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Abstract

Multiparameteric imaging is a critical tool in the non-invasive study and assessment of cancer. 

Imaging methods have evolved over the past several decades to provide quantitative measures of 

tumor and healthy tissue characteristics related to (for example) cell number, blood volume 

fraction, blood flow, hypoxia, and metabolism. Mechanistic models of tumor growth have also 

matured to a point where the incorporation of patient-specific measures could provide clinically 

relevant predictions of tumor growth and response. In this review, we identify and discuss 

approaches that utilize multiparametric imaging data including diffusion-weighted magnetic 

resonance imaging (DW-MRI), dynamic contrast enhanced MRI (DCE-MRI), diffusion tensor 

imaging (DTI), contrast enhanced computed tomography (CE-CT), 18F-fludeoxyglucose (18FDG) 

positron emission tomography (PET), and 18F-fluoromisonidazole (18FMISO) PET to initialize 

and calibrate mechanistic models of tumor growth and response. We focus our discussion on brain 

and breast cancer; however, we also identify three emerging areas of application in kidney, 

pancreatic, and lung cancers. We conclude this review, with a discussion of the future directions 

for incorporating multiparameteric imaging data and mechanistic modeling into clinical decision 

making for cancer patients.
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1. Introduction

Medical imaging serves a critical role in the assessment and diagnosis of solid tumors. 

Following diagnosis, a series of imaging data is collected to evaluate tumor size, invasion 

into adjacent structures, and metastatic spread. These data are used in conjuction with a 

clinical staging model to help guide treatment decisions and provide a crude prognosis for 

the disease course. A current challenge in clinical oncology is to predict the response of the 

individual patient to a specified therapeutic approach. While the above measures can provide 

a general prognosis based on the stage of the disease and historical data, the specific 

response of the patient population to standard therapies is heterogenous. A potential 

approach to this challenge is to leverage radiographic changes, which can readily be 

acquired at multiple time points before and during therapy, to enable patient-specific 

predictions of treatment response.

The radiographic assessment of changes in tumor size following treatment has been 

standardized to objectively categorize treatment response. One commonly employed 

technique is the response criteria in solid tumors (RECIST1, 2). RECIST primarily rely on 

morphological changes to identify patient response. However, the predictive utility of these 

measures is fundamentally limited as the morphological changes that form the basis of 

RECIST are temporally downstream of the underlying biochemical responses to therapy. 

Developments in imaging technologies have moved well-beyond morphological 

characterization and can provide non-invasive characterization of the tumor 

microenvironment3. Post-treatment changes in magnetic resonance imaging (MRI) or 

positron emission tomography (PET) measures of hypoxia4, cellularity5, 6, blood volume7, 

and perfusion8, 9 may be predictive of response. Incorporating these advanced imaging 

measures into mechanism-based models presents an opportunity to fundamentally shift 

cancer care through the development of individually optimized therapies10, 11. It is important 

to note that mechanism-based mathematical models of disease is a fundamentally different 

approach to relying only on statistical data analysis (“big data”). This is not to dispute the 

fact that statistical inference in itself is not of critical importance, but rather, by its very 

nature it is based on statistical properties of large populations of patients in which conditions 

that prevail in specific individuals are hard to detect. That is, the “big data-only” approach 

captures the general trends but cannot account for subtle changes in the individual patient—

indeed, the very characteristics that make us individuals—over an extended time. Imaging 

based mechanistic models are designed to predict the spatio-temporal changes associated 

with disease onset, progression, and response to therapy. Such a validated mathematical 

framework enables the generation of testable, patient-specific hypotheses in silico, thereby 

allowing optimization of interventions for the individual patient using the specific 

characteristics of their own unique situation.
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Mechanism based models are built on the assumption that behavior of a complex system can 

be predicted with mathematical descriptions of the interactions of individual system 

components. Only recently have these models begun to incorporate non-invasive imaging 

measurements12, 13 as a means to parameterize these models on a patient-specific basis. 

