate approach based on the 

general linear model (GLM). To reduce the risk of false positive results while maintaining 

reasonable sensitivity, a two-stage procedure was followed. In the first stage, one-sample t-
tests were conducted on each data point and the output spectrogram of t-values was 

thresholded at p < .05 to identify time-frequency bins containing potentially significant 

oscillatory activity across all participants. In stage two, time-frequency bins that survived 

this threshold were clustered with temporally and/or spectrally neighboring bins that were 

also significant, and a cluster value was computed by summing the t-values of all data points 

in the cluster. Nonparametric permutation testing was then used to derive a distribution of 

cluster-values and the significance level of the observed clusters (from stage one) were 

tested directly using this distribution (Ernst, 2004; Maris & Oostenveld, 2007). For each 

comparison, at least 10,000 permutations were computed to build a distribution of cluster 

values. Based on these analyses, only the time-frequency windows within the encoding and 

maintenance periods that contained significant oscillatory events across all participants and 

both conditions were subjected to the beamforming (i.e., imaging) analysis. Thus, a data 

driven approach was adopted to identify the significant oscillatory responses on which to 

focus the neurobehavioral analysis.

MEG Source Imaging

Cortical networks were imaged for each condition independently through an extension of the 

linearly constrained minimum variance vector beamformer (Gross et al., 2001; Hillebrand, 

Singh, Holliday, Furlong, & Barnes, 2005), which calculates source power for the entire 

brain volume by employing spatial filters in the time-frequency domain. The single images 

were derived from the cross spectral densities of all combinations of MEG gradiometers 

averaged over the time-frequency range of interest, and the solution of the forward problem 

for each location on a grid specified by input voxel space. The source power in these images 

was normalized per participant using a separately averaged pre-stimulus noise period (i.e., 

baseline) of equal duration and bandwidth (Hillebrand et al., 2005). MEG pre-processing 

and imaging used the Brain Electrical Source Analysis (version 6.1) software. Normalized 

source power per condition was computed for the selected time-frequency bands over the 

entire brain volume per participant at 4.0 × 4.0 × 4.0 mm resolution. Each participant’s 

functional images were then transformed into standardized space and spatially resampled.

Neurobehavioral Correlation Analyses

To identify brain regions in which load-related differences in oscillatory activity were related 

to load-related differences in SWM performance, we utilized the data from the individual 

whole-brain maps computed in the previous step. That is, for each participant, we first 

computed difference maps for encoding and maintenance separately by subtracting the 

baseline-normalized low-load map from the respective baseline-normalized high-load map. 
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Specifically, load-related difference maps were computed for “alpha encoding” (8–11 Hz 

activity spanning from 0.4–1.6 s), “alpha maintenance” (8–11 Hz activity spanning from 

1.6–4.0 s), “beta encoding” (15–20 Hz activity spanning from 0.4–1.6 s), and “beta 

maintenance” (15–20 Hz activity spanning from 1.6–4.0 s). Additionally, we calculated the 

load-related difference in accuracy (high – low) for each participant. Specifically, the 

percentage of correct trials when performing the low-load condition was subtracted from the 

percentage of correct trials when performing the high-load condition. Thereafter, we 

performed a series of Pearson correlations using each participant’s difference maps and their 

respective behavioral difference on the task. Specifically, we computed whole-brain 

correlation maps between load-related differences in SWM accuracy and the alpha encoding 

difference maps, and repeated this procedure to compute whole-brain correlations between 

load-related accuracy differences and each of the other three difference maps (i.e., alpha 

maintenance, beta encoding, and beta maintenance). These whole-brain correlation maps 

were displayed as a function of alpha level, and adjusted for multiple comparisons using a 

cluster criterion (k = 200 contiguous voxels).

Results

Behavioral Results

Task performance differed between conditions, such that participants were significantly 

more accurate when performing the low-load condition (M = 92.60%, SD = 3.05%) relative 

to the high-load condition (M = 81.57%, SD = 7.46%), t(19) = 7.29, p < .001 (Figure 1). 

Participants also responded significantly faster during low-load (M = 835.13 ms, SD = 

139.93 ms) relative to high-load trials (M = 895.31 ms, SD = 153.11 ms), t(19) = −4.67, p 
< .001.