Non-invasive imaging techniques are well suited for model initialization and calibration as 

they can provide repeatable, reproducible, and evenly discretized measures of tumor 

properties before, during, and after therapy. Initializing and calibrating mechanism based 

models of tumor growth on an individual basis facilitates the generation of individual 

“forecasts” of response to chemotherapies14, 15, radiation therapy (RT)11, 16, 17, and 

resection18 that could be used for therapeutic planning. One potential (clinical) utility of 

mechanism based models is in the application of optimized and adaptive RT plans. RT is a 

central component of the standard of care for many cancers, with medical imaging playing a 

critical role in the positioning and guidance of RT19. Adaptive RT is a strategy to alter 

treatment plans and delivery to control for variations in patient radiosensivity20. One 

potential scenario for mechanistic modeling is to use patient data before and during therapy 

to calibrate predictive models of tumor growth and response to determine a patient’s 

response to therapy. Guided by model predictions, clinicians could simulate alternative 

treatment plans and select a treatment plan that improves the patient’s outcome. This 

modeling scenario could then repeated every time new data is collected, providing a means 

to continuously adapt therapy for individual patients. Recent developments in MRI guided 

linear accelerators21 could be used to provide the necessary quantitative multiparametric 

data to update model calibrations and adapt patient therapy.

Two barriers to implementing imaging-based mechanistic modeling are the access to proper 

data and the validity of current mathematical descriptions of tumor growth and response. In 

this review, we will identify the type of data imaging measures can provide, before 

proceeding to the numerical methods, considerations required for implementation and 

validation. We will then present current modeling approaches with examples from cancer of 

the brain, breast, pancreas, kidney, and lung. Finally, we identify future opportunies in this 

emerging sub-field of oncology, frequently referred to as Mathematical Oncology22.

2. Imaging Measurements and Patient Data

2.1 Multiparametric Imaging Measures of Tumor and Tissue Properties

In this section, we will identify some of the imaging techniques that are currently being used 

in mechanstic models of tumor growth. Tumor cellularity (or the number of cells within an 

imaging voxel) can be estimated using diffusion-weighted MRI23 (DW-MRI), dynamic 

contrast enhanced MRI24, 25 (DCE-MRI), and contrast enhanced computed tomography 

(CT)26, 27 (CE-CT). A variant of DW-MRI called diffusion tensor imaging28 (DTI) can also 

be used to assess the magnitude and direction of water diffusion in tissue, thereby providing 

an estimate of the preferred direction of tumor cell movement. Properties of the tumor 

vasculature such as blood volume and perfusion can be estimated using constrast based 

techniques such as DCE-MRI24and dynamic CE-CT26.

Several PET tracers have been developed which can provide estimates of glucose uptake, 

tumor hypoxia, and cell proliferation. 18F-fludeoxyglucose PET29 (18FDG-PET) is a glucose 
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analog that is taken up by cells, phosphorylated, and then trapped within the cell; thus FDG 

preferentially accumulates within metabolically active cells. 18F-fluoromisonidazole PET30 

(18F-MISO) is a PET tracer that is commonly used to assess the level of hypoxia in tumors. 

A summary of the measurable quantities discussed in this section is provided in Table 1, 

while Figure 1 provides an example of quantitative PET and MRI data acquired in a breast 

cancer patient before and following the start of therapy.

2.2 Challenges in the Acquistion, Processing, and Sharing of Patient Image Data

While multi-parametric imaging data is the focus of this review, there are many pieces of 

information needed to provide informative model predictions to clinicians. In this section, 

we highlight challenges and concerns regarding imaging metadata, medical records, 

instrument types and variability, and data sharing. A more comprehensive review on these 

challenges can be found in Yankeelov et al31 and Shaikh et al32.

Imaging metadata (e.g., observations and tissue annotations) and medical records are 

essential for proper utilization of imaging datasets. These data are often stored separately 

from the image data itself, requiring database management33 to connect metadata and 

medical records to the appropriate image series. Modelers should be aware of medical 

details (e.g., patient’s individual history, disease subtype(s), treatment schedules, and 

response) to accurately model treatment response. When sharing data, researchers should 

utilize consistent file types, naming procedures, and deidentification procedures to ease the 

interpretation and use of imaging data. Curated repositories34 can provide a mechanism for 

archived data to meet consistent standards and improve the utilitiy of shared data.

Site to site variation in image acquisition and analysis may also effect the interpretation of 

imaging data. Researchers should establish the repeatability and reproducibility of the 

imaging techniques employed in their study31. Additionally, post-processing (e.g., tissue 

segmentation, image analysis) procedures should be reproducible within and outside a site, 

to provide consistent analysis of the imaging data. These analyses are particularly important 

when working with data acquired from multiple-institutions with different instruments and 

different post-processing routines36–40.

3. Numerical Methods

In this section we review the calibration, selection, and validation of models, the sensitivity 

analysis of the parameters, and how to address uncertainties in data, model selection, 

parameter estimation, and predictions. Figure 2 shows a schematic of a framework for model 

calibration, selection, and validation.