MEG Results

Statistical analyses of the sensor-level time-frequency spectrograms revealed significant 

clusters of decreased alpha (8–11 Hz) and beta (15–20 Hz) oscillatory activity in 

gradiometers near temporal, parietal, and occipital cortices across all participants and loads 

(p < .001, corrected using permutation testing), with the spectrogram from the peak sensor 

located near the parietal cortices shown in Figure 2 (see Figure S1 in the Supporting 

Information for a grand average spectrogram across all relevant sensors). These responses 

began about 0.4 s after encoding onset, and persisted throughout the remainder of the 

encoding and maintenance periods. Significant oscillatory responses in higher frequencies 

were not observed (see Supporting Information Figure S1).

To investigate how load-related oscillatory differences related to load-related behavioral 

performance differences on the SWM task, whole-brain correlation maps were computed 

separately using the alpha and beta encoding and maintenance difference images (high load 

– low load) and accuracy differences between loads. This revealed that, during both 

encoding and maintenance, load-related alpha differences in two regions of the left inferior 

frontal gyrus (IFG) were negatively correlated with load-related differences on the SWM 

task (Figure 3; p < .01, cluster-corrected). Additionally, during only the maintenance period, 

load-related alpha differences in the right superior temporal sulcus (STS) and beta 
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differences in the right superior parietal lobule (SPL) were negatively correlated with load-

related accuracy differences (Figure 3; p < .01, cluster-corrected). That is, throughout 

encoding and maintenance, the greater the decrease in left IFG alpha activity during high- 

relative to low-load SWM trials, the smaller the difference in accuracy between loads. 

Similarly, during the maintenance period, the stronger the decrease in right STS alpha 

activity and SPL beta activity during high- relative to low-load SWM trials, the smaller the 

decrement in high- relative to low-load accuracy.

Discussion

In this study, we examined whether load-related differences in oscillatory activity were 

related to differences in SWM accuracy between loads. Our results demonstrated that 

stronger decreases in left IFG alpha activity during encoding and maintenance, as well as 

greater decreases in right STS alpha and right superior parietal beta activity during 

maintenance, during high- relative to low-load SWM trials were tied to smaller accuracy 

decrements between loads. These findings are discussed in further detail below.

Our data indicated that, while individuals generally performed worse on the high-load 

variant of the task, those who recruited the left IFG more strongly as load increased tended 

to have more preserved SWM performance, despite the increasing task difficulty. Previous 

studies have implicated the ventrolateral PFC (VLPFC; including the IFG) in the selection, 

comparison, and judgment of task-relevant information (Glahn et al., 2002; Owen, 

McMillan, Laird, & Bullmore, 2005), and this region is further believed to support storage 

processes during WM performance (Bauer et al., 2015; Glahn et al., 2002; Owen, 2000; 

Owen et al., 1999; Wager & Smith, 2003). Considering these putative VLPFC functions, and 

provided that decreased alpha and/or beta oscillations within a neural region are thought to 

reflect the active recruitment of that region in ongoing processes (Jensen & Mazaheri, 2010; 

Klimesch, 2012; Klimesch, Sauseng, & Hanslmayr, 2007; Medendorp et al., 2007), the 

pattern of neuro-behavioral correlations that we observed in this region was not surprising, 

and also aligned with previous fMRI research (Bauer et al., 2015; Nagel et al., 2009).

In addition, our findings are the first, to our knowledge, to suggest that load-sensitive alpha 

oscillations within superior temporal cortices and beta oscillations within superior parietal 

cortices are central to successfully meeting the increased demands of high-load SWM 

processing. Similar parietal regions have been tied to the top-down control of spatial 

attention, and the retention of spatial features (Corbetta, Kincade, & Shulman, 2002; 

Honkanen et al., 2015; Rizzolatti & Matelli, 2003; Rottschy et al., 2013), while comparable 

superior temporal regions have been linked to the processing of relations between 

simultaneously presented stimuli (Kwok & Macaluso, 2015; Park et al., 2011; Raabe, 

Fischer, Bernhardt, & Greenlee, 2013). As previously mentioned, the stronger engagement 

of prefrontal, posterior parietal, and superior temporal regions during SWM has been 

directly tied to better SWM performance in single load paradigms, and our results extend 

upon this work by demonstrating that activity in these regions is critical to maintaining 

performance with increasing SWM demands.
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Finally, our data have important implications for an influential theory in cognitive 

neuroscience: the compensation-related utilization of neural circuits hypothesis (CRUNCH; 