3.1 Model Calibration, Selection, Validation

For a given problem (e.g., predicting tumor growth41), different mathematical models can be 

developed based on the hypotheses that are to be tested. This will lead to different sets of 

parameters within the model that need to be estimated. The process of determing the values 

of the free paraemeters within a model is called calibration, and it frequently involves 

solving an inverse problem for the parameters based on experimental observations. More 

specifically for a given a model M(Ψ), where Ψ are the model parameters, calibration 
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consists of minimizing the residual R = y - M(Ψ), where y is the measured data 44, 45. If the 

parameters are properly calibrated R = 0 assuming that there is no experimental error or 

model inadequacies46. This minimization process can be done in a deterministic or statistical 

framework. The deterministic framework searches for the set of parameter values that 

minimize the residual error. In the statistical framework, the parameters are assumed to have 

a prior distribution that contains the true parameter. The statistical model is the probability 

distribution image of the mechanistic model applied to the prior distribution. The data is just 

one realization of this model44. Through Bayes’ theorem, the data is used to improve the 

knowledge regarding the parameter distribution. Among the enormous number of possible 

calibrated models, it is crucial to select which model is the “best” for predicting the 

quantities of interest. Two common methods are based on information theory, such as the 

Akaike Information Criterion47 and the Bayesian Information Criterion48 that penalizes the 

number of parameters from the model. Once the best model is selected, it must be 

determined if the model is capable of predicting the quantities of interest with sufficient 

accuracy. This process is called validation and it involves experimental observations, 

obtained from more complex scenarios than those involved in the calibration process, or an 

independent subset of the data not used during the calibration step. The model is tested at 

this new scenario with the calibrated parameters, and if the differences between the values of 

quantities of interest is less than the (user-defined) tolerance, the model is ‘valid’, but 

technically, one can only say that with this metric and with this tolerance, the model is ‘not 

invalid’ because additional information could always falsify a model. Thus, a not 

informative or inaccurate model is ‘invalid’ as it does not satisfy the validation metric that 

compares the model prediction with experimental data46.

3.2 Sensitivity Analysis

Sensitivity analysis refers to quantitatively understanding how variation in a model’s 

parameters influences the output of the model. (This is not to be confused with “uncertainty 

analysis,” which generally refers to a lack of knowledge about parameter values.)The goal of 

a sensitivity analysis is to rank parameters by their importance based upon how their 

prescribed variations affect the output measures when compared to the results from other 

parameters’ changes. This provides a means to identify the driving interactions of the system 

and narrow the scope for which parameters should be targeted for experimental estimation—

particularly useful for complex systems—or identify parameters that could be eliminated or 

set to a nominal value. There are a broad range of methods for calculating sensitivity 

measures that can be divided into to two major groups: local and global. For local sensitivity 

measures, each parameter is varied individually, whereas for global sensitivity measures, 

individual parameter sensitivity is determined while all parameters are varied. While global 

methods are more computationally expensive, they are less likely to miscategorize an 

important parameter as insignificant. Within these two groups, the types of analyses range 

from derivatives determining local dependence49, 50, statistical methods using 

correlations51–53, popular variance-based methods54–58, and even methods that consider the 

shape of output distributions59, 60. Careful examination of individual sensitivity methods 

should be performed before choosing a sensitivity index to rank parameters in a model 

because different methods can give differing rankings of parameters or can even disagree on 

the importance of particular parameters overall.
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3.3 Uncertainty Quantification

The construction of models to represent most phenomena are subject to uncertainties in the 

observational data parameters, and in the mathematical and computational models (e.g., 

model structure, modeling assumptions, constitutive laws, boundary conditions). The models 

can be subject to epistemic uncertainties, due to our lack of knowledge about the parameters, 

or aleatoric uncertainties, due to the parameter variability61. Disregarding such uncertainties 

would lead to biased predictions of the quantities of interest. In particular, for the tumor 

growth models, this can lead to under or over estimation of the tumor size/position, incorrect 

treatment protocols, and it might select an inadequate model62. To have a way to quantify 

these uncertainties and quantify their propagation through the several steps leading to the 

model prediction is of fundamental importance. One way is through Bayesian approaches, 

where the parameters, the data, and the model are not assumed to be deterministic, instead, 

they are considered as random variables characterized by probability density functions 63. 