Reuter-Lorenz & Cappell, 2008). This theory posits that at low cognitive demands, younger 

adults will not engage all of the neural resources which are available to them. However, with 

increasing cognitive demands, younger adults will recruit compensatory neural mechanisms, 

allowing them to maintain behavioral performance (Reuter-Lorenz & Cappell, 2008). Our 

findings may shed light on some of the oscillatory mechanisms supporting this hypothesis, 

as it was the flexible recruitment of inferior frontal regions throughout encoding and 

maintenance, via decreased alpha activity, and superior temporal and parietal regions during 

maintenance, via decreased alpha and beta activity, that predicted how well individuals 

maintained behavioral performance on the high-load SWM task. It is important to note that 

CRUNCH also encapsulates a prominent aging component (Reuter-Lorenz & Cappell, 

2008), and age has been shown to modulate the oscillatory dynamics serving WM 

performance (Proskovec, Heinrichs-Graham, & Wilson, 2016). Thus, while our study only 

utilized healthy younger adults, future work should investigate the interaction between age 

and load in this context.

In conclusion, the present study offers novel insight into the relationship between load-

related oscillatory differences and load-related SWM performance differences, and is the 

first to utilize a multispectral voxel-wise whole-brain approach in this regard. Taken 

together, our results implicate the flexible recruitment of a distributed network of frontal, 

temporal, and parietal regions in preserving SWM accuracy in the face of increasing 

demands, and further reinforce the functional significance of such regions in visuospatial 

encoding and retention processes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Left Panel: Load-varying spatial working memory (SWM) task. Right Panel: Behavioral 

results for the SWM task with accuracy (% correct) depicted to the left, and reaction time (s) 

to the right. Performance differed between loads, such that participants were more accurate 

and faster to respond during low-load (purple) relative to high-load (red) performance (p 
< .001).

Proskovec et al. Page 12

Hum Brain Mapp. Author manuscript; available in PMC 2020 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Left: Time-frequency spectrogram with time (s) shown on the x-axis and frequency (Hz) 

denoted on the y-axis. Percent power change was computed for each time-frequency bin 

relative to the respective bin’s baseline power (−0.4 to 0.0 s). The color legend is displayed 

to the right of the spectrogram. Data represent a peak sensor, collapsed across loads and 

participants, located near the parietal cortices. Strong decreases in alpha and beta activity 

were observed following encoding onset, which were sustained throughout the remainder of 

encoding and maintenance. The time-frequency windows containing significant oscillatory 

responses relative to baseline activity (i.e., those selected for beamforming) are depicted by 

the white-dashed boxes. Right: A 2D map of the sensor array is shown, with blue sensors 

denoting those in which significant decreases in alpha and beta oscillations (i.e., the 

responses bounded by the white-dashed boxes) were observed. As shown, these responses 

were detected in gradiometers near occipital, parietal, and temporal regions. Note that the 

black sensor was not included in the sensor-level statistical analysis, as it was noisy in most 

participants.
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Figure 3. 
Top: Load-related differences (high - low) in alpha (8–11 Hz) activity in two regions of the 

left inferior frontal gyrus (IFG) during encoding were negatively correlated with load-related 

differences in accuracy. A scatterplot representing the relationship is presented to the right 

utilizing the data from the peak voxel of the posterior IFG cluster. The scatterplot of the 

anterior IFG cluster was very similar. Values on the x-axis represent the difference between 

the magnitude of the response (expressed in pseudo-t units) during the high-load relative to 

low-load condition. Specifically, a negative value denotes a stronger decrease in alpha 
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activity during the high- relative to low-load condition, while a positive value denotes a 

stronger decrease in alpha activity during the low- relative to high-load condition. Values on 

the y-axis represent the difference between the percentage of correct trials (high – low 

condition). Specifically, a negative value denotes lower accuracy in the high- relative to low-

load condition. The relationship between activity in these two IFG clusters and accuracy 

persisted throughout maintenance (not pictured). Bottom: Load-related difference in alpha 

activity in the right superior temporal sulcus and load-related difference in beta (15–20 Hz) 

activity in the right superior parietal lobule during maintenance was negatively correlated 

with load-related differences in accuracy. Scatterplots representing these relationships are 

presented to the right utilizing the data from the peak voxels of the whole-brain correlation 

maps, and the axis values should be interpreted in the same manner as that described above. 

All maps are shown at a threshold of p < .01, cluster-corrected.
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