These characterizations lead to a stochastic model that is able to propagate uncertainty from 

model inputs to outputs.

4. Examples from the literature

4.1 Brain Cancer

Mathematical modeling of glioblastoma growth has a well-developed literature16–18, 64–71 

that utilizes advanced imaging techniques to initialize and calibrate subject-specific models 

of growth and response to therapy. Tumor growth in general, and glioblastoma growth in 

particular, has commonly been modeled using a reaction-diffusion type model which 

describes the proliferation (reaction) and movement (diffusion) of tumor cells as shown in 

Eq. (1):

∂N(x, t)
∂t = Diffusion

∇ · (D∇N(x, t)) + Proliferation
k · N(x, t) 1 − N(x, t)

θ

, (1)

where N(x, t) is the number of tumor cells at a given 3D position x and time t, D is the tumor 

cell diffusion coefficient, k is their proliferation rate, and θ is the carrying capacity or the 

maximum number of cells that can be fit within a volume of interest (e.g., a voxel)). 

Swanson et al 65 pionereed image based model calibration for glioblastoma by introducing 

the use of anatomical T1- and T2-weighted MRI to provide estimates of the detectable tumor 

and the infiltrative non- detectable tumor margins, respectively. Model parameters calibrated 

from individual patients using this approach correlated with tumor grade72, overal patient 

survival73, and predicting response to therapy16, 18. Swanson et al’s approach has been 

expanded by many groups to include multi-parameteric imaging measures from 

MRI17, 70, 74–76 and PET66. Incorporating DTI data has been investigated as a means to 

introduce anisotropic movement of tumor cells67–70, 74, 76, 77 It has been suggested70 that the 

direction of cell movement is aligned with the diffusion tensor direction, potentially 

introducing anisotropic cell diffusion within the brain. DTI data is often incorporated in 

mechanistic models using data acquired in the individual subject68, 74, 76 or supplied from a 

common brain atlas67, 69, 70, 77 In Swan et al, incorporating anisotropic diffusion (using DTI 

Hormuth et al. Page 6

JCO Clin Cancer Inform. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



data) compared to isotropic diffusion has showed promising results where a higher level of 

overlap between the model and measured tumor volumes was observed for the anisotropic 

diffusion model for 9 of the 10 patients74. This approach could potentially be used to 

identify infiltrative regions or define treatment volumes that incorporate areas where tumor 

cells are likely to migrate. 18FMISO-PET data has also been incorporated into a reaction-

diffusion type model of response to RT66. The level of hypoxia as assessed from 18FMISO 

uptake was used to assign an oxygen enhancing ratio to spatially vary the radiosensitivity of 

tumor cells to the delivered therapy. Rockne et al observed in one patient dataset that 

incorporating 18FMISO data in their mechanistic model relative to the model not including 
18FMISO decreased the error in tumor volume predictions from 14.6% to 1.1%. Several 

efforts have proposed incorporating DW-MRI estimates of cellularity17, 64, 75, fluid 

attenuated inversion recovery MRI estimates of edema78, DCE-MRI estimates of 

perfusion78, and DCE-MRI estimates of blood volume fraction79.

4.2 Breast Cancer

Imaging based models for breast cancer have been quickly developing over the past decade, 

beginning with first DW-MRI measures used to approximate tumor cell number and 

initialize a simple logistic growth model (i.e., tumor cell proliferation slows as it reaches a 

carrying capacity)to predict tumor growth80. Using DW-MRI data for individual patients, the 

tumor cell number within the tumor region of interest was estimated from the ADC value. 

For each patient, one pre-treatment and one early post-treatment scans were used to calibrate 

the parameters of the model, which were then used to simulate the tumor forward to be 

compared to the third imaging time point. Using this patient specific data, the mathematical 

model’s prediction for tumor cell numbers in the patients’ third scan was found to be 

statistically correlated to the corresponding experimental data. Later, DW-MRI data was 

used to initialize a partial differential equation model that included a mathematical diffusion 

term to simulate the outward movement of cells as the tumor mass grows (mass effect) based 

on similar modeling efforts for glioblastomas81. The mechanical properties of these different 

tissues were incorporated by modulating the diffusive effect of the tumor cells. Briefly, this 

coupled model describes tumor growth changes that can cause deformations in the 

surrounding healthy tissues, potentially increasing stress and therefore reducing the outward 

expansion of tumor growth14, 15, 82. When compared to RECIST measures of response, Weis 

et al’s approach had increased specificity, and equal sensitivity to RECIST results. The most 

recent work in this effort utilized DCE-MRI data to estimate the delivery of chemotherapy to 

the tumor. Using parameters derived from the extended Kety-Tofts24 model built to 

determine the concentration of contrast agent in tissues for DCE-MRI, the concentration of 

drug in the tissue is approximated for each individual patient per voxel. The system of 

equations in Eq. (2) are thus extended as follows:

∂N(x, t)
∂t = Diffasion

∇ · (D∇N(x, t)) + Prolifention
k(x) · N(x, t) 1 − N(x, t)

θ

− Drug Delivery
αCtissue

drug (x, t)N(x, t)
, (2)
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Cdrug
tisue(x, t) = Extracelluar Extravascular Compartment

Ktans(x)∫ 0
t Cplasma

dng (u) · exp − Ktrans(x)
ve(x) (t − u) du

+ Vasculature Compartment
vp(x)C plasma

drug (t)
,

(3)

D(x, t) = D0exp − γσvm(x, t) , (4)

Linear Elastic Model for Tissue Displacement
∇ · G∇ u + ∇ G

1 − 2ν ∇ u

− Local Body Force from Invading Tumor
λ∇N(x, t) = 0,

(5)

where N (x̅, t) is the number of tumor cells at time t, D the diffusion coefficient, k(x̅) is a 

spatially resolved proliferation rate map for tumor cells, θ the carrying capacity, and 

Ctissue
drug (x, t) is the approximate amount of drug therapy in the tissue at time t with 

effectiveness α. Ktrans is the volume transfer constant from the plasma space to the tissue 

space, vp is the volume fraction of the plasma space, ve is the volume fraction of the 

extravascular extracellular space24, and is the concentration of the drug in the plasma. D0 is 

the tumor cell diffusion constant in the absence of stress, γ an empirical coupling constant 

for the von Mises stress, σvm, G the shear modulus, where G = E / 2 1 – v  for the Young’s 

modulus (E) and Poisson’s ratio ( v) material properties; u  is the displacement due to tumor 

cell growth, and λ is another empirical coupling constant. (σvm reflects the experienced 

stress, and is often used within failure criterion strategies in materials.) Preliminary results 

using a cohort of five patients show reductions in the error between the model’s predictions 

of tumor cellularity and size when compared to when drug therapy is not incorporated 

explicitly. This approach demonstrates the plausibility of using DCE-MRI to characterize 

drug delivery and representes a step toward the goal of achieving a patient-specific model 

for predicting tumor response to neoadjuvant chemotherapy in breast cancer83.

4.3 Other disease sites

The mathematical modeling frameworks developed for glioblastoma and breast cancer 

described above have, in principle, application to any solid tumor type. Recently, image 

based models have also been developed for kidney84, lung85, and pancreatic86 tumors. For 

example, Chen et al leveraged CE-CT images to develop a reaction-diffusion equation to 

predict kidney tumor growth on a longitudinal image series84, 87 which expanded Eq. (1) to 

include a biomechanical model which related tumor cell density to a force applied on the 

surrounding tissue. In this effort, Chen et al observed an average error in tumor volume 
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predictions of 5.1% in 5 patients. Mi et al developed an advection-reaction model of lung 

tumor growth during RT leveraging PET/CT imaging. Tumor cell diffusion was assumed to 

be neglible within the lung and any motion (the advection term) was assumed to be the result 

of cells migrating towards increased concentrations of oxygen, nutrients, and space. The 

group assumed cell density to be proportional to 18FDG-PET SUV, and the model provided 

a means to estimate the effect of radiotherapy. The approach demonstrated promising results 

in a cohort of seven non-small cell lung carcinoma patients with an average concordance of 

76% between measured and predicted tumor volumes85. The group extended this approach 

to improve tumor segmentation on subsequent imaging data, providing a method to more 

accurately estimate tumor changes (and thus model parameters), and thereby improve model 

predictions of tumor volumes 88. Liu et al developed a reaction-advection-diffusion model 

describing the proliferation of tumor cells (reaction), the movement of tumor cells to 

displacement (advection), and the movement of tumor cells due to diffusion to predict the 

growth of pancreatic tumors 86. The model was parameterized using 18FDG-PET and dual 

phase CT to estimate the proliferation rate and cellular volume fraction, respectively. Liu et 
al s model was expanded recently by modeling tumor mass effects with elastic growth 

decomposition, which separates the continuous deformation field of a growing tumor into its 

elastic and growth components to more accurately describe pancreatic tumor behavior27. 

These examples demonstrate the broad application areas for image based models of cancer 

growth and treatment response.

5. Future Directions

There are two fundamental barriers to the field of imaging based, mechanistic modeling of 

tumor growth and response to treatment being able to reach its promise: access to proper 

data, and model validity. Mechanism based models require a level of quantification that is 

not typically available in the standard of care setting. The majority of imaging data types 

acquired as standard of care are limited to qualitative decriptions of tissue morphology. Such 

data types fundmentally limit the calibration and prediction fidelity that can be achieved 

with mechanism based models. Thus, specialized clinical studies must be designed and 

executed to provide the data types needed to initialize and constrain these models. With such 

data available, it then becomes possible to systematically test the validity of a range of 

mathematical models that account for a wide range of biological and physical factors, 

leading to an entire family of potentially predictive models. Model selection algorithms can 

then be employed to select the optimal model and then validate its ability to accurately 

predict the spatiotemporal development of an individual patient’s tumor41, 42.

If the above two limitations can be overcome or, even, partially addressed, then it may be 

possible to build, calibrate, and apply realistic mathematical models for use in patient care; 

Figure 3 provides a schematic for how such an approach could be realized. Initially, a 

mathematical formulation is defined to model the desired quantity of interest. In vitro 
experiments can be used to acquire knowledge on parameter values43 (panel a). Imaging 

data is then acquired during prior to and early in the course of therapy (panel b). The images 

are spatially co-registered (or aligned) across time, discretized, and segmented according to 

the important features to be captured by the model. The values of the parameters are updated 

on this patient-specific scenario. With the optimized parameter values, the model passes 
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through the validation step (panel c). If it is deemed valid, the model can be used with some 

confidence to make a prediction. This prediction will provide additional ‘scores’ or model 

based biomarkers to be used to improve current clinical staging models and response 

assessment criteria or to define new therapy protocols. Success in this program would 

represent, without question, an enormous improvement in the human condition.

6. Summary

The integration of mechanism based, mathematical modeling with quantitative, 

multiparametric imaging data that captures the unique characteristics of the individual 

patient, promises to generate accurate and actionable predictions that can optimally guide 

the care of the patient. This would fundamentally shift existing paradigms of therapy 

monitoring and selection in cancer, and hasten personalized cancer medicine.
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Figure 1: 
Example multi-parameteric data acquired in a breast cancer patient before treatment (top 

row) and after (bottom row) one cycle of neoadjuvant chemotherapy. DW-MRI (first 

column) returns estimates of the ADC which can be used to provide estimates of cellularity. 

DCE-MRI (second through fourth columns) provides estimates of tissue blood flow and 

permeability (Ktrans), extracellular-extravascular volume fraction (ve), and the plasma 

volume fraction (vp). 18FDG-PET provides estimates of glucose uptake (SUV). These 

imaging measurements can be acquired non- invasivley before, during, and after the start of 

therapy to characterize functional changes in tumor properties.
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Figure 2: 
Schematic of model calibration, selection, and validation framework. A determistic or 

statistical (panel a) approach to model calibration is used to minimize the error between the 

model and the measurement of a specific quantity of interest (e.g., tumor volume, cell 

density distribution). In this example, the model is initialized at time point 1 (t1) and the 

error is calculated at time point 2 (t2) Model selection (panel b) criterion are used to select 

the most appropriate model that accurately describes the data. The selected model is then 

evaluated in a validation stage (panel c) by simulating tumor growth at t3 and comparing it to 

the measured tumor growth. If the model error is within a prescribed error threshold for a 

quanity of interest the model is then considered valid.
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Figure 3: 
Modeling framework describing how a mathematical model can be developed and 

implemented. In vitro experiments (panel a) are designed to provide data to calibrate a 

particular tumor model. Tri-phase CT data is acquired (before and after the treatment), 

segmented,and registered (panel b). The domain is discretized (panel c) so the model can be 

calibrated and validated to patient data. If the model meets validation criterion it can be used 

to predict the tumor evolution.
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Table 1:

Summary of tumor properties available from common medical imaging techniques

Property Modality

Cellularity DW-MRI23,DCE-MRI24, CE-CT26

Direction of Cell movement DTI28

Blood volume & perfusion DCE-MRI, CE-CT

Hypoxia or Hypoxic tissues 18F-MISO-PET30

Glucose Metabolism 18FDG-PET29
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